1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
|
//===-- KModule.cpp -------------------------------------------------------===//
//
// The KLEE Symbolic Virtual Machine
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "KModule"
#include "klee/Internal/Module/KModule.h"
#include "klee/Internal/Support/ErrorHandling.h"
#include "Passes.h"
#include "klee/Config/Version.h"
#include "klee/Interpreter.h"
#include "klee/Internal/Module/Cell.h"
#include "klee/Internal/Module/KInstruction.h"
#include "klee/Internal/Module/InstructionInfoTable.h"
#include "klee/Internal/Support/Debug.h"
#include "klee/Internal/Support/ModuleUtil.h"
#include "llvm/Bitcode/ReaderWriter.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ValueSymbolTable.h"
#include "llvm/IR/DataLayout.h"
#if LLVM_VERSION_CODE < LLVM_VERSION(3, 5)
#include "llvm/Analysis/Verifier.h"
#include "llvm/Linker.h"
#include "llvm/Support/CallSite.h"
#else
#include "llvm/IR/CallSite.h"
#include "llvm/Linker/Linker.h"
#endif
#include "klee/Internal/Module/LLVMPassManager.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/raw_os_ostream.h"
#include "llvm/Support/Path.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include <sstream>
using namespace llvm;
using namespace klee;
namespace {
enum SwitchImplType {
eSwitchTypeSimple,
eSwitchTypeLLVM,
eSwitchTypeInternal
};
cl::opt<bool>
OutputSource("output-source",
cl::desc("Write the assembly for the final transformed source"),
cl::init(true));
cl::opt<bool>
OutputModule("output-module",
cl::desc("Write the bitcode for the final transformed module"),
cl::init(false));
cl::opt<SwitchImplType>
SwitchType("switch-type", cl::desc("Select the implementation of switch"),
cl::values(clEnumValN(eSwitchTypeSimple, "simple",
"lower to ordered branches"),
clEnumValN(eSwitchTypeLLVM, "llvm",
"lower using LLVM"),
clEnumValN(eSwitchTypeInternal, "internal",
"execute switch internally")
KLEE_LLVM_CL_VAL_END),
cl::init(eSwitchTypeInternal));
cl::opt<bool>
DebugPrintEscapingFunctions("debug-print-escaping-functions",
cl::desc("Print functions whose address is taken."));
}
/***/
namespace llvm {
extern void Optimize(Module *, llvm::ArrayRef<const char *> preservedFunctions);
}
// what a hack
static Function *getStubFunctionForCtorList(Module *m,
GlobalVariable *gv,
std::string name) {
assert(!gv->isDeclaration() && !gv->hasInternalLinkage() &&
"do not support old LLVM style constructor/destructor lists");
std::vector<Type *> nullary;
Function *fn = Function::Create(FunctionType::get(Type::getVoidTy(m->getContext()),
nullary, false),
GlobalVariable::InternalLinkage,
name,
m);
BasicBlock *bb = BasicBlock::Create(m->getContext(), "entry", fn);
// From lli:
// Should be an array of '{ int, void ()* }' structs. The first value is
// the init priority, which we ignore.
ConstantArray *arr = dyn_cast<ConstantArray>(gv->getInitializer());
if (arr) {
for (unsigned i=0; i<arr->getNumOperands(); i++) {
ConstantStruct *cs = cast<ConstantStruct>(arr->getOperand(i));
#if LLVM_VERSION_CODE >= LLVM_VERSION(3, 5)
// There is a third *optional* element in global_ctor elements (``i8
// @data``).
