#include "lisc.h" #include /* For x86_64, do the following: * * - lower calls * - check that constants are used only in * places allowed * - ensure immediates always fit in 32b * - explicit machine register contraints * on instructions like division. * - implement fast locals (the streak of * constant allocX in the first basic block) */ extern Ins insb[NIns], *curi; /* shared work buffer */ static void emit(int op, int w, Ref to, Ref arg0, Ref arg1) { if (curi == insb) diag("isel: too many instructions"); *--curi = (Ins){op, w, to, {arg0, arg1}}; } static Ref newtmp(Fn *fn) { static int n; int t; t = fn->ntmp++; fn->tmp = realloc(fn->tmp, fn->ntmp * sizeof fn->tmp[0]); if (!fn->tmp) diag("isel: out of memory"); memset(&fn->tmp[t], 0, sizeof fn->tmp[t]); sprintf(fn->tmp[t].name, "isel%d", ++n); return TMP(t); } static Ref newcon(int64_t val, Fn *fn) { int c; for (c=0; cncon; c++) if (fn->con[c].type == CNum && fn->con[c].val == val) return CON(c); fn->ncon++; fn->con = realloc(fn->con, fn->ncon * sizeof fn->con[0]); if (!fn->con) diag("isel: out of memory"); fn->con[c] = (Con){.type = CNum, .val = val}; return CON(c); } static int noimm(Ref r, Fn *fn) { int64_t val; assert(rtype(r) == RCon); switch (fn->con[r.val].type) { default: diag("isel: invalid constant"); case CAddr: /* we only support the 'small' * code model of the ABI, this * means that we can always * address data with 32bits */ return 0; case CNum: val = fn->con[r.val].val; return (val < INT32_MIN || val > INT32_MAX); } } static void selcmp(Ref arg[2], int w, Fn *fn) { Ref r; if (rtype(arg[0]) == RCon) { r = arg[1]; arg[1] = arg[0]; arg[0] = r; } assert(rtype(arg[0]) != RCon); emit(OXCmp, w, R, arg[1], arg[0]); r = arg[1]; if (w && rtype(r) == RCon && noimm(r, fn)) { curi->arg[0] = newtmp(fn); emit(OCopy, w, curi->arg[0], r, R); } } static int rslot(Ref r, Fn *fn) { if (rtype(r) != RTmp) return 0; return fn->tmp[r.val].spill; } static void sel(Ins i, Fn *fn) { Ref r0, r1; int n, c, s, w; int64_t val; struct { Ref r; int s; } cpy[2]; for (n=0; n<2; n++) { r0 = i.arg[n]; cpy[n].s = 0; s = rslot(r0, fn); if (s) { r0 = newtmp(fn); i.arg[n] = r0; cpy[n].r = r0; cpy[n].s = s; } } w = i.wide; switch (i.op) { case ODiv: case ORem: if (i.op == ODiv) r0 = TMP(RAX), r1 = TMP(RDX); else r0 = TMP(RDX), r1 = TMP(RAX); emit(OCopy, w, i.to, r0, R); emit(OCopy, w, R, r1, R); if (rtype(i.arg[1]) == RCon) { /* immediates not allowed for * divisions in x86 */ r0 = newtmp(fn); } else r0 = i.arg[1]; emit(OXDiv, w, R, r0, R); emit(OSign, w, TMP(RDX), TMP(RAX), R); emit(OCopy, w, TMP(RAX), i.arg[0], R); if (rtype(i.arg[1]) == RCon) emit(OCopy, w, r0, i.arg[1], R); break; case ONop: break; case OXPush: n = 1; goto Emit; case OCall: case OSAlloc: case OCopy: case OSext: case OZext: n = 0; goto Emit; case OAdd: case OSub: case OMul: case OAnd: case OXTest: n = w ? 2 : 0; goto Emit; case OStorel: case OStorew: case OStoreb: case OStores: if (cpy[1].s) { i.arg[1] = SLOT(cpy[1].s); cpy[1].s = 0; } n = i.op == OStorel; goto Emit; case OLoad: case OLoadsh: case OLoaduh: case OLoadsb: case OLoadub: if (cpy[0].s) { i.arg[0] = SLOT(cpy[0].s); cpy[0].s = 0; } n = 0; Emit: emit(i.op, w, i.to, i.arg[0], i.arg[1]); while (n--) { /* load constants that do not fit in * a 32bit signed integer into a * long temporary */ r0 = i.arg[n]; if (rtype(r0) == RCon && noimm(r0, fn)) { curi->arg[n] = newtmp(fn); emit(OCopy, 1, curi->arg[n], r0, R); } } break; case