1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
|
/****************************************************************************************[Solver.C]
MiniSat -- Copyright (c) 2003-2005, Niklas Een, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#include "Solver.h"
#include "Sort.h"
#include <cmath>
namespace MINISAT {
//=================================================================================================
// Operations on clauses:
/*_________________________________________________________________________________________________
|
| newClause : (ps : const vec<Lit>&) (learnt : bool) -> [void]
|
| Description:
| Allocate and add a new clause to the SAT solvers clause database.
|
| Input:
| ps - The new clause as a vector of literals.
| learnt - Is the clause a learnt clause? For learnt clauses, 'ps[0]' is assumed to be the
| asserting literal. An appropriate 'enqueue()' operation will be performed on this
| literal. One of the watches will always be on this literal, the other will be set to
| the literal with the highest decision level.
|
| Effect:
| Activity heuristics are updated.
|________________________________________________________________________________________________@*/
bool Solver::newClause(const vec<Lit>& ps_, bool learnt, bool normalized)
{
vec<Lit> qs;
if (!learnt && !normalized){
assert(decisionLevel() == 0);
ps_.copyTo(qs); // Make a copy of the input vector.
// Remove duplicates:
sortUnique(qs);
// Check if clause is satisfied:
for (int i = 0; i < qs.size()-1; i++){
if (qs[i] == ~qs[i+1])
return true; }
for (int i = 0; i < qs.size(); i++){
if (value(qs[i]) == l_True)
return true; }
// Remove false literals:
int i, j;
for (i = j = 0; i < qs.size(); i++)
if (value(qs[i]) != l_False)
qs[j++] = qs[i];
qs.shrink(i - j);
}
const vec<Lit>& ps = learnt || normalized ? ps_ : qs; // 'ps' is now the (possibly) reduced vector of literals.
if (ps.size() == 0)
return false;
else if (ps.size() == 1){
assert(decisionLevel() == 0);
return enqueue(ps[0]);
}else{
// Allocate clause:
Clause* c = Clause_new(ps, learnt);
if (learnt){
// Put the second watch on the first literal with highest decision level:
// (requires that this method is called at the level where the clause is asserting!)
int i;
for (i = 1; i < ps.size() && position(trailpos[var(ps[i])]) < trail_lim.last(); i++)
;
(*c)[1] = ps[i];
(*c)[i] = ps[1];
// Bump, enqueue, store clause:
claBumpActivity(*c); // (newly learnt clauses should be considered active)
check(enqueue((*c)[0], c));
learnts.push(c);
stats.learnts_literals += c->size();
}else{
// Store clause:
clauses.push(c);
stats.clauses_literals += c->size();
if (subsumption){
c->calcAbstraction();
for (int i = 0; i < c->size(); i++){
assert(!find(occurs[var((*c)[i])], c));
occurs[var((*c)[i])].push(c);
n_occ[toInt((*c)[i])]++;
touched[var((*c)[i])] = 1;
if (heap.inHeap(var((*c)[i])))
updateHeap(var((*c)[i]));
}
}
}
// Watch clause:
watches[toInt(~(*c)[0])].push(c);
watches[toInt(~(*c)[1])].push(c);
}
return true;
}
// Disposes a clauses and removes it from watcher lists. NOTE!
// Low-level; does NOT change the 'clauses' and 'learnts' vector.
