1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
|
/****************************************************************************************[Solver.h]
MiniSat -- Copyright (c) 2003-2005, Niklas Een, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#ifndef Solver_h
#define Solver_h
#include "SolverTypes.h"
#include "VarOrder.h"
namespace MINISAT {
// Redfine if you want output to go somewhere else:
#define reportf(format, args...) ( printf(format , ## args), fflush(stdout) )
//=================================================================================================
// Solver -- the main class:
struct SolverStats {
int64 starts, decisions, propagations, conflicts;
int64 clauses_literals, learnts_literals, max_literals, tot_literals;
int64 subsumption_checks, subsumption_misses, merges;
SolverStats() :
starts(0), decisions(0), propagations(0), conflicts(0)
, clauses_literals(0), learnts_literals(0), max_literals(0), tot_literals(0)
, subsumption_checks(0), subsumption_misses(0), merges(0)
{ }
};
struct SearchParams {
double var_decay, clause_decay, random_var_freq;
double restart_inc, learntsize_inc, learntsize_factor;
int restart_first;
SearchParams(double v = 0.95, double c = 0.999, double r = 0.02,
double ri = 1.5, double li = 1.1, double lf = (double)1/(double)3,
int rf = 100) :
var_decay(v), clause_decay(c), random_var_freq(r),
restart_inc(ri), learntsize_inc(li), learntsize_factor(lf),
restart_first(rf) { }
};
struct ElimLt {
const vec<int>& n_occ;
ElimLt(const vec<int>& no) : n_occ(no) {}
int cost (Var x) const { return n_occ[toInt(Lit(x))] * n_occ[toInt(~Lit(x))]; }
bool operator()(Var x, Var y) const { return cost(x) < cost(y); }
};
class Solver {
protected:
// Solver state:
bool ok; // If FALSE,the constraints are already unsatisfiable.
// No part of solver state may be used!
vec<Clause*> clauses; // List of problem clauses.
vec<Clause*> learnts; // List of learnt clauses.
int n_bin_clauses; // Keep track of number of binary clauses "inlined" into the watcher lists (we do this primarily to get identical behavior to the version without the binary clauses trick).
double cla_inc; // Amount to bump next clause with.
double cla_decay; // INVERSE decay factor for clause activity: stores 1/decay.
vec<double> activity; // A heuristic measurement of the activity of a variable.
double var_inc; // Amount to bump next variable with.
double var_decay; // INVERSE decay factor for variable activity: stores 1/decay. Use negative value for static variable order.
VarOrder order; // Keeps track of the decision variable order.
vec<char> properties; // TODO: describe!!!
vec<vec<Clause*> > watches; // 'watches[lit]' is a list of constraints watching 'lit' (will go there if literal becomes true).
vec<char> assigns; // The current assignments (lbool:s stored as char:s).
vec<Lit> trail; // Assignment stack; stores all assigments made in the order they were made.
vec<int> trail_lim; // Separator indices for different decision levels in 'trail'.
vec<Clause*> reason; // 'reason[var]' is the clause that implied the variables current value, or 'NULL' if none.
vec<TrailPos> trailpos; // 'trailpos[var]' contains the position in the trail at wich the assigment was made.
int qhead; // Head of queue (as index into the trail -- no more explicit propagation queue in MiniSat).
int simpDB_assigns; // Number of top-level assignments since last execution of 'simplifyDB()'.
int64 simpDB_props; // Remaining number of propagations that must be made before next execution of 'simplifyDB()'.
vec<Lit> assumptions; // Current set of assumptions provided to solve by the user.
bool subsumption;
vec<char> touched;
vec<vec<Clause*> > occurs;
vec<int> n_occ;
Heap<ElimLt> heap;
vec<Clause*> subsumption_queue;
vec<Clause*> eliminated;
vec<int> eliminated_lim;
vec<Var> eliminated_var;
// Temporaries (to reduce allocation overhead). Each variable is prefixed by the method in which it is
// used, exept 'seen' wich is used in several places.
