about summary refs log tree commit diff homepage
path: root/lib/Solver/FastCexSolver.cpp
blob: 1efeb0cb96f32feaee90ccfe5e5d0158280a4eec (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
//===-- FastCexSolver.cpp -------------------------------------------------===//
//
//                     The KLEE Symbolic Virtual Machine
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "klee/Solver.h"

#include "klee/Constraints.h"
#include "klee/Expr.h"
#include "klee/IncompleteSolver.h"
#include "klee/util/ExprEvaluator.h"
#include "klee/util/ExprRangeEvaluator.h"
#include "klee/util/ExprVisitor.h"
// FIXME: Use APInt.
#include "klee/Internal/Support/IntEvaluation.h"

#include <iostream>
#include <sstream>
#include <cassert>
#include <map>
#include <vector>

using namespace klee;

/***/

      // Hacker's Delight, pgs 58-63
static uint64_t minOR(uint64_t a, uint64_t b,
                      uint64_t c, uint64_t d) {
  uint64_t temp, m = ((uint64_t) 1)<<63;
  while (m) {
    if (~a & c & m) {
      temp = (a | m) & -m;
      if (temp <= b) { a = temp; break; }
    } else if (a & ~c & m) {
      temp = (c | m) & -m;
      if (temp <= d) { c = temp; break; }
    }
    m >>= 1;
  }
  
  return a | c;
}
static uint64_t maxOR(uint64_t a, uint64_t b,
                      uint64_t c, uint64_t d) {
  uint64_t temp, m = ((uint64_t) 1)<<63;

  while (m) {
    if (b & d & m) {
      temp = (b - m) | (m - 1);
      if (temp >= a) { b = temp; break; }
      temp = (d - m) | (m -1);
      if (temp >= c) { d = temp; break; }
    }
    m >>= 1;
  }

  return b | d;
}
static uint64_t minAND(uint64_t a, uint64_t b,
                       uint64_t c, uint64_t d) {
  uint64_t temp, m = ((uint64_t) 1)<<63;
  while (m) {
    if (~a & ~c & m) {
      temp = (a | m) & -m;
      if (temp <= b) { a = temp; break; }
      temp = (c | m) & -m;
      if (temp <= d) { c = temp; break; }
    }
    m >>= 1;
  }
  
  return a & c;
}
static uint64_t maxAND(uint64_t a, uint64_t b,
                       uint64_t c, uint64_t d) {
  uint64_t temp, m = ((uint64_t) 1)<<63;
  while (m) {
    if (b & ~d & m) {
      temp = (b & ~m) | (m - 1);
      if (temp >= a) { b = temp; break; }
    } else if (~b & d & m) {
      temp = (d & ~m) | (m - 1);
      if (temp >= c) { d = temp; break; }
    }
    m >>= 1;
  }
  
  return b & d;
}

///

class ValueRange {
private:
  uint64_t m_min, m_max;

public:
  ValueRange() : m_min(1),m_max(0) {}
  ValueRange(uint64_t value) : m_min(value), m_max(value) {}
  ValueRange(uint64_t _min, uint64_t _max) : m_min(_min), m_max(_max) {}
  ValueRange(const ValueRange &b) : m_min(b.m_min), m_max(b.m_max) {}

  void print(std::ostream &os) const {
    if (isFixed()) {
      os << m_min;
    } else {
      os << "[" << m_min << "," << m_max << "]";
    }
  }

  bool isEmpty() const { 
    return m_min>m_max; 
  }
  bool contains(uint64_t value) const { 
    return this->intersects(ValueRange(value)); 
  }
  bool intersects(const ValueRange &b) const { 
    return !this->set_intersection(b).isEmpty(); 
  }

  bool isFullRange(unsigned bits) {
    return m_min==0 && m_max==bits64::maxValueOfNBits(bits);
  }

