about summary refs log tree commit diff homepage
path: root/lib/Solver/Solver.cpp
blob: 22b1545fe717cb9ffb9e75f2ac9adf6de5d10cd6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
//===-- Solver.cpp --------------------------------------------------------===//
//
//                     The KLEE Symbolic Virtual Machine
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "klee/Solver.h"
#include "klee/SolverImpl.h"

#include "SolverStats.h"
#include "STPBuilder.h"
#include "MetaSMTBuilder.h"

#include "klee/Constraints.h"
#include "klee/Expr.h"
#include "klee/TimerStatIncrementer.h"
#include "klee/util/Assignment.h"
#include "klee/util/ExprPPrinter.h"
#include "klee/util/ExprUtil.h"
#include "klee/Internal/Support/Timer.h"
#include "klee/CommandLine.h"

#define vc_bvBoolExtract IAMTHESPAWNOFSATAN

#include <cassert>
#include <cstdio>
#include <map>
#include <vector>

#include <errno.h>
#include <unistd.h>
#include <signal.h>
#include <sys/wait.h>
#include <sys/ipc.h>
#include <sys/shm.h>

#include "llvm/Support/CommandLine.h"

llvm::cl::opt<bool>
IgnoreSolverFailures("ignore-solver-failures",
                     llvm::cl::init(false),
                     llvm::cl::desc("Ignore any solver failures (default=off)"));


using namespace klee;


#ifdef SUPPORT_METASMT

#include <metaSMT/DirectSolver_Context.hpp>
#include <metaSMT/backend/Z3_Backend.hpp>
#include <metaSMT/backend/Boolector.hpp>
#include <metaSMT/backend/MiniSAT.hpp>
#include <metaSMT/support/run_algorithm.hpp>
#include <metaSMT/API/Stack.hpp>
#include <metaSMT/API/Group.hpp>

using namespace metaSMT;
using namespace metaSMT::solver;

#endif /* SUPPORT_METASMT */



/***/

SolverImpl::~SolverImpl() {
}

bool SolverImpl::computeValidity(const Query& query, Solver::Validity &result) {
  bool isTrue, isFalse;
  if (!computeTruth(query, isTrue))
    return false;
  if (isTrue) {
    result = Solver::True;
  } else {
    if (!computeTruth(query.negateExpr(), isFalse))
      return false;
    result = isFalse ? Solver::False : Solver::Unknown;
  }
  return true;
}

const char* SolverImpl::getOperationStatusString(SolverRunStatus statusCode)
{
    switch (statusCode)
    {
        case SOLVER_RUN_STATUS_SUCCESS_SOLVABLE:
            return "OPERATION SUCCESSFUL, QUERY IS SOLVABLE";
        case SOLVER_RUN_STATUS_SUCCESS_UNSOLVABLE:
            return "OPERATION SUCCESSFUL, QUERY IS UNSOLVABLE";
        case SOLVER_RUN_STATUS_FAILURE:
            return "OPERATION FAILED";
        case SOLVER_RUN_STATUS_TIMEOUT:
            return "SOLVER TIMEOUT";
        case SOLVER_RUN_STATUS_FORK_FAILED:
            return "FORK FAILED";
        case SOLVER_RUN_STATUS_INTERRUPTED:
            return "SOLVER PROCESS INTERRUPTED";
        case SOLVER_RUN_STATUS_UNEXPECTED_EXIT_CODE:
            return "UNEXPECTED SOLVER PROCESS EXIT CODE";
        case SOLVER_RUN_STATUS_WAITPID_FAILED:
            return "WAITPID FAILED FOR SOLVER PROCESS";
        default:
            return "UNRECOGNIZED OPERATION STATUS";        
    }    
}

const char *Solver::validity_to_str(Validity v) {
  switch (v) {
  default:    return "Unknown";
  case True:  return "True";
  case False: return "False";
  }
}

Solver::~Solver() { 
  delete impl; 
}

char *Solver::getConstraintLog(const Query& query) {
    return impl->getConstraintLog(query);
}

void Solver::setCoreSolverTimeout(double timeout) {
    impl->setCoreSolverTimeout(timeout);
}

bool Solver::evaluate(const Query& query, Validity &result) {
  assert(query.expr->getWidth() == Expr::Bool && "Invalid expression type!");

  // Maintain invariants implementations expect.
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(query.expr)) {
    result = CE->isTrue() ? True : False;
    return true;
  }

  return impl->computeValidity(query, result);
}

bool Solver::mustBeTrue(const Query& query, bool &result) {
  assert(query.expr->getWidth() == Expr::Bool && "Invalid expression type!");

  // Maintain invariants implementations expect.
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(query.expr)) {
    result = CE->isTrue() ? true : false;
    return true;
  }

  return impl->computeTruth(query, result);
}

bool Solver::mustBeFalse(const Query& query, bool &result) {
  return mustBeTrue(query.negateExpr(), result);
}

bool Solver::mayBeTrue(const Query& query, bool &result) {
  bool res;
  if (!mustBeFalse(query, res))
    return false;
  result = !res;
  return true;
}

bool Solver::mayBeFalse(const Query& query, bool &result) {
  bool res;
  if (!mustBeTrue(query, res))
    return false;
  result = !res;
  return true;
}

bool Solver::getValue(const Query& query, ref<ConstantExpr> &result) {
  // Maintain invariants implementation expect.
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(query.expr)) {
    result = CE;
    return true;
  }

