1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
|
/****************************************************************************************[Global.h]
MiniSat -- Copyright (c) 2003-2005, Niklas Een, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#ifndef Global_h
#define Global_h
#include <cassert>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <new>
// PKT: needs to be outside namespace MINISAT or mac os x compilation breaks
#ifdef _MSC_VER
#else
#include <unistd.h>
#endif
namespace MINISAT {
//=================================================================================================
// Basic Types & Minor Things:
// DWD: This is needed on darwin.
typedef unsigned int uint;
#ifdef _MSC_VER
typedef INT64 int64;
typedef UINT64 uint64;
typedef INT_PTR intp;
typedef UINT_PTR uintp;
#define I64_fmt "I64d"
#else
typedef long long int64;
typedef unsigned long long uint64;
typedef __PTRDIFF_TYPE__ intp;
typedef unsigned __PTRDIFF_TYPE__ uintp;
#define I64_fmt "lld"
#endif
template<class T> static inline T min(T x, T y) { return (x < y) ? x : y; }
template<class T> static inline T max(T x, T y) { return (x > y) ? x : y; }
template <bool> struct STATIC_ASSERTION_FAILURE;
template <> struct STATIC_ASSERTION_FAILURE<true>{};
#define TEMPLATE_FAIL STATIC_ASSERTION_FAILURE<false>()
//=================================================================================================
// 'malloc()'-style memory allocation -- never returns NULL; aborts instead:
template<class T> static inline T* xmalloc(size_t size) {
T* tmp = (T*)malloc(size * sizeof(T));
assert(size == 0 || tmp != NULL);
return tmp; }
template<class T> static inline T* xrealloc(T* ptr, size_t size) {
T* tmp = (T*)realloc((void*)ptr, size * sizeof(T));
assert(size == 0 || tmp != NULL);
return tmp; }
template<class T> static inline void xfree(T *ptr) {
if (ptr != NULL) free((void*)ptr); }
//=================================================================================================
// Random numbers:
// Returns a random float 0 <= x < 1. Seed must never be 0.
static inline double drand(double& seed) {
seed *= 1389796;
int q = (int)(seed / 2147483647);
seed -= (double)q * 2147483647;
return seed / 2147483647; }
// Returns a random integer 0 <= x < size. Seed must never be 0.
static inline int irand(double& seed, int size) {
return (int)(drand(seed) * size); }
//=================================================================================================
// 'vec' -- automatically resizable arrays (via 'push()' method):
// NOTE! Don't use this vector on datatypes that cannot be re-located in memory (with realloc)
template<class T>
class vec {
T* data;
int sz;
int cap;
void init(int size, const T& pad);
void grow(int min_cap);
public:
// Types:
typedef int Key;
typedef T Datum;
// Constructors:
vec(void) : data(NULL) , sz(0) , cap(0) { }
vec(int size) : data(NULL) , sz(0) , cap(0) { growTo(size); }
vec(int size, const T& pad) : data(NULL) , sz(0) , cap(0) { growTo(size, pad); }
vec(T* array, int size) : data(array), sz(size), cap(size) { } // (takes ownership of array -- will be deallocated with 'xfree()')
~vec(void) { clear(true); }
// Ownership of underlying array:
T* release (void) { T* ret = data; data = NULL; sz = 0; cap = 0; return ret; }
operator T* (void) { return data; } // (unsafe but convenient)
operator const T* (void) const { return data; }
// Size operations:
int size (void) const { return sz; }
void shrink (int nelems) { assert(nelems <= sz); for (int i = 0; i < nelems; i++) sz--, data[sz].~T(); }
void pop (void) { sz--, data[sz].~T(); }
void growTo (int size);
void growTo (int size, const T& pad);
void clear (bool dealloc = false);
void capacity (int size) { grow(size); }
// Stack interface:
void push (void) { if (sz == cap) grow(sz+1); new (&data[sz]) T() ; sz++; }
void push (const T& elem) { if (sz == cap) grow(sz+1); new (&data[sz]) T(elem); sz++; }
const T& last (void) const { return data[sz-1]; }
T& last (void) { return data[sz-1]; }
// Vector interface:
const T& operator [] (int index) const { return data[index]; }
T& operator [] (int index) { return data[index]; }
// Don't allow copying (error prone):
vec<T>& operator = (vec<T>& other) { TEMPLATE_FAIL; }
vec (vec<T>& other) { TEMPLATE_FAIL; }
// Duplicatation (preferred instead):
void copyTo(vec<T>& copy) const { copy.clear(); copy.growTo(sz); for (int i = 0; i < sz; i++) new (©[i]) T(data[i]); }
void moveTo(vec<T>& dest) { dest.clear(true); dest.data = data; dest.sz = sz; dest.cap = cap; data = NULL; sz = 0; cap = 0; }
};
template<class T>
void vec<T>::grow(int min_cap) {
if (min_cap <= cap) return;
if (cap == 0) cap = (min_cap >= 2) ? min_cap : 2;
else do cap = (cap*3+1) >> 1; while (cap < min_cap);
data = xrealloc(data, cap); }
template<class T>
void vec<T>::growTo(int size, const T& pad) {
if (sz >= size) return;
grow(size);
for (int i = sz; i < size; i++) new (&data[i]) T(pad);
sz = size; }
template<class T>
void vec<T>::growTo(int size) {
if (sz >= size) return;
grow(size);
for (int i = sz; i < size; i++) new (&data[i]) T();
sz = size; }
template<class T>
void vec<T>::clear(bool dealloc) {
if (data != NULL){
for (int i = 0; i < sz; i++) data[i].~T();
sz = 0;
if (dealloc) xfree(data), data = NULL, cap = 0; } }
//=================================================================================================
// Useful functions on vectors
template<class V, class T>
void remove(V& ts, const T& t)
{
int j = 0;
for (; j < ts.size() && ts[j] != t; j++) ;
assert(j < ts.size());
for (; j < ts.size()-1; j++) ts[j] = ts[j+1];
ts.pop();
}
template<class V, class T>
bool find(V& ts, const T& t)
{
int j = 0;
for (; j < ts.size() && ts[j] != t; j++) ;
return j < ts.size();
}
//=================================================================================================
// Lifted booleans:
class lbool {
int value;
explicit lbool(int v) : value(v) { }
public:
lbool() : value(0) { }
lbool(bool x) : value((int)x*2-1) { }
int toInt(void) const { return value; }
bool operator == (const lbool& other) const { return value == other.value; }
bool operator != (const lbool& other) const { return value != other.value; }
lbool operator ~ (void) const { return lbool(-value); }
friend int toInt (lbool l);
friend lbool toLbool(int v);
};
inline int toInt (lbool l) { return l.toInt(); }
inline lbool toLbool(int v) { return lbool(v); }
const lbool l_True = toLbool( 1);
const lbool l_False = toLbool(-1);
const lbool l_Undef = toLbool( 0);
//=================================================================================================
// Relation operators -- extend definitions from '==' and '<'
#ifndef __SGI_STL_INTERNAL_RELOPS // (be aware of SGI's STL implementation...)
#define __SGI_STL_INTERNAL_RELOPS
template <class T> static inline bool operator != (const T& x, const T& y) { return !(x == y); }
template <class T> static inline bool operator > (const T& x, const T& y) { return y < x; }
template <class T> static inline bool operator <= (const T& x, const T& y) { return !(y < x); }
template <class T> static inline bool operator >= (const T& x, const T& y) { return !(x < y); }
#endif
//=================================================================================================
}
#endif
|