  ValueRange set_intersection(const ValueRange &b) const {
    return ValueRange(std::max(m_min,b.m_min), std::min(m_max,b.m_max));
  }
  ValueRange set_union(const ValueRange &b) const {
    return ValueRange(std::min(m_min,b.m_min), std::max(m_max,b.m_max));
  }
  ValueRange set_difference(const ValueRange &b) const {
    if (b.isEmpty() || b.m_min > m_max || b.m_max < m_min) { // no intersection
      return *this;
    } else if (b.m_min <= m_min && b.m_max >= m_max) { // empty
      return ValueRange(1,0); 
    } else if (b.m_min <= m_min) { // one range out
      // cannot overflow because b.m_max < m_max
      return ValueRange(b.m_max+1, m_max);
    } else if (b.m_max >= m_max) {
      // cannot overflow because b.min > m_min
      return ValueRange(m_min, b.m_min-1);
    } else {
      // two ranges, take bottom
      return ValueRange(m_min, b.m_min-1);
    }
  }
  ValueRange binaryAnd(const ValueRange &b) const {
    // XXX
    assert(!isEmpty() && !b.isEmpty() && "XXX");
    if (isFixed() && b.isFixed()) {
      return ValueRange(m_min & b.m_min);
    } else {
      return ValueRange(minAND(m_min, m_max, b.m_min, b.m_max),
                        maxAND(m_min, m_max, b.m_min, b.m_max));
    }
  }
  ValueRange binaryAnd(uint64_t b) const { return binaryAnd(ValueRange(b)); }
  ValueRange binaryOr(ValueRange b) const {
    // XXX
    assert(!isEmpty() && !b.isEmpty() && "XXX");
    if (isFixed() && b.isFixed()) {
      return ValueRange(m_min | b.m_min);
    } else {
      return ValueRange(minOR(m_min, m_max, b.m_min, b.m_max),
                        maxOR(m_min, m_max, b.m_min, b.m_max));
    }
  }
  ValueRange binaryOr(uint64_t b) const { return binaryOr(ValueRange(b)); }
  ValueRange binaryXor(ValueRange b) const {
    if (isFixed() && b.isFixed()) {
      return ValueRange(m_min ^ b.m_min);
    } else {
      uint64_t t = m_max | b.m_max;
      while (!bits64::isPowerOfTwo(t))
        t = bits64::withoutRightmostBit(t);
      return ValueRange(0, (t<<1)-1);
    }
  }

  ValueRange binaryShiftLeft(unsigned bits) const {
    return ValueRange(m_min<<bits, m_max<<bits);
  }
  ValueRange binaryShiftRight(unsigned bits) const {
    return ValueRange(m_min>>bits, m_max>>bits);
  }

  ValueRange concat(const ValueRange &b, unsigned bits) const {
    return binaryShiftLeft(bits).binaryOr(b);
  }
  ValueRange extract(uint64_t lowBit, uint64_t maxBit) const {
    return binaryShiftRight(lowBit).binaryAnd(bits64::maxValueOfNBits(maxBit-lowBit));
  }

  ValueRange add(const ValueRange &b, unsigned width) const {
    return ValueRange(0, bits64::maxValueOfNBits(width));
  }
  ValueRange sub(const ValueRange &b, unsigned width) const {
    return ValueRange(0, bits64::maxValueOfNBits(width));
  }
  ValueRange mul(const ValueRange &b, unsigned width) const {
    return ValueRange(0, bits64::maxValueOfNBits(width));
  }
  ValueRange udiv(const ValueRange &b, unsigned width) const {
    return ValueRange(0, bits64::maxValueOfNBits(width));
  }
  ValueRange sdiv(const ValueRange &b, unsigned width) const {
    return ValueRange(0, bits64::maxValueOfNBits(width));
  }
  ValueRange urem(const ValueRange &b, unsigned width) const {
    return ValueRange(0, bits64::maxValueOfNBits(width));
  }
  ValueRange srem(const ValueRange &b, unsigned width) const {
    return ValueRange(0, bits64::maxValueOfNBits(width));
  }