  // FIXME: Push ConstantExpr requirement down.
  ref<Expr> tmp;
  if (!impl->computeValue(query, tmp))
    return false;
  
  result = cast<ConstantExpr>(tmp);
  return true;
}

bool 
Solver::getInitialValues(const Query& query,
                         const std::vector<const Array*> &objects,
                         std::vector< std::vector<unsigned char> > &values) {
  bool hasSolution;
  bool success =
    impl->computeInitialValues(query, objects, values, hasSolution);
  // FIXME: Propogate this out.
  if (!hasSolution)
    return false;
    
  return success;
}

std::pair< ref<Expr>, ref<Expr> > Solver::getRange(const Query& query) {
  ref<Expr> e = query.expr;
  Expr::Width width = e->getWidth();
  uint64_t min, max;

  if (width==1) {
    Solver::Validity result;
    if (!evaluate(query, result))
      assert(0 && "computeValidity failed");
    switch (result) {
    case Solver::True: 
      min = max = 1; break;
    case Solver::False: 
      min = max = 0; break;
    default:
      min = 0, max = 1; break;
    }
  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(e)) {
    min = max = CE->getZExtValue();
  } else {
    // binary search for # of useful bits
    uint64_t lo=0, hi=width, mid, bits=0;
    while (lo<hi) {
      mid = lo + (hi - lo)/2;
      bool res;
      bool success = 
        mustBeTrue(query.withExpr(
                     EqExpr::create(LShrExpr::create(e,
                                                     ConstantExpr::create(mid, 
                                                                          width)),
                                    ConstantExpr::create(0, width))),
                   res);

      assert(success && "FIXME: Unhandled solver failure");
      (void) success;

      if (res) {
        hi = mid;
      } else {
        lo = mid+1;
      }

      bits = lo;
    }
    
    // could binary search for training zeros and offset
    // min max but unlikely to be very useful

    // check common case
    bool res = false;
    bool success = 
      mayBeTrue(query.withExpr(EqExpr::create(e, ConstantExpr::create(0, 
                                                                      width))), 
                res);

    assert(success && "FIXME: Unhandled solver failure");      
    (void) success;

    if (res) {
      min = 0;
    } else {
      // binary search for min
      lo=0, hi=bits64::maxValueOfNBits(bits);
      while (lo<hi) {
        mid = lo + (hi - lo)/2;
        bool res = false;
        bool success = 
          mayBeTrue(query.withExpr(UleExpr::create(e, 
                                                   ConstantExpr::create(mid, 
                                                                        width))),
                    res);

        assert(success && "FIXME: Unhandled solver failure");      
        (void) success;

        if (res) {
          hi = mid;
        } else {
          lo = mid+1;
        }
      }

      min = lo;
    }

    // binary search for max
    lo=min, hi=bits64::maxValueOfNBits(bits);
    while (lo<hi) {
      mid = lo + (hi - lo)/2;
      bool res;
      bool success = 
        mustBeTrue(query.withExpr(UleExpr::create(e, 
                                                  ConstantExpr::create(mid, 
                                                                       width))),
                   res);

      assert(success && "FIXME: Unhandled solver failure");      
      (void) success;

      if (res) {
        hi = mid;
      } else {
        lo = mid+1;
      }
    }

    max = lo;
  }

  return std::make_pair(ConstantExpr::create(min, width),
                        ConstantExpr::create(max, width));
}

/***/

class ValidatingSolver : public SolverImpl {
private:
  Solver *solver, *oracle;

public: 
  ValidatingSolver(Solver *_solver, Solver *_oracle) 
    : solver(_solver), oracle(_oracle) {}
  ~ValidatingSolver() { delete solver; }
  
  bool computeValidity(const Query&, Solver::Validity &result);
  bool computeTruth(const Query&, bool &isValid);
  bool computeValue(const Query&, ref<Expr> &result);
  bool computeInitialValues(const Query&,
                            const std::vector<const Array*> &objects,
                            std::vector< std::vector<unsigned char> > &values,
                            bool &hasSolution);
  SolverRunStatus getOperationStatusCode();
  char *getConstraintLog(const Query&);
  void setCoreSolverTimeout(double timeout);
};

bool ValidatingSolver::computeTruth(const Query& query,
                                    bool &isValid) {
  bool answer;
  
  if (!solver->impl->computeTruth(query, isValid))
    return false;
  if (!oracle->impl->computeTruth(query, answer))
    return false;
  
  if (isValid != answer)
    assert(0 && "invalid solver result (computeTruth)");
  
  return true;
}

bool ValidatingSolver::computeValidity(const Query& query,
                                       Solver::Validity &result) {
  Solver::Validity answer;
  
  if (!solver->impl->computeValidity(query, result))
    return false;
  if (!oracle->impl->computeValidity(query, answer))
    return false;
  
  if (result != answer)
    assert(0 && "invalid solver result (computeValidity)");
  
