1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
|
//===-- Checks.cpp --------------------------------------------------------===//
//
// The KLEE Symbolic Virtual Machine
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "Passes.h"
#include "klee/Config/Version.h"
#include "KLEEIRMetaData.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/Pass.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
using namespace llvm;
using namespace klee;
char DivCheckPass::ID;
bool DivCheckPass::runOnModule(Module &M) {
std::vector<llvm::BinaryOperator *> divInstruction;
for (auto &F : M) {
for (auto &BB : F) {
for (auto &I : BB) {
auto binOp = dyn_cast<BinaryOperator>(&I);
if (!binOp)
continue;
// find all [s|u][div|rem] instructions
auto opcode = binOp->getOpcode();
if (opcode != Instruction::SDiv && opcode != Instruction::UDiv &&
opcode != Instruction::SRem && opcode != Instruction::URem)
continue;
// Check if the operand is constant and not zero, skip in that case.
const auto &operand = binOp->getOperand(1);
if (const auto &coOp = dyn_cast<llvm::Constant>(operand)) {
if (!coOp->isZeroValue())
continue;
}
// Check if the operand is already checked by "klee_div_zero_check"
if (KleeIRMetaData::hasAnnotation(I, "klee.check.div", "True"))
continue;
divInstruction.push_back(binOp);
}
}
}
// If nothing to do, return
if (divInstruction.empty())
return false;
LLVMContext &ctx = M.getContext();
KleeIRMetaData md(ctx);
auto divZeroCheckFunction = cast<Function>(
M.getOrInsertFunction("klee_div_zero_check", Type::getVoidTy(ctx),
Type::getInt64Ty(ctx), NULL));
for (auto &divInst : divInstruction) {
llvm::IRBuilder<> Builder(divInst /* Inserts before divInst*/);
auto denominator =
Builder.CreateIntCast(divInst->getOperand(1), Type::getInt64Ty(ctx),
false, /* sign doesn't matter */
"int_cast_to_i64");
Builder.CreateCall(divZeroCheckFunction, denominator);
md.addAnnotation(*divInst, "klee.check.div", "True");
}
return true;
}
char OvershiftCheckPass::ID;
bool OvershiftCheckPass::runOnModule(Module &M) {
Function *overshiftCheckFunction = 0;
LLVMContext &ctx = M.getContext();
bool moduleChanged = false;
for (Module::iterator f = M.begin(), fe = M.end(); f != fe; ++f) {
for (Function::iterator b = f->begin(), be = f->end(); b != be; ++b) {
for (BasicBlock::iterator i = b->begin(), ie = b->end(); i != ie; ++i) {
if (BinaryOperator* binOp = dyn_cast<BinaryOperator>(i)) {
// find all shift instructions
Instruction::BinaryOps opcode = binOp->getOpcode();
if (opcode == Instruction::Shl ||
opcode == Instruction::LShr ||
opcode == Instruction::AShr ) {
std::vector<llvm::Value*> args;
// Determine bit width of first operand
uint64_t bitWidth=i->getOperand(0)->getType()->getScalarSizeInBits();
ConstantInt *bitWidthC = ConstantInt::get(Type::getInt64Ty(ctx),
bitWidth, false);
args.push_back(bitWidthC);
CastInst *shift =
CastInst::CreateIntegerCast(i->getOperand(1),
Type::getInt64Ty(ctx),
false, /* sign doesn't matter */
"int_cast_to_i64",
&*i);
args.push_back(shift);
// Lazily bind the function to avoid always importing it.
if (!overshiftCheckFunction) {
Constant *fc = M.getOrInsertFunction("klee_overshift_check",
Type::getVoidTy(ctx),
Type::getInt64Ty(ctx),
Type::getInt64Ty(ctx),
NULL);
overshiftCheckFunction = cast<Function>(fc);
}
// Inject CallInstr to check if overshifting possible
CallInst *ci =
CallInst::Create(overshiftCheckFunction, args, "", &*i);
// set debug information from binary operand to preserve it
ci->setDebugLoc(binOp->getDebugLoc());
moduleChanged = true;
}
}
}
}
}
return moduleChanged;
}
|