  // use min() to get value if true (XXX should we add a method to
  // make code clearer?)
  bool isFixed() const { return m_min==m_max; }

  bool operator==(const ValueRange &b) const { return m_min==b.m_min && m_max==b.m_max; }
  bool operator!=(const ValueRange &b) const { return !(*this==b); }

  bool mustEqual(const uint64_t b) const { return m_min==m_max && m_min==b; }
  bool mayEqual(const uint64_t b) const { return m_min<=b && m_max>=b; }
  
  bool mustEqual(const ValueRange &b) const { return isFixed() && b.isFixed() && m_min==b.m_min; }
  bool mayEqual(const ValueRange &b) const { return this->intersects(b); }

  uint64_t min() const { 
    assert(!isEmpty() && "cannot get minimum of empty range");
    return m_min; 
  }

  uint64_t max() const { 
    assert(!isEmpty() && "cannot get maximum of empty range");
    return m_max; 
  }
  
  int64_t minSigned(unsigned bits) const {
    assert((m_min>>bits)==0 && (m_max>>bits)==0 &&
           "range is outside given number of bits");

    // if max allows sign bit to be set then it can be smallest value,
    // otherwise since the range is not empty, min cannot have a sign
    // bit

    uint64_t smallest = ((uint64_t) 1 << (bits-1));
    if (m_max >= smallest) {
      return ints::sext(smallest, 64, bits);
    } else {
      return m_min;
    }
  }

  int64_t maxSigned(unsigned bits) const {
    assert((m_min>>bits)==0 && (m_max>>bits)==0 &&
           "range is outside given number of bits");

    uint64_t smallest = ((uint64_t) 1 << (bits-1));

    // if max and min have sign bit then max is max, otherwise if only
    // max has sign bit then max is largest signed integer, otherwise
    // max is max

    if (m_min < smallest && m_max >= smallest) {
      return smallest - 1;
    } else {
      return ints::sext(m_max, 64, bits);
    }
  }
};

inline std::ostream &operator<<(std::ostream &os, const ValueRange &vr) {
  vr.print(os);
  return os;
}

// used to find all memory object ids and the maximum size of any
// object state that references them (for symbolic size).
class ObjectFinder : public ExprVisitor {
protected:
  Action visitRead(const ReadExpr &re) {
    addUpdates(re.updates);
    return Action::doChildren();
  }

  // XXX nice if this information was cached somewhere, used by
  // independence as well right?
  void addUpdates(const UpdateList &ul) {
    for (const UpdateNode *un=ul.head; un; un=un->next) {
      visit(un->index);
      visit(un->value);
    }

    addObject(*ul.root);
  }

public:
  void addObject(const Array& array) {
    unsigned id = array.id;
    std::map<unsigned,unsigned>::iterator it = results.find(id);

    // FIXME: Not 64-bit size clean.
    if (it == results.end()) {
      results[id] = (unsigned) array.size;      
    } else {
      it->second = std::max(it->second, (unsigned) array.size);
    }
  }

public:
  std::map<unsigned, unsigned> results;
};

// XXX waste of space, rather have ByteValueRange
typedef ValueRange CexValueData;

// FIXME: We should avoid copying these objects.
class CexObjectData {
  uint64_t size;
  std::vector<CexValueData> contents;

public:
  CexObjectData(uint64_t _size) : size(_size), contents(_size) {
    for (uint64_t i = 0; i != size; ++i)
      contents[i] = ValueRange(0, 255);
  }

  uint64_t getSize() const {
    return size;
  }

  CexValueData getPossibleValues(size_t index) { 
    return contents[index];
  }
  const CexValueData getPossibleValues(size_t index) const { 
    return contents[index];
  }
  void setPossibleValues(size_t index, CexValueData values) {
    contents[index] = values;
  }

  /// getPossibleValue - Return some possible value.
  unsigned char getPossibleValue(size_t index) const {
    const CexValueData &cvd = contents[index];
    return cvd.min() + (cvd.max() - cvd.min()) / 2;
  }
  void setPossibleValue(size_t index, unsigned char value) {
    contents[index] = CexValueData(value);
  }
};

class CexRangeEvaluator : public ExprRangeEvaluator<ValueRange> {
public:
  std::map<unsigned, CexObjectData> &objectValues;
  CexRangeEvaluator(std::map<unsigned, CexObjectData> &_objectValues) 
    : objectValues(_objectValues) {}

  ValueRange getInitialReadRange(const Array &os, ValueRange index) {
    return ValueRange(0, 255);
  }
};

class CexEvaluator : public ExprEvaluator {
protected:
  ref<Expr> getInitialValue(const Array& array, unsigned index) {
    std::map<unsigned, CexObjectData>::iterator it = 
      objectValues.find(array.id);
    assert(it != objectValues.end() && "missing object?");
    CexObjectData &cod = it->second;