  return true;
}

bool ValidatingSolver::computeValue(const Query& query,
                                    ref<Expr> &result) {  
  bool answer;

  if (!solver->impl->computeValue(query, result))
    return false;
  // We don't want to compare, but just make sure this is a legal
  // solution.
  if (!oracle->impl->computeTruth(query.withExpr(NeExpr::create(query.expr, 
                                                                result)),
                                  answer))
    return false;

  if (answer)
    assert(0 && "invalid solver result (computeValue)");

  return true;
}

bool 
ValidatingSolver::computeInitialValues(const Query& query,
                                       const std::vector<const Array*>
                                         &objects,
                                       std::vector< std::vector<unsigned char> >
                                         &values,
                                       bool &hasSolution) {
  bool answer;

  if (!solver->impl->computeInitialValues(query, objects, values, 
                                          hasSolution))
    return false;

  if (hasSolution) {
    // Assert the bindings as constraints, and verify that the
    // conjunction of the actual constraints is satisfiable.
    std::vector< ref<Expr> > bindings;
    for (unsigned i = 0; i != values.size(); ++i) {
      const Array *array = objects[i];
      for (unsigned j=0; j<array->size; j++) {
        unsigned char value = values[i][j];
        bindings.push_back(EqExpr::create(ReadExpr::create(UpdateList(array, 0),
                                                           ConstantExpr::alloc(j, Expr::Int32)),
                                          ConstantExpr::alloc(value, Expr::Int8)));
      }
    }
    ConstraintManager tmp(bindings);
    ref<Expr> constraints = Expr::createIsZero(query.expr);
    for (ConstraintManager::const_iterator it = query.constraints.begin(), 
           ie = query.constraints.end(); it != ie; ++it)
      constraints = AndExpr::create(constraints, *it);
    
    if (!oracle->impl->computeTruth(Query(tmp, constraints), answer))
      return false;
    if (!answer)
      assert(0 && "invalid solver result (computeInitialValues)");
  } else {
    if (!oracle->impl->computeTruth(query, answer))
      return false;
    if (!answer)
      assert(0 && "invalid solver result (computeInitialValues)");    
  }

  return true;
}

SolverImpl::SolverRunStatus ValidatingSolver::getOperationStatusCode() {
    return solver->impl->getOperationStatusCode();
}

char *ValidatingSolver::getConstraintLog(const Query& query) {
  return solver->impl->getConstraintLog(query);
}

void ValidatingSolver::setCoreSolverTimeout(double timeout) {
  solver->impl->setCoreSolverTimeout(timeout);
}

Solver *klee::createValidatingSolver(Solver *s, Solver *oracle) {
  return new Solver(new ValidatingSolver(s, oracle));
}

/***/

class DummySolverImpl : public SolverImpl {
public: 
  DummySolverImpl() {}
  
  bool computeValidity(const Query&, Solver::Validity &result) { 
    ++stats::queries;
    // FIXME: We should have stats::queriesFail;
    return false; 
  }
  bool computeTruth(const Query&, bool &isValid) { 
    ++stats::queries;
    // FIXME: We should have stats::queriesFail;
    return false; 
  }
  bool computeValue(const Query&, ref<Expr> &result) { 
    ++stats::queries;
    ++stats::queryCounterexamples;
    return false; 
  }
  bool computeInitialValues(const Query&,
                            const std::vector<const Array*> &objects,
                            std::vector< std::vector<unsigned char> > &values,
                            bool &hasSolution) { 
    ++stats::queries;
    ++stats::queryCounterexamples;
    return false; 
  }
  SolverRunStatus getOperationStatusCode() {
      return SOLVER_RUN_STATUS_FAILURE;
  }
  
};

Solver *klee::createDummySolver() {
  return new Solver(new DummySolverImpl());
}

/***/

class STPSolverImpl : public SolverImpl {
private:
  /// The solver we are part of, for access to public information.
  STPSolver *solver;
  VC vc;
  STPBuilder *builder;
  double timeout;
  bool useForkedSTP;
  SolverRunStatus runStatusCode;

public:
  STPSolverImpl(STPSolver *_solver, bool _useForkedSTP, bool _optimizeDivides = true);
  ~STPSolverImpl();
  
  char *getConstraintLog(const Query&);
  void setCoreSolverTimeout(double _timeout) { timeout = _timeout; }

  bool computeTruth(const Query&, bool &isValid);
  bool computeValue(const Query&, ref<Expr> &result);
  bool computeInitialValues(const Query&,
                            const std::vector<const Array*> &objects,
                            std::vector< std::vector<unsigned char> > &values,
                            bool &hasSolution);
  SolverRunStatus getOperationStatusCode();
};

static unsigned char *shared_memory_ptr;
static const unsigned shared_memory_size = 1<<20;
static int shared_memory_id;

static void stp_error_handler(const char* err_msg) {
  fprintf(stderr, "error: STP Error: %s\n", err_msg);
  abort();
}

STPSolverImpl::STPSolverImpl(STPSolver *_solver, bool _useForkedSTP, bool _optimizeDivides)
  : solver(_solver),
    vc(vc_createValidityChecker()),
    builder(new STPBuilder(vc, _optimizeDivides)),
    timeout(0.0),
    useForkedSTP(_useForkedSTP),
    runStatusCode(SOLVER_RUN_STATUS_FAILURE)
{
  assert(vc && "unable to create validity checker");
  assert(builder && "unable to create STPBuilder");