assert((cs->getNumOperands() == 2 || cs->getNumOperands() == 3) &&
"unexpected element in ctor initializer list");
#else
assert(cs->getNumOperands()==2 && "unexpected element in ctor initializer list");
#endif
Constant *fp = cs->getOperand(1);
if (!fp->isNullValue()) {
if (llvm::ConstantExpr *ce = dyn_cast<llvm::ConstantExpr>(fp))
fp = ce->getOperand(0);
if (Function *f = dyn_cast<Function>(fp)) {
CallInst::Create(f, "", bb);
} else {
assert(0 && "unable to get function pointer from ctor initializer list");
}
}
}
}
ReturnInst::Create(m->getContext(), bb);
return fn;
}
static void injectStaticConstructorsAndDestructors(Module *m) {
GlobalVariable *ctors = m->getNamedGlobal("llvm.global_ctors");
GlobalVariable *dtors = m->getNamedGlobal("llvm.global_dtors");
if (ctors || dtors) {
Function *mainFn = m->getFunction("main");
if (!mainFn)
klee_error("Could not find main() function.");
if (ctors)
CallInst::Create(getStubFunctionForCtorList(m, ctors, "klee.ctor_stub"),
"", &*(mainFn->begin()->begin()));
if (dtors) {
Function *dtorStub = getStubFunctionForCtorList(m, dtors, "klee.dtor_stub");
for (Function::iterator it = mainFn->begin(), ie = mainFn->end();
it != ie; ++it) {
if (isa<ReturnInst>(it->getTerminator()))
CallInst::Create(dtorStub, "", it->getTerminator());
}
}
}
}
void KModule::addInternalFunction(const char* functionName){
Function* internalFunction = module->getFunction(functionName);
if (!internalFunction) {
KLEE_DEBUG(klee_warning(
"Failed to add internal function %s. Not found.", functionName));
return ;
}
KLEE_DEBUG(klee_message("Added function %s.",functionName));
internalFunctions.insert(internalFunction);
}
bool KModule::link(std::vector<std::unique_ptr<llvm::Module>> &modules,
const std::string &entryPoint) {
auto numRemainingModules = modules.size();
// Add the currently active module to the list of linkables
modules.push_back(std::move(module));
std::string error;
module = std::unique_ptr<llvm::Module>(
klee::linkModules(modules, entryPoint, error));
if (!module)
klee_error("Could not link KLEE files %s", error.c_str());
targetData = std::unique_ptr<llvm::DataLayout>(new DataLayout(module.get()));
// Check if we linked anything
return modules.size() != numRemainingModules;
}
void KModule::instrument(const Interpreter::ModuleOptions &opts) {
// Inject checks prior to optimization... we also perform the
// invariant transformations that we will end up doing later so that
// optimize is seeing what is as close as possible to the final
// module.
LegacyLLVMPassManagerTy pm;
pm.add(new RaiseAsmPass());
// This pass will scalarize as much code as possible so that the Executor
// does not need to handle operands of vector type for most instructions
// other than InsertElementInst and ExtractElementInst.
//
// NOTE: Must come before division/overshift checks because those passes
// don't know how to handle vector instructions.
pm.add(createScalarizerPass());
if (opts.CheckDivZero) pm.add(new DivCheckPass());
if (opts.CheckOvershift) pm.add(new OvershiftCheckPass());
pm.add(new IntrinsicCleanerPass(*targetData));
pm.run(*module);
}
void KModule::optimiseAndPrepare(
const Interpreter::ModuleOptions &opts,
llvm::ArrayRef<const char *> preservedFunctions) {
if (opts.Optimize)
Optimize(module.get(), preservedFunctions);
// Add internal functions which are not used to check if instructions
// have been already visited
if (opts.CheckDivZero)
addInternalFunction("klee_div_zero_check");
if (opts.CheckOvershift)
addInternalFunction("klee_overshift_check");
// Needs to happen after linking (since ctors/dtors can be modified)
// and optimization (since global optimization can rewrite lists).
injectStaticConstructorsAndDestructors(module.get());
// Finally, run the passes that maintain invariants we expect during
// interpretation. We run the intrinsic cleaner just in case we
// linked in something with intrinsics but any external calls are
// going to be unresolved. We really need to handle the intrinsics
// directly I think?
LegacyLLVMPassManagerTy pm3;
pm3.add(createCFGSimplificationPass());
switch(SwitchType) {
case eSwitchTypeInternal: break;
case eSwitchTypeSimple: pm3.add(new LowerSwitchPass()); break;
case eSwitchTypeLLVM: pm3.add(createLowerSwitchPass()); break;
default: klee_error("invalid --switch-type");
}
InstructionOperandTypeCheckPass *operandTypeCheckPass =
new InstructionOperandTypeCheckPass();
pm3.add(new IntrinsicCleanerPass(*targetData));
pm3.add(new PhiCleanerPass());
pm3.add(operandTypeCheckPass);
pm3.run(*module);
// Enforce the operand type invariants that the Executor expects. This
// implicitly depends on the "Scalarizer" pass to be run in order to succeed
// in the presence of vector instructions.