    // If the index is out of range, we cannot assign it a value, since that
    // value cannot be part of the assignment.
    if (index >= cod.getSize()) {
      return ReadExpr::create(UpdateList(&array, true, 0), 
                              ConstantExpr::alloc(index, Expr::Int32));
    } 
      
    return ConstantExpr::alloc(cod.getPossibleValue(index), Expr::Int8);
  }

public:
  std::map<unsigned, CexObjectData> &objectValues;
  CexEvaluator(std::map<unsigned, CexObjectData> &_objectValues) 
    : objectValues(_objectValues) {}
};

class CexData {
public:
  std::map<unsigned, CexObjectData> objectValues;

  CexData(const CexData&); // DO NOT IMPLEMENT
  void operator=(const CexData&); // DO NOT IMPLEMENT

public:
  CexData() {}
  CexData(ObjectFinder &finder) {
    initValues(finder);
  }

  void initValues(ObjectFinder &finder) {
    for (std::map<unsigned,unsigned>::iterator it = finder.results.begin(),
           ie = finder.results.end(); it != ie; ++it) {
      objectValues.insert(std::pair<unsigned, CexObjectData>(it->first, 
                                                             CexObjectData(it->second)));
    }
  }  

  void forceExprToValue(ref<Expr> e, uint64_t value) {
    forceExprToRange(e, CexValueData(value,value));
  }

  void forceExprToRange(ref<Expr> e, CexValueData range) {
    switch (e->getKind()) {
    case Expr::Constant: {
      // rather a pity if the constant isn't in the range, but how can
      // we use this?
      break;
    }

      // Special

    case Expr::NotOptimized: break;

    case Expr::Read: {
      ReadExpr *re = cast<ReadExpr>(e);
      const Array *array = re->updates.root;
      CexObjectData &cod = objectValues.find(array->id)->second;

      // FIXME: This is imprecise, we need to look through the existing writes
      // to see if this is an initial read or not.
      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(re->index)) {
        if (CE->getConstantValue() < array->size) {
          // If the range is fixed, just set that; even if it conflicts with the
          // previous range it should be a better guess.
          if (range.isFixed()) {
            cod.setPossibleValue(CE->getConstantValue(), range.min());
          } else {
            CexValueData cvd = cod.getPossibleValues(CE->getConstantValue());
            CexValueData tmp = cvd.set_intersection(range);

            if (!tmp.isEmpty())
              cod.setPossibleValues(CE->getConstantValue(), tmp);
          }
        }
      } else {
        // XXX        fatal("XXX not implemented");
      }
      
      break;
    }

    case Expr::Select: {
      SelectExpr *se = cast<SelectExpr>(e);
      ValueRange cond = evalRangeForExpr(se->cond);
      if (cond.isFixed()) {
        if (cond.min()) {
          forceExprToRange(se->trueExpr, range);
        } else {
          forceExprToRange(se->falseExpr, range);
        }
      } else {
        // XXX imprecise... we have a choice here. One method is to
        // simply force both sides into the specified range (since the
        // condition is indetermined). This may lose in two ways, the
        // first is that the condition chosen may limit further
        // restrict the range in each of the children, however this is
        // less of a problem as the range will be a superset of legal
        // values. The other is if the condition ends up being forced
        // by some other constraints, then we needlessly forced one
        // side into the given range.
        //
        // The other method would be to force the condition to one
        // side and force that side into the given range. This loses
        // when we force the condition to an unsatisfiable value
        // (either because the condition cannot be that, or the
        // resulting range given that condition is not in the required
        // range).
        // 
        // Currently we just force both into the range. A hybrid would
        // be to evaluate the ranges for each of the children... if
        // one of the ranges happens to already be a subset of the
        // required range then it may be preferable to force the
        // condition to that side.
        forceExprToRange(se->trueExpr, range);
        forceExprToRange(se->falseExpr, range);
      }
      break;
    }