  // In newer versions of STP, a memory management mechanism has been
  // introduced that automatically invalidates certain C interface
  // pointers at vc_Destroy time.  This caused double-free errors
  // due to the ExprHandle destructor also attempting to invalidate
  // the pointers using vc_DeleteExpr.  By setting EXPRDELETE to 0
  // we restore the old behaviour.
  vc_setInterfaceFlags(vc, EXPRDELETE, 0);

  vc_registerErrorHandler(::stp_error_handler);

  if (useForkedSTP) {
    shared_memory_id = shmget(IPC_PRIVATE, shared_memory_size, IPC_CREAT | 0700);
    assert(shared_memory_id>=0 && "shmget failed");
    shared_memory_ptr = (unsigned char*) shmat(shared_memory_id, NULL, 0);
    assert(shared_memory_ptr!=(void*)-1 && "shmat failed");
    shmctl(shared_memory_id, IPC_RMID, NULL);
  }
}

STPSolverImpl::~STPSolverImpl() {
  delete builder;

  vc_Destroy(vc);
}

/***/

STPSolver::STPSolver(bool useForkedSTP, bool optimizeDivides)
  : Solver(new STPSolverImpl(this, useForkedSTP, optimizeDivides))
{
}

char *STPSolver::getConstraintLog(const Query &query) {
  return impl->getConstraintLog(query);  
}

void STPSolver::setCoreSolverTimeout(double timeout) {
    impl->setCoreSolverTimeout(timeout);
}

/***/

char *STPSolverImpl::getConstraintLog(const Query &query) {
  vc_push(vc);
  for (std::vector< ref<Expr> >::const_iterator it = query.constraints.begin(), 
         ie = query.constraints.end(); it != ie; ++it)
    vc_assertFormula(vc, builder->construct(*it));
  assert(query.expr == ConstantExpr::alloc(0, Expr::Bool) &&
         "Unexpected expression in query!");

  char *buffer;
  unsigned long length;
  vc_printQueryStateToBuffer(vc, builder->getFalse(), 
                             &buffer, &length, false);
  vc_pop(vc);

  return buffer;
}

bool STPSolverImpl::computeTruth(const Query& query,
                                 bool &isValid) {
  std::vector<const Array*> objects;
  std::vector< std::vector<unsigned char> > values;
  bool hasSolution;

  if (!computeInitialValues(query, objects, values, hasSolution))
    return false;

  isValid = !hasSolution;
  return true;
}

bool STPSolverImpl::computeValue(const Query& query,
                                 ref<Expr> &result) {
  std::vector<const Array*> objects;
  std::vector< std::vector<unsigned char> > values;
  bool hasSolution;

  // Find the object used in the expression, and compute an assignment
  // for them.
  findSymbolicObjects(query.expr, objects);
  if (!computeInitialValues(query.withFalse(), objects, values, hasSolution))
    return false;
  assert(hasSolution && "state has invalid constraint set");
  
  // Evaluate the expression with the computed assignment.
  Assignment a(objects, values);
  result = a.evaluate(query.expr);

  return true;
}

static SolverImpl::SolverRunStatus runAndGetCex(::VC vc, STPBuilder *builder, ::VCExpr q,
                                                const std::vector<const Array*> &objects,
                                                std::vector< std::vector<unsigned char> > &values,
                                                bool &hasSolution) {
  // XXX I want to be able to timeout here, safely
  hasSolution = !vc_query(vc, q);

  if (hasSolution) {
    values.reserve(objects.size());
    for (std::vector<const Array*>::const_iterator
           it = objects.begin(), ie = objects.end(); it != ie; ++it) {
      const Array *array = *it;
      std::vector<unsigned char> data;
      
      data.reserve(array->size);
      for (unsigned offset = 0; offset < array->size; offset++) {
        ExprHandle counter = 
          vc_getCounterExample(vc, builder->getInitialRead(array, offset));
        unsigned char val = getBVUnsigned(counter);
        data.push_back(val);
      }
      
      values.push_back(data);
    }
  }
  
  if (true == hasSolution) {
    return SolverImpl::SOLVER_RUN_STATUS_SUCCESS_SOLVABLE;
  }
  else {
    return SolverImpl::SOLVER_RUN_STATUS_SUCCESS_UNSOLVABLE;  
  }
}

static void stpTimeoutHandler(int x) {
  _exit(52);
}

static SolverImpl::SolverRunStatus runAndGetCexForked(::VC vc, 
                                                      STPBuilder *builder,
                                                      ::VCExpr q,
                                                      const std::vector<const Array*> &objects,
                                                      std::vector< std::vector<unsigned char> >
                                                      &values,
                                                      bool &hasSolution,
                                                      double timeout) {
  unsigned char *pos = shared_memory_ptr;
  unsigned sum = 0;
  for (std::vector<const Array*>::const_iterator
         it = objects.begin(), ie = objects.end(); it != ie; ++it)
    sum += (*it)->size;
  assert(sum<shared_memory_size && "not enough shared memory for counterexample");