//
vec<char> seen;
vec<Lit> analyze_stack;
vec<Lit> analyze_toclear;
Clause* propagate_tmpempty;
Clause* propagate_tmpbin;
Clause* analyze_tmpbin;
Clause* bwdsub_tmpunit;
vec<Lit> addBinary_tmp;
vec<Lit> addTernary_tmp;
// Main internal methods:
//
bool assume (Lit p);
void cancelUntil (int level);
void record (const vec<Lit>& clause);
void analyze (Clause* confl, vec<Lit>& out_learnt, int& out_btlevel); // (bt = backtrack)
bool analyze_removable(Lit p, uint min_level); // (helper method for 'analyze()')
void analyzeFinal (Lit p, vec<Lit>& out_conflict);
bool enqueue (Lit fact, Clause* from = NULL);
Clause* propagate ();
void reduceDB ();
Lit pickBranchLit ();
lbool search (int nof_conflicts, int nof_learnts);
double progressEstimate ();
// Variable properties:
void setVarProp (Var v, uint prop, bool b) { order.setVarProp(v, prop, b); }
bool hasVarProp (Var v, uint prop) const { return order.hasVarProp(v, prop); }
void updateHeap (Var v) {
if (hasVarProp(v, p_frozen))
heap.update(v); }
// Simplification methods:
//
void cleanOcc (Var v) {
assert(subsumption);
vec<Clause*>& occ = occurs[v];
int i, j;
for (i = j = 0; i < occ.size(); i++)
if (occ[i]->mark() != 1)
occ[j++] = occ[i];
occ.shrink(i - j);
}
vec<Clause*>& getOccurs (Var x) { cleanOcc(x); return occurs[x]; }
void gather (vec<Clause*>& clauses);
Lit subsumes (const Clause& c, const Clause& d);
bool assymmetricBranching (Clause& c);
bool merge (const Clause& _ps, const Clause& _qs, Var v, vec<Lit>& out_clause);
bool backwardSubsumptionCheck ();
bool eliminateVar (Var v, bool fail = false);
bool eliminate ();
void extendModel ();
// Activity:
//
void varBumpActivity(Lit p) {
if (var_decay < 0) return; // (negative decay means static variable order -- don't bump)
if ( (activity[var(p)] += var_inc) > 1e100 ) varRescaleActivity();
order.update(var(p)); }
void varDecayActivity () { if (var_decay >= 0) var_inc *= var_decay; }
void varRescaleActivity();
void claDecayActivity () { cla_inc *= cla_decay; }
void claRescaleActivity();
// Operations on clauses:
//
bool newClause(const vec<Lit>& ps, bool learnt = false, bool normalized = false);
void claBumpActivity (Clause& c) { if ( (c.activity() += cla_inc) > 1e20 ) claRescaleActivity(); }
bool locked (const Clause& c) const { return reason[var(c[0])] == &c; }
bool satisfied (Clause& c) const;
bool strengthen (Clause& c, Lit l);
void removeClause (Clause& c, bool dealloc = true);
int decisionLevel() const { return trail_lim.size(); }
public:
Solver() : ok (true)
, n_bin_clauses (0)
, cla_inc (1)
, cla_decay (1)
, var_inc (1)
, var_decay (1)
, order (assigns, activity)
, qhead (0)
, simpDB_assigns (-1)
, simpDB_props (0)
, subsumption (true)
, heap (n_occ)
, params ()
, expensive_ccmin (true)
, verbosity (0)
, progress_estimate(0)
{
vec<Lit> dummy(2,lit_Undef);
propagate_tmpbin = Clause_new(dummy);
analyze_tmpbin = Clause_new(dummy);
dummy.pop();
bwdsub_tmpunit = Clause_new(dummy);
dummy.pop();
propagate_tmpempty = Clause_new(dummy);
addBinary_tmp .growTo(2);
addTernary_tmp.growTo(3);
}
~Solver() {
xfree(propagate_tmpbin);
xfree(analyze_tmpbin);
xfree(bwdsub_tmpunit);
xfree(propagate_tmpempty);
for (int i = 0; i < eliminated.size(); i++) xfree(eliminated[i]);
for (int i = 0; i < learnts.size(); i++) xfree(learnts[i]);
for (int i = 0; i < clauses.size(); i++) xfree(clauses[i]); }
// Helpers: (semi-internal)
//
lbool value(Var x) const { return toLbool(assigns[x]); }
lbool value(Lit p) const { return sign(p) ? ~toLbool(assigns[var(p)]) : toLbool(assigns[var(p)]); }
int nAssigns() { return trail.size(); }
int nClauses() { return clauses.size(); }
int nLearnts() { return learnts.size(); }
int nConflicts() { return (int)stats.conflicts; }
// Statistics: (read-only member variable)
//
SolverStats stats;
// Mode of operation:
//
SearchParams params; // Restart frequency etc.