      // XXX imprecise... the problem here is that extracting bits
      // loses information about what bits are connected across the
      // bytes. if a value can be 1 or 256 then either the top or
      // lower byte is 0, but just extraction loses this information
      // and will allow neither,one,or both to be 1.
      //
      // we can protect against this in a limited fashion by writing
      // the extraction a byte at a time, then checking the evaluated
      // value, isolating for that range, and continuing.
    case Expr::Concat: {
      ConcatExpr *ce = cast<ConcatExpr>(e);
      if (ce->is2ByteConcat()) {
	forceExprToRange(ce->getKid(0), range.extract( 8, 16));
	forceExprToRange(ce->getKid(1), range.extract( 0,  8));
      }
      else if (ce->is4ByteConcat()) {
	forceExprToRange(ce->getKid(0), range.extract(24, 32));
	forceExprToRange(ce->getKid(1), range.extract(16, 24));
	forceExprToRange(ce->getKid(2), range.extract( 8, 16));
	forceExprToRange(ce->getKid(3), range.extract( 0,  8));
      }
      else if (ce->is8ByteConcat()) {
	forceExprToRange(ce->getKid(0), range.extract(56, 64));
	forceExprToRange(ce->getKid(1), range.extract(48, 56));
	forceExprToRange(ce->getKid(2), range.extract(40, 48));
	forceExprToRange(ce->getKid(3), range.extract(32, 40));
	forceExprToRange(ce->getKid(4), range.extract(24, 32));
	forceExprToRange(ce->getKid(5), range.extract(16, 24));
	forceExprToRange(ce->getKid(6), range.extract( 8, 16));
	forceExprToRange(ce->getKid(7), range.extract( 0,  8));
      }
      
      break;
    }

    case Expr::Extract: {
      // XXX
      break;
    }

      // Casting

      // Simply intersect the output range with the range of all possible
      // outputs and then truncate to the desired number of bits.

      // For ZExt this simplifies to just intersection with the possible input
      // range.
    case Expr::ZExt: {
      CastExpr *ce = cast<CastExpr>(e);
      unsigned inBits = ce->src->getWidth();
      ValueRange input = range.set_intersection(ValueRange(0, bits64::maxValueOfNBits(inBits)));
      forceExprToRange(ce->src, input);
      break;
    }
      // For SExt instead of doing the intersection we just take the output
      // range minus the impossible values. This is nicer since it is a single
      // interval.
    case Expr::SExt: {
      CastExpr *ce = cast<CastExpr>(e);
      unsigned inBits = ce->src->getWidth();
      unsigned outBits = ce->width;
      ValueRange output = 
        range.set_difference(ValueRange(1<<(inBits-1),
                                        (bits64::maxValueOfNBits(outBits) -
                                         bits64::maxValueOfNBits(inBits-1)-1)));
      ValueRange input = output.binaryAnd(bits64::maxValueOfNBits(inBits));
      forceExprToRange(ce->src, input);
      break;
    }

      // Binary

    case Expr::And: {
      BinaryExpr *be = cast<BinaryExpr>(e);
      if (be->getWidth()==Expr::Bool) {
        if (range.isFixed()) {
          ValueRange left = evalRangeForExpr(be->left);
          ValueRange right = evalRangeForExpr(be->right);

          if (!range.min()) {
            if (left.mustEqual(0) || right.mustEqual(0)) {
              // all is well
            } else {
              // XXX heuristic, which order

              forceExprToValue(be->left, 0);
              left = evalRangeForExpr(be->left);

              // see if that worked
              if (!left.mustEqual(1))
                forceExprToValue(be->right, 0);
            }
          } else {
            if (!left.mustEqual(1)) forceExprToValue(be->left, 1);
            if (!right.mustEqual(1)) forceExprToValue(be->right, 1);
          }
        }
      } else {
        // XXX
      }
      break;
    }

    case Expr::Or: {
      BinaryExpr *be = cast<BinaryExpr>(e);
      if (be->getWidth()==Expr::Bool) {
        if (range.isFixed()) {
          ValueRange left = evalRangeForExpr(be->left);
          ValueRange right = evalRangeForExpr(be->right);

          if (range.min()) {
            if (left.mustEqual(1) || right.mustEqual(1)) {
              // all is well
            } else {
              // XXX heuristic, which order?
              