  fflush(stdout);
  fflush(stderr);
  int pid = fork();
  if (pid==-1) {
    fprintf(stderr, "ERROR: fork failed (for STP)");
    if (!IgnoreSolverFailures) 
      exit(1);
    return SolverImpl::SOLVER_RUN_STATUS_FORK_FAILED;
  }

  if (pid == 0) {
    if (timeout) {      
      ::alarm(0); /* Turn off alarm so we can safely set signal handler */
      ::signal(SIGALRM, stpTimeoutHandler);
      ::alarm(std::max(1, (int)timeout));
    }    
    unsigned res = vc_query(vc, q);
    if (!res) {
      for (std::vector<const Array*>::const_iterator
             it = objects.begin(), ie = objects.end(); it != ie; ++it) {
        const Array *array = *it;
        for (unsigned offset = 0; offset < array->size; offset++) {
          ExprHandle counter = 
            vc_getCounterExample(vc, builder->getInitialRead(array, offset));
          *pos++ = getBVUnsigned(counter);
        }
      }
    }
    _exit(res);
  } else {
    int status;
    pid_t res;

    do {
      res = waitpid(pid, &status, 0);
    } while (res < 0 && errno == EINTR);
    
    if (res < 0) {
      fprintf(stderr, "ERROR: waitpid() for STP failed");
      if (!IgnoreSolverFailures) 
	exit(1);
      return SolverImpl::SOLVER_RUN_STATUS_WAITPID_FAILED;
    }
    
    // From timed_run.py: It appears that linux at least will on
    // "occasion" return a status when the process was terminated by a
    // signal, so test signal first.
    if (WIFSIGNALED(status) || !WIFEXITED(status)) {
      fprintf(stderr, "ERROR: STP did not return successfully.  Most likely you forgot to run 'ulimit -s unlimited'\n");
      if (!IgnoreSolverFailures)  {
	exit(1);
      }
      return SolverImpl::SOLVER_RUN_STATUS_INTERRUPTED;
    }

    int exitcode = WEXITSTATUS(status);
    if (exitcode==0) {
      hasSolution = true;
    } else if (exitcode==1) {
      hasSolution = false;
    } else if (exitcode==52) {
      fprintf(stderr, "error: STP timed out");
      // mark that a timeout occurred
      return SolverImpl::SOLVER_RUN_STATUS_TIMEOUT;
    } else {
      fprintf(stderr, "error: STP did not return a recognized code");
      if (!IgnoreSolverFailures) 
	exit(1);
      return SolverImpl::SOLVER_RUN_STATUS_UNEXPECTED_EXIT_CODE;
    }
    
    if (hasSolution) {
      values = std::vector< std::vector<unsigned char> >(objects.size());
      unsigned i=0;
      for (std::vector<const Array*>::const_iterator
             it = objects.begin(), ie = objects.end(); it != ie; ++it) {
        const Array *array = *it;
        std::vector<unsigned char> &data = values[i++];
        data.insert(data.begin(), pos, pos + array->size);
        pos += array->size;
      }
    }
    
    if (true == hasSolution) {
      return SolverImpl::SOLVER_RUN_STATUS_SUCCESS_SOLVABLE;
    }
    else {        
      return SolverImpl::SOLVER_RUN_STATUS_SUCCESS_UNSOLVABLE;
    }
  }
}
#include <iostream>
bool
STPSolverImpl::computeInitialValues(const Query &query,
                                    const std::vector<const Array*> 
                                      &objects,
                                    std::vector< std::vector<unsigned char> > 
                                      &values,
                                    bool &hasSolution) {
  runStatusCode =  SOLVER_RUN_STATUS_FAILURE; 
    
  TimerStatIncrementer t(stats::queryTime);

  vc_push(vc);

  for (ConstraintManager::const_iterator it = query.constraints.begin(), 
         ie = query.constraints.end(); it != ie; ++it)
    vc_assertFormula(vc, builder->construct(*it));
  
  ++stats::queries;
  ++stats::queryCounterexamples;

  ExprHandle stp_e = builder->construct(query.expr);
     
  if (0) {
    char *buf;
    unsigned long len;
    vc_printQueryStateToBuffer(vc, stp_e, &buf, &len, false);
    fprintf(stderr, "note: STP query: %.*s\n", (unsigned) len, buf);
  }

  bool success;
  if (useForkedSTP) {
    runStatusCode = runAndGetCexForked(vc, builder, stp_e, objects, values, 
                                       hasSolution, timeout);
    success = ((SOLVER_RUN_STATUS_SUCCESS_SOLVABLE == runStatusCode) ||
               (SOLVER_RUN_STATUS_SUCCESS_UNSOLVABLE == runStatusCode));    
  } else {
    runStatusCode = runAndGetCex(vc, builder, stp_e, objects, values, hasSolution);    
    success = true;
  }
  
  if (success) {
    if (hasSolution)
      ++stats::queriesInvalid;
    else
      ++stats::queriesValid;
  }
  
  vc_pop(vc);
  
  return success;
}

SolverImpl::SolverRunStatus STPSolverImpl::getOperationStatusCode() {
   return runStatusCode;
}