OAlloc: case OAlloc+1: case OAlloc+2: /* == OAlloc1 */ /* if this is not a fast alloc * we need to make sure * the stack remains aligned * (rsp = 0) mod 16 */ if (req(i.to, R)) break; if (rtype(i.arg[0]) == RCon) { val = fn->con[i.arg[0].val].val; val = (val + 15) & ~INT64_C(15); if (val < 0 || val > INT32_MAX) diag("isel: alloc too large"); emit(OAlloc, 0, i.to, newcon(val, fn), R); } else { /* r0 = (i.arg[0] + 15) & -16 */ r0 = newtmp(fn); r1 = newtmp(fn); emit(OSAlloc, 0, i.to, r0, R); emit(OAnd, 1, r0, r1, newcon(-16, fn)); emit(OAdd, 1, r1, i.arg[0], newcon(15, fn)); } break; default: if (OCmp <= i.op && i.op <= OCmp1) { c = i.op - OCmp; if (rtype(i.arg[0]) == RCon) c = COP(c); emit(OXSet+c, 0, i.to, R, R); selcmp(i.arg, w, fn); break; } diag("isel: non-exhaustive implementation"); } for (n=0; n<2; n++) if (cpy[n].s) emit(OAddr, 1, cpy[n].r, SLOT(cpy[n].s), R); } static Ins * flagi(Ins *i0, Ins *i) { while (i>i0) switch ((--i)->op) { default: if (OCmp <= i->op && i->op <= OCmp1) return i; return 0; case OAdd: /* flag-setting */ case OSub: case OAnd: return i; case OCopy: /* flag-transparent */ case OSext: case OZext: case OStorel: case OStorew: case OStoreb: case OStores: case OLoad: case OLoadsh: case OLoaduh: case OLoadsb: case OLoadub:; } return 0; } static void seljmp(Blk *b, Fn *fn) { Ref r; int c; Ins *fi; if (b->jmp.type != JJnz) return; r = b->jmp.arg; b->jmp.arg = R; assert(!req(r, R)); if (rtype(r) == RCon) { b->jmp.type = JJmp; if (req(r, CON_Z)) b->s1 = b->s2; b->s2 = 0; return; } fi = flagi(b->ins, &b->ins[b->nins]); if (fi && req(fi->to, r)) { if (OCmp <= fi->op && fi->op <= OCmp1) { c = fi->op - OCmp; if (rtype(fi->arg[0]) == RCon) c = COP(c); b->jmp.type = JXJc + c; if (fn->tmp[r.val].nuse == 1) { assert(fn->tmp[r.val].ndef == 1); selcmp(fi->arg, fi->wide, fn); *fi = (Ins){.op = ONop}; } return; } if (fi->op == OAnd && fn->tmp[r.val].nuse == 1 && (rtype(fi->arg[0]) == RTmp || rtype(fi->arg[1]) == RTmp)) { fi->op = OXTest; fi->to = R; b->jmp.type = JXJc + Cne; if (rtype(fi->arg[1]) == RCon) { r = fi->arg[1]; fi->arg[1] = fi->arg[0]; fi->arg[0] = r; } return; } if (fn->tmp[r.val].nuse > 1) { b->jmp.type = JXJc + Cne; return; } } selcmp((Ref[2]){r, CON_Z}, 0, fn); /* fixme, add long branch if non-zero */ b->jmp.type = JXJc + Cne; } int slota(int sz, int al /* log2 */, int *sa) { int j, k, s, l, a, ret; a = 1 << al; l = sz; if (l > a) { /* for large slots, we just * tack them on the next max * alignment slot available * todo, could sophisticate */ l = (l + a-1) & ~(a-1); s = sa[NAlign-1] + l; ret = s; for (j=0, k=1; j sa[j+1]) { /* we were in a bigger hole, * it needs to shift further */ s = sa[++j] + (a *= 2); goto Shift; } } return ret; } typedef struct AInfo AInfo; enum { RNone, RInt, RSse, }; struct AInfo { int inmem; int align; uint size; int rty[2]; }; static void classify(AInfo *a, Typ *t) { int e, s, n, rty; uint sz, al; sz = t->size; al = 1u << t->align; /* the ABI requires sizes to be rounded * up to the nearest multiple of 8, moreover * it makes it easy load and store structures * in registers */ if (al < 8) al = 8; if (sz & (al-1)) sz = (sz + al-1) & -al; a->size = sz; a->align = t->align; if (t->dark || sz > 16) { /* large or unaligned structures are * required to be passed in memory */ a->inmem = 1; return; } for (e=0, s=0; e<2; e++) { rty = RNone; for (n=0; n<8 && t->seg[s].len; s++) { if (t->seg[s].flt) { if (rty == RNone) rty = RSse; } else rty = RInt; n += t->seg[s].len; } assert(n <= 8); a->rty[e] = rty; } } static void selcall(Fn *fn, Ins *i0, Ins *i1) { static int ireg[6] = {RDI, RSI, RDX, RCX, R8, R9}; Ins *i; AInfo *ai, *a; int nint, nsse, ni, ns, n; uint stk, sz; Ref r, r1; ai = alloc((i1-i0) * sizeof ai[0]); nint = 6; nsse = 8; for (i=i0, a=ai; iop == OArgc) { classify(a, &typ[i->arg[0].val]); if (a->inmem) continue; ni = ns = 0; for (n=0; n<2; n++) switch (a->rty[n]) { case RInt: ni++; break; case RSse: ns++; break; } if (nint > ni && nsse > ns) { nint -= ni; nsse -= ns; } else a->inmem = 1; } else { if (nint > 0) { nint--; a->inmem = 0; } else a->inmem = 1; a->align = 3; a->size = 8; a->rty[0] = RInt; } } for (stk=0, a=&ai[i1-i0]; a>ai;) if ((--a)->inmem) { assert(a->align <= 4); stk += a->size; if (a->align == 4) stk += stk & 15; } stk += stk & 15; if (rtype(i1->arg[1]) == RTyp) diag("struct-returning function not implemented"); emit(OCopy, i1->wide, i1->to, TMP(RAX), R); #if 1 for (n=0; n<6; n++) { emit(OCopy, 0, R, TMP(ireg[n]), R); } #endif r = newcon(-(int64_t)stk, fn); emit(OSAlloc, 0, R, r, R); emit(OCall, 0, TMP(RAX), i->arg[0], R); for (i=i0, a=ai, ni=0; iinmem) continue; if (i->op == OArgc) { if (a->size > 8) { r = TMP(ireg[ni+1]); r1 = newtmp(fn); emit(OLoad, 1, r, r1, R); r = newcon(8, fn); emit(OAdd, 1, r1, i->arg[1], r); r = TMP(ireg[ni]); ni += 2; } else r = TMP(ireg[ni++]); emit(OLoad, 1, r, i->arg[1], R); } else { r = TMP(ireg[ni++]); emit(OCopy, i->wide, r, i->arg[0], R); } } for (i=i0, a=ai; iinmem) continue; sz = a->size; if (a->align == 4 && stk % 16) sz += 8; stk -= sz; if (i->op == OArgc) { assert(!"argc todo 2"); } else { emit(OXPush, 1, R, i->arg[0], R); } } if (stk) { assert(stk == 8); emit(OXPush, 1, R, CON_Z, R); } free(ai); } /* instruction selection * requires use counts (as given by parsing) */ void isel(Fn *fn) { Blk *b, **sb; Ins *i, *i0; Phi *p; uint a; int n, al, s; int64_t sz; /* lower function calls */ for (b=fn->start; b; b=b->link) { curi = &insb[NIns]; for (i=&b->ins[b->nins]; i>b->ins;) { if ((--i)->op == OCall) { i0 = i; for (i0=i; i0>b->ins; i0--) if ((i0-1)->op != OArg) if ((i0-1)->op != OArgc) break; selcall(fn, i0, i); i = i0; continue; } assert(i->op != OArg && i->op != OArgc); emit(i->op, i->wide, i->to, i->arg[0], i->arg[1]); } n = &insb[NIns] - curi; free(b->ins); b->ins = alloc(n * sizeof b->ins[0]); memcpy(b->ins, curi, n * sizeof b->ins[0]); b->nins = n; } /* assign slots to fast allocs */ for (n=Tmp0; nntmp; n++) fn->tmp[n].spill = 0; memset(fn->svec, 0, sizeof fn->svec); for (b=fn->start, i=b->ins; i-b->ins < b->nins; i++) if (OAlloc <= i->op && i->op <= OAlloc1) { if (rtype(i->arg[0]) != RCon) break; sz = fn->con[i->arg[0].val].val; if (sz < 0 || sz >= INT_MAX-3) diag("isel: invalid alloc size"); n = 16 / (1 << (NAlign-1)); sz = (sz + n-1) / n; al = i->op - OAlloc; s = slota(sz, al, fn->svec); fn->tmp[i->to.val].spill = s; i->to = R; } for (b=fn->start; b; b=b->link) { for (sb=(Blk*[3]){b->s1, b->s2, 0}; *sb; sb++) for (p=(*sb)->phi; p; p=p->link) { for (a=0; p->blk[a] != b; a++) assert(a+1 < p->narg); s = rslot(p->arg[a], fn); if (s) { p->arg[a] = newtmp(fn); emit(OAddr, 1, p->arg[a], SLOT(s), R); } } curi = &insb[NIns]; seljmp(b, fn); for (i=&b->ins[b->nins]; i>b->ins;) { sel(*--i, fn); } n = &insb[NIns] - curi; free(b->ins); b->ins = alloc(n * sizeof b->ins[0]); memcpy(b->ins, curi, n * sizeof b->ins[0]); b->nins = n; } }