              // force left to value we need
              forceExprToValue(be->left, 1);
              left = evalRangeForExpr(be->left);

              // see if that worked
              if (!left.mustEqual(1))
                forceExprToValue(be->right, 1);
            }
          } else {
            if (!left.mustEqual(0)) forceExprToValue(be->left, 0);
            if (!right.mustEqual(0)) forceExprToValue(be->right, 0);
          }
        }
      } else {
        // XXX
      }
      break;
    }

    case Expr::Xor: break;

      // Comparison

    case Expr::Eq: {
      BinaryExpr *be = cast<BinaryExpr>(e);
      if (range.isFixed()) {
        if (ConstantExpr *CE = dyn_cast<ConstantExpr>(be->left)) {
          uint64_t value = CE->getConstantValue();
          if (range.min()) {
            forceExprToValue(be->right, value);
          } else {
            if (value==0) {
              forceExprToRange(be->right, 
                               CexValueData(1,
                                            ints::sext(1, 
                                                       be->right->getWidth(),
                                                       1)));
            } else {
              // XXX heuristic / lossy, could be better to pick larger range?
              forceExprToRange(be->right, CexValueData(0, value-1));
            }
          }
        } else {
          // XXX what now
        }
      }
      break;
    }

    case Expr::Ult: {
      BinaryExpr *be = cast<BinaryExpr>(e);
      
      // XXX heuristic / lossy, what order if conflict

      if (range.isFixed()) {
        ValueRange left = evalRangeForExpr(be->left);
        ValueRange right = evalRangeForExpr(be->right);

        uint64_t maxValue = bits64::maxValueOfNBits(be->right->getWidth());

        // XXX should deal with overflow (can lead to empty range)

        if (left.isFixed()) {
          if (range.min()) {
            forceExprToRange(be->right, CexValueData(left.min()+1, maxValue));
          } else {
            forceExprToRange(be->right, CexValueData(0, left.min()));
          }
        } else if (right.isFixed()) {
          if (range.min()) {
            forceExprToRange(be->left, CexValueData(0, right.min()-1));
          } else {
            forceExprToRange(be->left, CexValueData(right.min(), maxValue));
          }
        } else {
          // XXX ???
        }
      }
      break;
    }
    case Expr::Ule: {
      BinaryExpr *be = cast<BinaryExpr>(e);
      
      // XXX heuristic / lossy, what order if conflict

      if (range.isFixed()) {
        ValueRange left = evalRangeForExpr(be->left);
        ValueRange right = evalRangeForExpr(be->right);

        // XXX should deal with overflow (can lead to empty range)

        uint64_t maxValue = bits64::maxValueOfNBits(be->right->getWidth());
        if (left.isFixed()) {
          if (range.min()) {
            forceExprToRange(be->right, CexValueData(left.min(), maxValue));
          } else {
            forceExprToRange(be->right, CexValueData(0, left.min()-1));
          }
        } else if (right.isFixed()) {
          if (range.min()) {
            forceExprToRange(be->left, CexValueData(0, right.min()));
          } else {
            forceExprToRange(be->left, CexValueData(right.min()+1, maxValue));
          }
        } else {
          // XXX ???
        }
      }
      break;
    }

    case Expr::Ne:
    case Expr::Ugt:
    case Expr::Uge:
    case Expr::Sgt:
    case Expr::Sge:
      assert(0 && "invalid expressions (uncanonicalized");

    default:
      break;
    }
  }

  ValueRange evalRangeForExpr(ref<Expr> &e) {
    CexRangeEvaluator ce(objectValues);
    return ce.evaluate(e);
  }

  /// evaluate - Try to evaluate the given expression using a consistent fixed
  /// value for the current set of possible ranges.
  ref<Expr> evaluate(ref<Expr> e) {
    return CexEvaluator(objectValues).visit(e);
  }
};

/* *** */


class FastCexSolver : public IncompleteSolver {
public:
  FastCexSolver();
  ~FastCexSolver();

  IncompleteSolver::PartialValidity computeTruth(const Query&);  
  bool computeValue(const Query&, ref<Expr> &result);
  bool computeInitialValues(const Query&,
                            const std::vector<const Array*> &objects,
                            std::vector< std::vector<unsigned char> > &values,
                            bool &hasSolution);
};