#ifdef SUPPORT_METASMT

// ------------------------------------- MetaSMTSolverImpl class declaration ------------------------------

template<typename SolverContext>
class MetaSMTSolverImpl : public SolverImpl {
private:

  SolverContext _meta_solver;
  MetaSMTSolver<SolverContext>  *_solver;  
  MetaSMTBuilder<SolverContext> *_builder;
  double _timeout;
  bool   _useForked;
  SolverRunStatus _runStatusCode;

public:
  MetaSMTSolverImpl(MetaSMTSolver<SolverContext> *solver, bool useForked, bool optimizeDivides);  
  virtual ~MetaSMTSolverImpl();
  
  char *getConstraintLog(const Query&);
  void setCoreSolverTimeout(double timeout) { _timeout = timeout; }

  bool computeTruth(const Query&, bool &isValid);
  bool computeValue(const Query&, ref<Expr> &result);
    
  bool computeInitialValues(const Query &query,
                            const std::vector<const Array*> &objects,
                            std::vector< std::vector<unsigned char> > &values,
                            bool &hasSolution);
    
  SolverImpl::SolverRunStatus runAndGetCex(ref<Expr> query_expr,
                                           const std::vector<const Array*> &objects,
                                           std::vector< std::vector<unsigned char> > &values,
                                           bool &hasSolution);
  
  SolverImpl::SolverRunStatus runAndGetCexForked(const Query &query,
                                                 const std::vector<const Array*> &objects,
                                                 std::vector< std::vector<unsigned char> > &values,
                                                 bool &hasSolution,
                                                 double timeout);
  
  SolverRunStatus getOperationStatusCode();
  
  SolverContext& get_meta_solver() { return(_meta_solver); };
  
};


// ------------------------------------- MetaSMTSolver methods --------------------------------------------


template<typename SolverContext>
MetaSMTSolver<SolverContext>::MetaSMTSolver(bool useForked, bool optimizeDivides) 
  : Solver(new MetaSMTSolverImpl<SolverContext>(this, useForked, optimizeDivides))
{
   
}

template<typename SolverContext>
MetaSMTSolver<SolverContext>::~MetaSMTSolver()
{
  
}

template<typename SolverContext>
char *MetaSMTSolver<SolverContext>::getConstraintLog(const Query& query) {
  return(impl->getConstraintLog(query));
}

template<typename SolverContext>
void MetaSMTSolver<SolverContext>::setCoreSolverTimeout(double timeout) {
  impl->setCoreSolverTimeout(timeout);
}


// ------------------------------------- MetaSMTSolverImpl methods ----------------------------------------



template<typename SolverContext>
MetaSMTSolverImpl<SolverContext>::MetaSMTSolverImpl(MetaSMTSolver<SolverContext> *solver, bool useForked, bool optimizeDivides)
  : _solver(solver),    
    _builder(new MetaSMTBuilder<SolverContext>(_meta_solver, optimizeDivides)),
    _timeout(0.0),
    _useForked(useForked)
{  
  assert(_solver && "unable to create MetaSMTSolver");
  assert(_builder && "unable to create MetaSMTBuilder");
  
  if (_useForked) {
      shared_memory_id = shmget(IPC_PRIVATE, shared_memory_size, IPC_CREAT | 0700);
      assert(shared_memory_id >= 0 && "shmget failed");
      shared_memory_ptr = (unsigned char*) shmat(shared_memory_id, NULL, 0);
      assert(shared_memory_ptr != (void*) -1 && "shmat failed");
      shmctl(shared_memory_id, IPC_RMID, NULL);
  }
}

template<typename SolverContext>
MetaSMTSolverImpl<SolverContext>::~MetaSMTSolverImpl() {

}

template<typename SolverContext>
char *MetaSMTSolverImpl<SolverContext>::getConstraintLog(const Query&) {
  const char* msg = "Not supported";
  char *buf = new char[strlen(msg) + 1];
  strcpy(buf, msg);
  return(buf);
}

template<typename SolverContext>
bool MetaSMTSolverImpl<SolverContext>::computeTruth(const Query& query, bool &isValid) {  

  bool success = false;
  std::vector<const Array*> objects;
  std::vector< std::vector<unsigned char> > values;
  bool hasSolution;

  if (computeInitialValues(query, objects, values, hasSolution)) {
      // query.expr is valid iff !query.expr is not satisfiable
      isValid = !hasSolution;
      success = true;
  }

  return(success);
}

template<typename SolverContext>
bool MetaSMTSolverImpl<SolverContext>::computeValue(const Query& query, ref<Expr> &result) {
  
  bool success = false;
  std::vector<const Array*> objects;
  std::vector< std::vector<unsigned char> > values;
  bool hasSolution;

  // Find the object used in the expression, and compute an assignment for them.
  findSymbolicObjects(query.expr, objects);  
  if (computeInitialValues(query.withFalse(), objects, values, hasSolution)) {  
      assert(hasSolution && "state has invalid constraint set");
      // Evaluate the expression with the computed assignment.
      Assignment a(objects, values);
      result = a.evaluate(query.expr);
      success = true;
  }

  return(success);
}


template<typename SolverContext>
bool MetaSMTSolverImpl<SolverContext>::computeInitialValues(const Query &query,
                                             const std::vector<const Array*> &objects,
                                             std::vector< std::vector<unsigned char> > &values,
                                             bool &hasSolution) {  

