KaTeX demo Math formulae to demo LaTeX to MathML rendering 2020-04-15 demo math Given two discrete-time systems A and B connected in cascade to form a new system C = x \mapsto B(A(x)), we examine the following properties: ## Linearity If A and B are linear, i.e. for all signals x_i and scalars a_i, \begin{aligned} A\left(n \mapsto \sum_i a_i x_i[n]\right) = n \mapsto \sum_i a_i A(x_i)[n]\\ B\left(n \mapsto \sum_i a_i x_i[n]\right) = n \mapsto \sum_i a_i B(x_i)[n] \end{aligned} then C is also linear \begin{aligned} C\left(n \mapsto \sum_i a_i x_i[n]\right) &= B\left(A\left(n \mapsto \sum_i a_i x_i[n]\right)\right)\\ &= B\left(n \mapsto \sum_i a_i A(x_i)[n]\right)\\ &= n \mapsto \sum_i a_i B(A(x_i))[n]\\ &= n \mapsto \sum_i a_i C(x_i)[n] \end{aligned} ## Time Invariance If A and B are time invariant, i.e. for all signals x and integers k, \begin{aligned} A(n \mapsto x[n - k]) &= n \mapsto A(x)[n - k]\\ B(n \mapsto x[n - k]) &= n \mapsto B(x)[n - k] \end{aligned} then C is also time invariant \begin{aligned} C(n \mapsto x[n - k]) &= B(A(n \mapsto x[n - k]))\\ &= B(n \mapsto A(x)[n - k])\\ &= n \mapsto B(A(x))[n - k]\\ &= n \mapsto C(x)[n - k] \end{aligned} ## LTI Ordering If A and B are linear and time-invariant, there exists signals g and h such that for all signals x, A = x \mapsto x * g and B = x \mapsto x * h, thus B(A(x)) = B(x * g) = x * g * h = x * h * g = A(x * h) = A(B(x)) or interchanging A and B order does not change C. ## Causality If A and B are causal, i.e. for all signals x, y and any choise of integer k, \begin{aligned} \forall n < k, x[n] = y[n]\quad \Longrightarrow &\;\begin{cases} \forall n < k, A(x)[n] = A(y)[n]\\ \forall n < k, B(x)[n] = B(y)[n] \end{cases}\\ \Longrightarrow &\;\forall n < k, B(A(x))[n] = B(A(y))[n]\\ \Longleftrightarrow &\;\forall n < k, C(x)[n] = C(y)[n] \end{aligned} then C is also causal. ## BIBO Stability If A and B are stable, i.e. there exists a signal x and scalars a and b that for all integers n, \begin{aligned} |x[n]| < a &\Longrightarrow |A(x)[n]| < b\\ |x[n]| < a &\Longrightarrow |B(x)[n]| < b \end{aligned} then C is also stable, i.e. there exists a signal x and scalars a, b and c that for all integers n, \begin{aligned} |x[n]| < a\quad \Longrightarrow &\;|A(x)[n]| < b\\ \Longrightarrow &\;|B(A(x))[n]| < c\\ \Longleftrightarrow &\;|C(x)[n]| < c \end{aligned}