FastCexSolver::FastCexSolver() { }

FastCexSolver::~FastCexSolver() { }

/// propogateValues - Propogate value ranges for the given query and return the
/// propogation results.
///
/// \param query - The query to propogate values for.
///
/// \param cd - The initial object values resulting from the propogation.
///
/// \param checkExpr - Include the query expression in the constraints to
/// propogate.
///
/// \param isValid - If the propogation succeeds (returns true), whether the
/// constraints were proven valid or invalid.
///
/// \return - True if the propogation was able to prove validity or invalidity.
static bool propogateValues(ObjectFinder &of, const Query& query, CexData &cd, 
                            bool checkExpr, bool &isValid) {
  for (ConstraintManager::const_iterator it = query.constraints.begin(), 
         ie = query.constraints.end(); it != ie; ++it)
    of.visit(*it);
  of.visit(query.expr);

  cd.initValues(of);

  for (ConstraintManager::const_iterator it = query.constraints.begin(), 
         ie = query.constraints.end(); it != ie; ++it)
    cd.forceExprToValue(*it, 1);
  if (checkExpr)
    cd.forceExprToValue(query.expr, 0);

  // Check the result.
  if (checkExpr)
    if (!cd.evaluate(query.expr)->isFalse())
      return false;

  for (ConstraintManager::const_iterator it = query.constraints.begin(), 
         ie = query.constraints.end(); it != ie; ++it)
    if (!cd.evaluate(*it)->isTrue())
      return false;

  // Currently we can only prove invalidity.
  isValid = false;
  return true;
}

IncompleteSolver::PartialValidity 
FastCexSolver::computeTruth(const Query& query) {
  ObjectFinder of;
  CexData cd;

  bool isValid;
  bool success = propogateValues(of, query, cd, true, isValid);

  if (!success)
    return IncompleteSolver::None;

  return isValid ? IncompleteSolver::MustBeTrue : IncompleteSolver::MayBeFalse;
}

bool FastCexSolver::computeValue(const Query& query, ref<Expr> &result) {
  ObjectFinder of;
  CexData cd;

  bool isValid;
  bool success = propogateValues(of, query, cd, false, isValid);

  // Check if propogation wasn't able to determine anything.
  if (!success)
    return false;

  // FIXME: We don't have a way to communicate valid constraints back.
  if (isValid)
    return false;
  
  // Propogation found a satisfying assignment, evaluate the expression.
  CexEvaluator cc(cd.objectValues);
  ref<Expr> value = cc.visit(query.expr);
  
  if (isa<ConstantExpr>(value)) {
    // FIXME: We should be able to make sure this never fails?
    result = value;
    return true;
  } else {
    return false;
  }
}

bool
FastCexSolver::computeInitialValues(const Query& query,
                                    const std::vector<const Array*>
                                      &objects,
                                    std::vector< std::vector<unsigned char> >
                                      &values,
                                    bool &hasSolution) {
  ObjectFinder of;
  CexData cd;

  for (std::vector<const Array*>::const_iterator it = objects.begin(), 
         ie = objects.end(); it != ie; ++it)
    of.addObject(**it);

  bool isValid;
  bool success = propogateValues(of, query, cd, true, isValid);

  // Check if propogation wasn't able to determine anything.
  if (!success)
    return false;

  hasSolution = !isValid;
  if (!hasSolution)
    return true;

  // Propogation found a satisfying assignment, compute the initial values.
  CexEvaluator cc(cd.objectValues);
  for (unsigned i = 0; i != objects.size(); ++i) {
    const Array *array = objects[i];
    std::vector<unsigned char> data;
    data.reserve(array->size);

    for (unsigned i=0; i < array->size; i++) {
      ref<Expr> value =
        cc.visit(ReadExpr::create(UpdateList(array, true, 0),
                                  ConstantExpr::create(i,
                                                       kMachinePointerType)));
      
      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(value)) {
        data.push_back((unsigned char) CE->getConstantValue());
      } else {
        // FIXME: When does this happen?
        return false;
      }
    }

    values.push_back(data);
  }

  return true;
}


Solver *klee::createFastCexSolver(Solver *s) {
  return new Solver(new StagedSolverImpl(new FastCexSolver(), s));
}