  _runStatusCode =  SOLVER_RUN_STATUS_FAILURE;

  TimerStatIncrementer t(stats::queryTime);
  assert(_builder);

  /*
   * FIXME push() and pop() work for Z3 but not for Boolector.
   * If using Z3, use push() and pop() and assert constraints.
   * If using Boolector, assume constrainsts instead of asserting them.
   */
  //push(_meta_solver);

  if (!_useForked) {
      for (ConstraintManager::const_iterator it = query.constraints.begin(), ie = query.constraints.end(); it != ie; ++it) {
          //assertion(_meta_solver, _builder->construct(*it));
          assumption(_meta_solver, _builder->construct(*it));  
      }  
  }  
    
  ++stats::queries;
  ++stats::queryCounterexamples;  
 
  bool success = true;
  if (_useForked) {
      _runStatusCode = runAndGetCexForked(query, objects, values, hasSolution, _timeout);
      success = ((SOLVER_RUN_STATUS_SUCCESS_SOLVABLE == _runStatusCode) || (SOLVER_RUN_STATUS_SUCCESS_UNSOLVABLE == _runStatusCode));
  }
  else {
      _runStatusCode = runAndGetCex(query.expr, objects, values, hasSolution);
      success = true;
  } 
    
  if (success) {
      if (hasSolution) {
          ++stats::queriesInvalid;
      }
      else {
          ++stats::queriesValid;
      }
  }  
   
  //pop(_meta_solver); 
  
  return(success);
}

template<typename SolverContext>
SolverImpl::SolverRunStatus MetaSMTSolverImpl<SolverContext>::runAndGetCex(ref<Expr> query_expr,
                                             const std::vector<const Array*> &objects,
                                             std::vector< std::vector<unsigned char> > &values,
                                             bool &hasSolution)
{

  // assume the negation of the query  
  assumption(_meta_solver, _builder->construct(Expr::createIsZero(query_expr)));  
  hasSolution = solve(_meta_solver);  
  
  if (hasSolution) {
      values.reserve(objects.size());
      for (std::vector<const Array*>::const_iterator it = objects.begin(), ie = objects.end(); it != ie; ++it) {
        
          const Array *array = *it;
          assert(array);
          typename SolverContext::result_type array_exp = _builder->getInitialArray(array);
           
          std::vector<unsigned char> data;      
          data.reserve(array->size);       
           
          for (unsigned offset = 0; offset < array->size; offset++) {
              typename SolverContext::result_type elem_exp = evaluate(
                       _meta_solver,
                       metaSMT::logic::Array::select(array_exp, bvuint(offset, array->getDomain())));
              unsigned char elem_value = metaSMT::read_value(_meta_solver, elem_exp);
              data.push_back(elem_value);
          }
                   
          values.push_back(data);
      }
  }
  
  if (true == hasSolution) {
      return(SolverImpl::SOLVER_RUN_STATUS_SUCCESS_SOLVABLE);
  }
  else {
      return(SolverImpl::SOLVER_RUN_STATUS_SUCCESS_UNSOLVABLE);  
  }
}

static void metaSMTTimeoutHandler(int x) {
  _exit(52);
}

template<typename SolverContext>
SolverImpl::SolverRunStatus MetaSMTSolverImpl<SolverContext>::runAndGetCexForked(const Query &query,
                                                          const std::vector<const Array*> &objects,
                                                          std::vector< std::vector<unsigned char> > &values,
                                                          bool &hasSolution,
                                                          double timeout)
{
  unsigned char *pos = shared_memory_ptr;
  unsigned sum = 0;
  for (std::vector<const Array*>::const_iterator it = objects.begin(), ie = objects.end(); it != ie; ++it) {
      sum += (*it)->size;    
  }
  // sum += sizeof(uint64_t);
  sum += sizeof(stats::queryConstructs);
  assert(sum < shared_memory_size && "not enough shared memory for counterexample");

  fflush(stdout);
  fflush(stderr);
  int pid = fork();
  if (pid == -1) {
      fprintf(stderr, "error: fork failed (for metaSMT)");
      return(SolverImpl::SOLVER_RUN_STATUS_FORK_FAILED);
  }
  
  if (pid == 0) {
      if (timeout) {
          ::alarm(0); /* Turn off alarm so we can safely set signal handler */
          ::signal(SIGALRM, metaSMTTimeoutHandler);
          ::alarm(std::max(1, (int) timeout));
      }     
      
      for (ConstraintManager::const_iterator it = query.constraints.begin(), ie = query.constraints.end(); it != ie; ++it) {      
          assertion(_meta_solver, _builder->construct(*it));
          //assumption(_meta_solver, _builder->construct(*it));  
      } 
      
      
      std::vector< std::vector<typename SolverContext::result_type> > aux_arr_exprs;
      if (UseMetaSMT == METASMT_BACKEND_BOOLECTOR) {
          for (std::vector<const Array*>::const_iterator it = objects.begin(), ie = objects.end(); it != ie; ++it) {
            
              std::vector<typename SolverContext::result_type> aux_arr;          
              const Array *array = *it;
              assert(array);
              typename SolverContext::result_type array_exp = _builder->getInitialArray(array);
              
              for (unsigned offset = 0; offset < array->size; offset++) {
                  typename SolverContext::result_type elem_exp = evaluate(
                      _meta_solver,
                      metaSMT::logic::Array::select(array_exp, bvuint(offset, array->getDomain())));
                  aux_arr.push_back(elem_exp);
              }
              aux_arr_exprs.push_back(aux_arr);
          }
          assert(aux_arr_exprs.size() == objects.size());
      }
      