if (!operandTypeCheckPass->checkPassed()) {
klee_error("Unexpected instruction operand types detected");
}
}
void KModule::manifest(InterpreterHandler *ih, bool forceSourceOutput) {
if (OutputSource || forceSourceOutput) {
std::unique_ptr<llvm::raw_fd_ostream> os(ih->openOutputFile("assembly.ll"));
assert(os && !os->has_error() && "unable to open source output");
*os << *module;
}
if (OutputModule) {
std::unique_ptr<llvm::raw_fd_ostream> f(ih->openOutputFile("final.bc"));
WriteBitcodeToFile(module.get(), *f);
}
/* Build shadow structures */
infos = std::unique_ptr<InstructionInfoTable>(
new InstructionInfoTable(module.get()));
for (auto &Function : *module) {
if (Function.isDeclaration())
continue;
auto kf = std::unique_ptr<KFunction>(new KFunction(&Function, this));
for (unsigned i=0; i<kf->numInstructions; ++i) {
KInstruction *ki = kf->instructions[i];
ki->info = &infos->getInfo(ki->inst);
}
functionMap.insert(std::make_pair(&Function, kf.get()));
functions.push_back(std::move(kf));
}
/* Compute various interesting properties */
for (auto &kf : functions) {
if (functionEscapes(kf->function))
escapingFunctions.insert(kf->function);
}
if (DebugPrintEscapingFunctions && !escapingFunctions.empty()) {
llvm::errs() << "KLEE: escaping functions: [";
for (auto &Function : escapingFunctions)
llvm::errs() << Function->getName() << ", ";
llvm::errs() << "]\n";
}
}
KConstant* KModule::getKConstant(const Constant *c) {
auto it = constantMap.find(c);
if (it != constantMap.end())
return it->second.get();
return NULL;
}
unsigned KModule::getConstantID(Constant *c, KInstruction* ki) {
if (KConstant *kc = getKConstant(c))
return kc->id;
unsigned id = constants.size();
auto kc = std::unique_ptr<KConstant>(new KConstant(c, id, ki));
constantMap.insert(std::make_pair(c, std::move(kc)));
constants.push_back(c);
return id;
}
/***/
KConstant::KConstant(llvm::Constant* _ct, unsigned _id, KInstruction* _ki) {
ct = _ct;
id = _id;
ki = _ki;
}
/***/
static int getOperandNum(Value *v,
std::map<Instruction*, unsigned> ®isterMap,
KModule *km,
KInstruction *ki) {
if (Instruction *inst = dyn_cast<Instruction>(v)) {
return registerMap[inst];
} else if (Argument *a = dyn_cast<Argument>(v)) {
return a->getArgNo();
#if LLVM_VERSION_CODE >= LLVM_VERSION(3, 6)
// Metadata is no longer a Value
} else if (isa<BasicBlock>(v) || isa<InlineAsm>(v)) {
#else
} else if (isa<BasicBlock>(v) || isa<InlineAsm>(v) ||
isa<MDNode>(v)) {
#endif
return -1;
} else {
assert(isa<Constant>(v));
Constant *c = cast<Constant>(v);
return -(km->getConstantID(c, ki) + 2);
}
}
KFunction::KFunction(llvm::Function *_function,
KModule *km)
: function(_function),
numArgs(function->arg_size()),
numInstructions(0),
trackCoverage(true) {
// Assign unique instruction IDs to each basic block
for (auto &BasicBlock : *function) {
basicBlockEntry[&BasicBlock] = numInstructions;
numInstructions += BasicBlock.size();
}
instructions = new KInstruction*[numInstructions];
std::map<Instruction*, unsigned> registerMap;
// The first arg_size() registers are reserved for formals.
unsigned rnum = numArgs;
for (llvm::Function::iterator bbit = function->begin(),
bbie = function->end(); bbit != bbie; ++bbit) {
for (llvm::BasicBlock::iterator it = bbit->begin(), ie = bbit->end();
it != ie; ++it)
registerMap[&*it] = rnum++;
}
numRegisters = rnum;
unsigned i = 0;
for (llvm::Function::iterator bbit = function->begin(),
bbie = function->end(); bbit != bbie; ++bbit) {
for (llvm::BasicBlock::iterator it = bbit->begin(), ie = bbit->end();
it != ie; ++it) {
KInstruction *ki;
switch(it->getOpcode()) {
case Instruction::GetElementPtr:
case Instruction::InsertValue:
case Instruction::ExtractValue:
ki = new KGEPInstruction(); break;
default:
ki = new KInstruction(); break;
}
Instruction *inst = &*it;
ki->inst = inst;
ki->dest = registerMap[inst];
if (isa<CallInst>(it) || isa<InvokeInst>(it)) {
CallSite cs(inst);
unsigned numArgs = cs.arg_size();
ki->operands = new int[numArgs+1];
ki->operands[0] = getOperandNum(cs.getCalledValue(), registerMap, km,
ki);
for (unsigned j=0; j<numArgs; j++) {
Value *v = cs.getArgument(j);
ki->operands[j+1] = getOperandNum(v, registerMap, km, ki);
}
} else {
unsigned numOperands = it->getNumOperands();
ki->operands = new int[numOperands];
for (unsigned j=0; j<numOperands; j++) {
Value *v = it->getOperand(j);
ki->operands[j] = getOperandNum(v, registerMap, km, ki);
}
}
instructions[i++] = ki;
}
}
}
KFunction::~KFunction() {
for (unsigned i=0; i<numInstructions; ++i)
delete instructions[i];
delete[] instructions;
}
|