bool expensive_ccmin; // Controls conflict clause minimization. TRUE by default.
int verbosity; // Verbosity level. 0=silent, 1=some progress report, 2=everything
// Problem specification:
//
Var newVar (bool polarity = true, bool dvar = true);
int nVars () { return assigns.size(); }
bool addUnit (Lit p) { return ok && (ok = enqueue(p)); }
bool addBinary (Lit p, Lit q) { addBinary_tmp [0] = p; addBinary_tmp [1] = q; return addClause(addBinary_tmp); }
bool addTernary(Lit p, Lit q, Lit r) { addTernary_tmp[0] = p; addTernary_tmp[1] = q; addTernary_tmp[2] = r; return addClause(addTernary_tmp); }
bool addClause (const vec<Lit>& ps) { if (ok && !newClause(ps)) ok = false; return ok; }
// Variable mode:
//
void freezeVar (Var v) { setVarProp(v, p_frozen, true); updateHeap(v); }
// Solving:
//
bool okay () { return ok; } // FALSE means solver is in a conflicting state
bool simplifyDB (bool expensive = true);
bool solve (const vec<Lit>& assumps);
bool solve () { vec<Lit> tmp; return solve(tmp); }
void turnOffSubsumption() {
subsumption = false;
occurs.clear(true);
n_occ.clear(true);
}
double progress_estimate; // Set by 'search()'.
vec<lbool> model; // If problem is satisfiable, this vector contains the model (if any).
vec<Lit> conflict; // If problem is unsatisfiable (possibly under assumptions), this vector represent the conflict clause expressed in the assumptions.
double returnActivity(int i) { return activity[i];}
void updateInitialActivity(int i, double act) {activity[i] = act; order.heap.update(i);}
};
//=================================================================================================
// Debug:
#define L_LIT "%sx%d"
#define L_lit(p) sign(p)?"~":"", var(p)
// Just like 'assert()' but expression will be evaluated in the release version as well.
inline void check(bool expr) { assert(expr); }
static void printLit(Lit l)
{
fprintf(stderr, "%s%d", sign(l) ? "-" : "", var(l)+1);
}
template<class C>
static void printClause(const C& c)
{
for (int i = 0; i < c.size(); i++){
printLit(c[i]);
fprintf(stderr, " ");
}
}
//- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#ifdef _MSC_VER
#include <ctime>
static inline double cpuTime(void) {
return (double)clock() / CLOCKS_PER_SEC; }
static inline int64 memUsed() {
return 0; }
//- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#else
#include <sys/time.h>
#include <sys/resource.h>
static inline double cpuTime(void) {
struct rusage ru;
getrusage(RUSAGE_SELF, &ru);
return (double)ru.ru_utime.tv_sec + (double)ru.ru_utime.tv_usec / 1000000; }
#if defined(__linux__) || defined(__CYGWIN__)
static inline int memReadStat(int field)
{
char name[256];
pid_t pid = getpid();
sprintf(name, "/proc/%d/statm", pid);
FILE* in = fopen(name, "rb");
if (in == NULL) return 0;
int value;
for (; field >= 0; field--) {
int res = fscanf(in, "%d", &value);
(void) res;
}
fclose(in);
return value;
}
static inline int64 memUsed() { return (int64)memReadStat(0) * (int64)getpagesize(); }
#else
// use this by default. Mac OS X (Darwin) does not define an os type
//defined(__FreeBSD__)
static inline int64 memUsed(void) {
struct rusage ru;
getrusage(RUSAGE_SELF, &ru);
return ru.ru_maxrss*1024; }
#endif
//- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#endif
//=================================================================================================
};
#endif
|