//
void Solver::removeClause(Clause& c, bool dealloc)
{
//fprintf(stderr, "delete %d: ", _c); printClause(c); fprintf(stderr, "\n");
assert(c.mark() == 0);
if (c.size() > 1){
assert(find(watches[toInt(~c[0])], &c));
assert(find(watches[toInt(~c[1])], &c));
remove(watches[toInt(~c[0])], &c);
remove(watches[toInt(~c[1])], &c); }
if (c.learnt()) stats.learnts_literals -= c.size();
else stats.clauses_literals -= c.size();
if (subsumption && !c.learnt()){
for (int i = 0; i < c.size(); i++){
if (dealloc){
assert(find(occurs[var(c[i])], &c));
remove(occurs[var(c[i])], &c);
}
n_occ[toInt(c[i])]--;
updateHeap(var(c[i]));
}
}
if (dealloc)
xfree(&c);
else
c.mark(1);
}
bool Solver::satisfied(Clause& c) const
{
for (int i = 0; i < c.size(); i++)
if (value(c[i]) == l_True)
return true;
return false; }
bool Solver::strengthen(Clause& c, Lit l)
{
assert(decisionLevel() == 0);
assert(c.size() > 1);
assert(c.mark() == 0);
assert(toInt(~c[0]) < watches.size());
assert(toInt(~c[1]) < watches.size());
assert(find(watches[toInt(~c[0])], &c));
assert(find(watches[toInt(~c[1])], &c));
assert(find(c,l));
if (c.learnt()) stats.learnts_literals -= 1;
else stats.clauses_literals -= 1;
if (c[0] == l || c[1] == l){
assert(find(watches[toInt(~l)], &c));
remove(c,l);
remove(watches[toInt(~l)], &c);
if (c.size() > 1){
assert(!find(watches[toInt(~c[1])], &c));
watches[toInt(~c[1])].push(&c); }
else {
assert(find(watches[toInt(~c[0])], &c));
remove(watches[toInt(~c[0])], &c);
removeClause(c, false);
}
}
else
remove(c,l);
assert(c.size() == 1 || find(watches[toInt(~c[0])], &c));
assert(c.size() == 1 || find(watches[toInt(~c[1])], &c));
if (subsumption){
assert(find(occurs[var(l)], &c));
remove(occurs[var(l)], &c);
assert(!find(occurs[var(l)], &c));
c.calcAbstraction();
n_occ[toInt(l)]--;
updateHeap(var(l));
}
return c.size() == 1 ? enqueue(c[0]) : true;
}
//=================================================================================================
// Minor methods:
// Creates a new SAT variable in the solver. If 'decision_var' is cleared, variable will not be
// used as a decision variable (NOTE! This has effects on the meaning of a SATISFIABLE result).
//
Var Solver::newVar(bool polarity, bool dvar) {
int index;
index = nVars();
watches .push(); // (list for positive literal)
watches .push(); // (list for negative literal)
reason .push(NULL);
assigns .push(toInt(l_Undef));
trailpos .push(TrailPos(0,0));
activity .push(0);
order .newVar(polarity,dvar);
seen .push(0);
touched .push(0);
if (subsumption){
occurs .push();
n_occ .push(0);
n_occ .push(0);
heap .setBounds(index+1);
}
return index; }
// Returns FALSE if immediate conflict.
bool Solver::assume(Lit p) {
trail_lim.push(trail.size());
return enqueue(p); }
// Revert to the state at given level.
void Solver::cancelUntil(int level) {
if (decisionLevel() > level){
for (int c = trail.size()-1; c >= trail_lim[level]; c--){
Var x = var(trail[c]);
assigns[x] = toInt(l_Undef);
reason [x] = NULL;
order.undo(x); }
qhead = trail_lim[level];
trail.shrink(trail.size() - trail_lim[level]);
trail_lim.shrink(trail_lim.size() - level);
}
}
//=================================================================================================
// Major methods:
/*_________________________________________________________________________________________________
|
| analyze : (confl : Clause*) (out_learnt : vec<Lit>&) (out_btlevel : int&) -> [void]
|
| Description:
| Analyze conflict and produce a reason clause.
|
| Pre-conditions:
| * 'out_learnt' is assumed to be cleared.
| * Current decision level must be greater than root level.
|
| Post-conditions:
| * 'out_learnt[0]' is the asserting literal at level 'out_btlevel'.
|
| Effect:
| Will undo part of the trail, upto but not beyond the assumption of the current decision level.