           
      // assume the negation of the query
      // can be also asserted instead of assumed as we are in a child process
      assumption(_meta_solver, _builder->construct(Expr::createIsZero(query.expr)));        
      unsigned res = solve(_meta_solver);

      if (res) {

          if (UseMetaSMT != METASMT_BACKEND_BOOLECTOR) {

              for (std::vector<const Array*>::const_iterator it = objects.begin(), ie = objects.end(); it != ie; ++it) {

                  const Array *array = *it;
                  assert(array);
                  typename SolverContext::result_type array_exp = _builder->getInitialArray(array);      

                  for (unsigned offset = 0; offset < array->size; offset++) {

                      typename SolverContext::result_type elem_exp = evaluate(
                          _meta_solver,
                          metaSMT::logic::Array::select(array_exp, bvuint(offset, array->getDomain())));
                      unsigned char elem_value = metaSMT::read_value(_meta_solver, elem_exp);
                      *pos++ = elem_value;
                  }
              }
          }
          else {
              typename std::vector< std::vector<typename SolverContext::result_type> >::const_iterator eit = aux_arr_exprs.begin(), eie = aux_arr_exprs.end();
              for (std::vector<const Array*>::const_iterator it = objects.begin(), ie = objects.end(); it != ie, eit != eie; ++it, ++eit) {
                  const Array *array = *it;
                  const std::vector<typename SolverContext::result_type>& arr_exp = *eit;
                  assert(array);
                  assert(array->size == arr_exp.size());

                  for (unsigned offset = 0; offset < array->size; offset++) {
                      unsigned char elem_value = metaSMT::read_value(_meta_solver, arr_exp[offset]);
                       *pos++ = elem_value;
                  }
              }
          }
      }
      assert((uint64_t*) pos);
      *((uint64_t*) pos) = stats::queryConstructs;      
      
      _exit(!res);
  }
  else {
      int status;
      pid_t res;

      do {
          res = waitpid(pid, &status, 0);
      } 
      while (res < 0 && errno == EINTR);
    
      if (res < 0) {
          fprintf(stderr, "error: waitpid() for metaSMT failed");
          return(SolverImpl::SOLVER_RUN_STATUS_WAITPID_FAILED);
      }
      
      // From timed_run.py: It appears that linux at least will on
      // "occasion" return a status when the process was terminated by a
      // signal, so test signal first.
      if (WIFSIGNALED(status) || !WIFEXITED(status)) {
           fprintf(stderr, "error: metaSMT did not return successfully (status = %d) \n", WTERMSIG(status));
           return(SolverImpl::SOLVER_RUN_STATUS_INTERRUPTED);
      }

      int exitcode = WEXITSTATUS(status);
      if (exitcode == 0) {
          hasSolution = true;
      } 
      else if (exitcode == 1) {
          hasSolution = false;
      }
      else if (exitcode == 52) {
          fprintf(stderr, "error: metaSMT timed out");
          return(SolverImpl::SOLVER_RUN_STATUS_TIMEOUT);
      }
      else {
          fprintf(stderr, "error: metaSMT did not return a recognized code");
          return(SolverImpl::SOLVER_RUN_STATUS_UNEXPECTED_EXIT_CODE);
      }
      
      if (hasSolution) {
          values = std::vector< std::vector<unsigned char> >(objects.size());
          unsigned i = 0;
          for (std::vector<const Array*>::const_iterator it = objects.begin(), ie = objects.end(); it != ie; ++it) {
              const Array *array = *it;
              assert(array);
              std::vector<unsigned char> &data = values[i++];
              data.insert(data.begin(), pos, pos + array->size);
              pos += array->size;
          }
      }
      stats::queryConstructs += (*((uint64_t*) pos) - stats::queryConstructs);      

      if (true == hasSolution) {
          return SolverImpl::SOLVER_RUN_STATUS_SUCCESS_SOLVABLE;
      }
      else {
          return SolverImpl::SOLVER_RUN_STATUS_SUCCESS_UNSOLVABLE;
      }
  }
}

template<typename SolverContext>
SolverImpl::SolverRunStatus MetaSMTSolverImpl<SolverContext>::getOperationStatusCode() {
   return _runStatusCode;
}

template class MetaSMTSolver< DirectSolver_Context < Boolector> >;
template class MetaSMTSolver< DirectSolver_Context < Z3_Backend> >;
template class MetaSMTSolver< DirectSolver_Context < STP_Backend> >;

#endif /* SUPPORT_METASMT */