|________________________________________________________________________________________________@*/
void Solver::analyze(Clause* confl, vec<Lit>& out_learnt, int& out_btlevel)
{
int pathC = 0;
int btpos = -1;
Lit p = lit_Undef;
// Generate conflict clause:
//
out_learnt.push(); // (leave room for the asserting literal)
int index = trail.size()-1;
do{
assert(confl != NULL); // (otherwise should be UIP)
Clause& c = *confl;
if (c.learnt())
claBumpActivity(c);
for (int j = (p == lit_Undef) ? 0 : 1; j < c.size(); j++){
Lit q = c[j];
if (!seen[var(q)] && position(trailpos[var(q)]) >= trail_lim[0]){
varBumpActivity(q);
seen[var(q)] = 1;
if (position(trailpos[var(q)]) >= trail_lim.last())
pathC++;
else{
out_learnt.push(q);
btpos = max(btpos, position(trailpos[var(q)]));
}
}
}
// Select next clause to look at:
while (!seen[var(trail[index--])]) ;
p = trail[index+1];
confl = reason[var(p)];
seen[var(p)] = 0;
pathC--;
}while (pathC > 0);
out_learnt[0] = ~p;
// Find correct backtrack level
for (out_btlevel = trail_lim.size()-1; out_btlevel > 0 && trail_lim[out_btlevel-1] > btpos; out_btlevel--)
;
int i, j;
if (expensive_ccmin){
// Simplify conflict clause (a lot):
//
uint min_level = 0;
for (i = 1; i < out_learnt.size(); i++)
min_level |= abstractLevel(trailpos[var(out_learnt[i])]); // (maintain an abstraction of levels involved in conflict)
out_learnt.copyTo(analyze_toclear);
for (i = j = 1; i < out_learnt.size(); i++)
if (reason[var(out_learnt[i])] == NULL || !analyze_removable(out_learnt[i], min_level))
out_learnt[j++] = out_learnt[i];
}else{
// Simplify conflict clause (a little):
//
out_learnt.copyTo(analyze_toclear);
for (i = j = 1; i < out_learnt.size(); i++){
Clause& c = *reason[var(out_learnt[i])];
for (int k = 1; k < c.size(); k++)
if (!seen[var(c[k])] && position(trailpos[var(c[k])]) >= trail_lim[0]){
out_learnt[j++] = out_learnt[i];
break; }
}
}
stats.max_literals += out_learnt.size();
out_learnt.shrink(i - j);
stats.tot_literals += out_learnt.size();
for (int j = 0; j < analyze_toclear.size(); j++) seen[var(analyze_toclear[j])] = 0; // ('seen[]' is now cleared)
}
// Check if 'p' can be removed. 'min_level' is used to abort early if visiting literals at a level that cannot be removed.
//
bool Solver::analyze_removable(Lit p, uint min_level)
{
analyze_stack.clear(); analyze_stack.push(p);
int top = analyze_toclear.size();
while (analyze_stack.size() > 0){
assert(reason[var(analyze_stack.last())] != NULL);
Clause& c = *reason[var(analyze_stack.last())]; analyze_stack.pop();
for (int i = 1; i < c.size(); i++){
Lit p = c[i];
TrailPos tp = trailpos[var(p)];
if (!seen[var(p)] && position(tp) >= trail_lim[0]){
if (reason[var(p)] != NULL && (abstractLevel(tp) & min_level) != 0){
seen[var(p)] = 1;
analyze_stack.push(p);
analyze_toclear.push(p);
}else{
for (int j = top; j < analyze_toclear.size(); j++)
seen[var(analyze_toclear[j])] = 0;
analyze_toclear.shrink(analyze_toclear.size() - top);
return false;
}
}
}
}
return true;
}
/*_________________________________________________________________________________________________
|
| analyzeFinal : (p : Lit) -> [void]
|
| Description:
| Specialized analysis procedure to express the final conflict in terms of assumptions.
| Calculates the (possibly empty) set of assumptions that led to the assignment of 'p', and
| stores the result in 'out_conflict'.
|________________________________________________________________________________________________@*/
void Solver::analyzeFinal(Lit p, vec<Lit>& out_conflict)
{
out_conflict.clear();
out_conflict.push(p);
if (decisionLevel() == 0)
return;
seen[var(p)] = 1;
int start = position(trailpos[var(p)]);
for (int i = start; i >= trail_lim[0]; i--){
Var x = var(trail[i]);
if (seen[x]){
if (reason[x] == NULL){
assert(position(trailpos[x]) >= trail_lim[0]);
out_conflict.push(~trail[i]);
}else{
Clause& c = *reason[x];
for (int j = 1; j < c.size(); j++)
if (position(trailpos[var(c[j])]) >= trail_lim[0])
seen[var(c[j])] = 1;
}
seen[x] = 0;
}
}
}
/*_________________________________________________________________________________________________
|
| enqueue : (p : Lit) (from : Clause*) -> [bool]
|
| Description:
| Puts a new fact on the propagation queue as well as immediately updating the variable's value.
| Should a conflict arise, FALSE is returned.
|
| Input:
| p - The fact to enqueue
| from - [Optional] Fact propagated from this (currently) unit clause. Stored in 'reason[]'.
| Default value is NULL (no reason).
|
| Output:
| TRUE if fact was enqueued without conflict, FALSE otherwise.
|________________________________________________________________________________________________@*/
bool Solver::enqueue(Lit p, Clause* from)
{
if (value(p) != l_Undef)
return value(p) != l_False;
else{
assigns [var(p)] = toInt(lbool(!sign(p)));
trailpos[var(p)] = TrailPos(trail.size(),decisionLevel());
reason [var(p)] = from;
trail.push(p);
return true;
}
}
/*_________________________________________________________________________________________________
|
| propagate : [void] -> [Clause*]
|
| Description:
| Propagates all enqueued facts. If a conflict arises, the conflicting clause is returned,
| otherwise NULL.
|
| Post-conditions:
| * the propagation queue is empty, even if there was a conflict.
|________________________________________________________________________________________________@*/
Clause* Solver::propagate()
{
if (decisionLevel() == 0 && subsumption)
return backwardSubsumptionCheck() ? NULL : propagate_tmpempty;
Clause* confl = NULL;
//fprintf(stderr, "propagate, qhead = %d, qtail = %d\n", qhead, qtail);
while (qhead < trail.size()){
stats.propagations++;
simpDB_props--;
Lit p = trail[qhead++]; // 'p' is enqueued fact to propagate.
vec<Clause*>& ws = watches[toInt(p)];
Clause **i, **j, **end;
for (i = j = (Clause**)ws, end = i + ws.size(); i != end;){
Clause& c = **i++;
// Make sure the false literal is data[1]:
Lit false_lit = ~p;
if (c[0] == false_lit)
c[0] = c[1], c[1] = false_lit;
assert(c[1] == false_lit);
// If 0th watch is true, then clause is already satisfied.
Lit first = c[0];
if (value(first) == l_True){
*j++ = &c;
}else{
// Look for new watch:
for (int k = 2; k < c.size(); k++)
if (value(c[k]) != l_False){
c[1] = c[k]; c[k] = false_lit;
watches[toInt(~c[1])].push(&c);
goto FoundWatch; }
// Did not find watch -- clause is unit under assignment:
*j++ = &c;
if (!enqueue(first, &c)){
confl = &c;
qhead = trail.size();
// Copy the remaining watches:
while (i < end)
*j++ = *i++;
}
FoundWatch:;
}
}
ws.shrink(i - j);
}
return confl;
}
/*_________________________________________________________________________________________________
|
| reduceDB : () -> [void]
|
| Description:
| Remove half of the learnt clauses, minus the clauses locked by the current assignment. Locked
| clauses are clauses that are reason to some assignment. Binary clauses are never removed.
|________________________________________________________________________________________________@*/
struct reduceDB_lt { bool operator () (Clause* x, Clause* y) { return x->size() > 2 && (y->size() == 2 || x->activity() < y->activity()); } };
void Solver::reduceDB()
{
int i, j;
double extra_lim = cla_inc / learnts.size(); // Remove any clause below this activity
sort(learnts, reduceDB_lt());
for (i = j = 0; i < learnts.size() / 2; i++){
if (learnts[i]->size() > 2 && !locked(*learnts[i]))
removeClause(*learnts[i]);
else
learnts[j++] = learnts[i];
}
for (; i < learnts.size(); i++){
if (learnts[i]->size() > 2 && !locked(*learnts[i]) && learnts[i]->activity() < extra_lim)
removeClause(*learnts[i]);
else
learnts[j++] = learnts[i];
}
learnts.shrink(i - j);
}
/*_________________________________________________________________________________________________
|
| simplifyDB : [void] -> [bool]
|
| Description:
| Simplify the clause database according to the current top-level assigment. Currently, the only
| thing done here is the removal of satisfied clauses, but more things can be put here.
|________________________________________________________________________________________________@*/
bool Solver::simplifyDB(bool expensive)
{
assert(decisionLevel() == 0);
if (!ok || propagate() != NULL)
return ok = false;
if (nAssigns() == simpDB_assigns ||
(!subsumption && simpDB_props > 0)) // (nothing has changed or preformed a simplification too recently)
return true;
if (subsumption){
if (expensive && !eliminate())
return ok = false;
// Move this cleanup code to its own method ?
int i , j;
vec<Var> dirty;
for (i = 0; i < clauses.size(); i++)
if (clauses[i]->mark() == 1){
Clause& c = *clauses[i];
for (int k = 0; k < c.size(); k++)
if (!seen[var(c[k])]){
seen[var(c[k])] = 1;
dirty.push(var(c[k]));
}
}
for (i = 0; i < dirty.size(); i++){
cleanOcc(dirty[i]);
seen[dirty[i]] = 0;
}
for (i = j = 0; i < clauses.size(); i++)
if (clauses[i]->mark() == 1)
xfree(clauses[i]);
else
clauses[j++] = clauses[i];
clauses.shrink(i - j);
}
// Remove satisfied clauses:
for (int type = 0; type < (subsumption ? 1 : 2); type++){ // (only scan learnt clauses if subsumption is on)
vec<Clause*>& cs = type ? learnts : clauses;
int j = 0;
for (int i = 0; i < cs.size(); i++){
assert(cs[i]->mark() == 0);
if (satisfied(*cs[i]))
removeClause(*cs[i]);
else
cs[j++] = cs[i];
}
cs.shrink(cs.size()-j);
}
order.cleanup();
simpDB_assigns = nAssigns();
simpDB_props = stats.clauses_literals + stats.learnts_literals; // (shouldn't depend on 'stats' really, but it will do for now)
return true;
}
/*_________________________________________________________________________________________________
|
| search : (nof_conflicts : int) (nof_learnts : int) (params : const SearchParams&) -> [lbool]
|
| Description:
| Search for a model the specified number of conflicts, keeping the number of learnt clauses
| below the provided limit. NOTE! Use negative value for 'nof_conflicts' or 'nof_learnts' to
| indicate infinity.
|
| Output:
| 'l_True' if a partial assigment that is consistent with respect to the clauseset is found. If
| all variables are decision variables, this means that the clause set is satisfiable. 'l_False'
| if the clause set is unsatisfiable. 'l_Undef' if the bound on number of conflicts is reached.
|________________________________________________________________________________________________@*/
lbool Solver::search(int nof_conflicts, int nof_learnts)
{
assert(ok);
int backtrack_level;
int conflictC = 0;
vec<Lit> learnt_clause;
stats.starts++;
var_decay = 1 / params.var_decay;
cla_decay = 1 / params.clause_decay;
for (;;){
Clause* confl = propagate();
if (confl != NULL){
// CONFLICT
stats.conflicts++; conflictC++;
if (decisionLevel() == 0) return l_False;
learnt_clause.clear();
analyze(confl, learnt_clause, backtrack_level);
cancelUntil(backtrack_level);
newClause(learnt_clause, true);
varDecayActivity();
claDecayActivity();
}else{
// NO CONFLICT
if (nof_conflicts >= 0 && conflictC >= nof_conflicts){
// Reached bound on number of conflicts:
progress_estimate = progressEstimate();
cancelUntil(0);
return l_Undef; }
// Simplify the set of problem clauses:
if (decisionLevel() == 0 && !simplifyDB())
return l_False;
if (nof_learnts >= 0 && learnts.size()-nAssigns() >= nof_learnts)
// Reduce the set of learnt clauses:
reduceDB();
Lit next = lit_Undef;
if (decisionLevel() < assumptions.size()){
// Perform user provided assumption:
next = assumptions[decisionLevel()];
if (value(next) == l_False){
analyzeFinal(~next, conflict);
return l_False; }
}else{
// New variable decision:
stats.decisions++;
next = order.select(params.random_var_freq, decisionLevel());
}
if (next == lit_Undef)
// Model found:
return l_True;
check(assume(next));
}
}
}
// Return search-space coverage. Not extremely reliable.
//
double Solver::progressEstimate()
{
double progress = 0;
double F = 1.0 / nVars();
for (int i = 0; i <= decisionLevel(); i++){
int beg = i == 0 ? 0 : trail_lim[i - 1];
int end = i == decisionLevel() ? trail.size() : trail_lim[i];
progress += pow(F, i) * (end - beg);
}
return progress / nVars();
}
// Divide all variable activities by 1e100.
//
void Solver::varRescaleActivity()
{
for (int i = 0; i < nVars(); i++)
activity[i] *= 1e-100;
var_inc *= 1e-100;
}
// Divide all constraint activities by 1e100.
//
void Solver::claRescaleActivity()
{
for (int i = 0; i < learnts.size(); i++)
learnts[i]->activity() *= 1e-20;
cla_inc *= 1e-20;
}
/*_________________________________________________________________________________________________
|
| solve : (assumps : const vec<Lit>&) -> [bool]
|
| Description:
| Top-level solve.
|________________________________________________________________________________________________@*/
bool Solver::solve(const vec<Lit>& assumps)
{
model.clear();
conflict.clear();
if (!simplifyDB(true)) return false;
double nof_conflicts = params.restart_first;
double nof_learnts = nClauses() * params.learntsize_factor;
lbool status = l_Undef;
assumps.copyTo(assumptions);
if (verbosity >= 1){
reportf("==================================[MINISAT]====================================\n");
reportf("| Conflicts | ORIGINAL | LEARNT | Progress |\n");
reportf("| | Vars Clauses Literals | Limit Clauses Lit/Cl | |\n");
reportf("===============================================================================\n");
}
// Search:
while (status == l_Undef){
if (verbosity >= 1)
//reportf("| %9d | %7d %8d | %7d %7d %8d %7.1f | %6.3f %% |\n", (int)stats.conflicts, nClauses(), (int)stats.clauses_literals, (int)nof_learnts, nLearnts(), (int)stats.learnts_literals, (double)stats.learnts_literals/nLearnts(), progress_estimate*100);
reportf("| %9d | %7d %8d %8d | %8d %8d %6.0f | %6.3f %% |\n", (int)stats.conflicts, order.size(), nClauses(), (int)stats.clauses_literals, (int)nof_learnts, nLearnts(), (double)stats.learnts_literals/nLearnts(), progress_estimate*100);
status = search((int)nof_conflicts, (int)nof_learnts);
nof_conflicts *= params.restart_inc;
nof_learnts *= params.learntsize_inc;
}
if (verbosity >= 1)
reportf("==============================================================================\n");
if (status == l_True){
// Copy model:
extendModel();
#if 1
//fprintf(stderr, "Verifying model.\n");
for (int i = 0; i < clauses.size(); i++)
assert(satisfied(*clauses[i]));
for (int i = 0; i < eliminated.size(); i++)
assert(satisfied(*eliminated[i]));
#endif
model.growTo(nVars());
for (int i = 0; i < nVars(); i++) model[i] = value(i);
}else{
assert(status == l_False);
if (conflict.size() == 0)
ok = false;
}
cancelUntil(0);
return status == l_True;
}
} //end of MINISAT namespace
|