From 818a0bd6f1b3305351d482eeab4e9e64c2af3a18 Mon Sep 17 00:00:00 2001 From: Nguyễn Gia Phong Date: Mon, 8 Mar 2021 21:45:21 +0700 Subject: Migrate *the rest* of the math blogs --- blog/system.md | 96 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 96 insertions(+) create mode 100644 blog/system.md (limited to 'blog/system.md') diff --git a/blog/system.md b/blog/system.md new file mode 100644 index 0000000..bb92343 --- /dev/null +++ b/blog/system.md @@ -0,0 +1,96 @@ ++++ +rss = "Properties of cascade connected systems analyzed via anonymous functions" +date = Date(2020, 4, 15) ++++ +@def tags = ["system", "fun", "anonymous"] + +# System Cascade Connection + +Given two discrete-time systems $A$ and $B$ connected in cascade +to form a new system $C = x \mapsto B(A(x))$. + +## Linearity + +If $A$ and $B$ are linear, i.e. for all signals $x_i$ and scalars $a_i$, + +\[\begin{aligned} + A\left(n \mapsto \sum_i a_i x_i[n]\right) = n \mapsto \sum_i a_i A(x_i)[n]\\ + B\left(n \mapsto \sum_i a_i x_i[n]\right) = n \mapsto \sum_i a_i B(x_i)[n] +\end{aligned}\] + +then $C$ is also linear + +\[\begin{aligned} + C\left(n \mapsto \sum_i a_i x_i[n]\right) + &= B\left(A\left(n \mapsto \sum_i a_i x_i[n]\right)\right)\\ + &= B\left(n \mapsto \sum_i a_i A(x_i)[n]\right)\\ + &= n \mapsto \sum_i a_i B(A(x_i))[n]\\ + &= n \mapsto \sum_i a_i C(x_i)[n] +\end{aligned}\] + +## Time Invariance + +If $A$ and $B$ are time invariant, +i.e. for all signals $x$ and integers $k$, + +\[\begin{aligned} + A(n \mapsto x[n - k]) &= n \mapsto A(x)[n - k]\\ + B(n \mapsto x[n - k]) &= n \mapsto B(x)[n - k] +\end{aligned}\] + +then $C$ is also time invariant + +\[\begin{aligned} + C(n \mapsto x[n - k]) + &= B(A(n \mapsto x[n - k]))\\ + &= B(n \mapsto A(x)[n - k])\\ + &= n \mapsto B(A(x))[n - k]\\ + &= n \mapsto C(x)[n - k] +\end{aligned}\] + +## LTI Ordering + +If $A$ and $B$ are linear and time-invariant, there exists +signals $g$ and $h$ such that for all signals $x$, +$A = x \mapsto x * g$ and $B = x \mapsto x * h$, thus + +\[B(A(x)) = B(x * g) = x * g * h = x * h * g = A(x * h) = A(B(x))\] + +or interchanging $A$ and $B$ order does not change $C$. + +## Causality + +If $A$ and $B$ are causal, +i.e. for all signals $x$, $y$ and any choise of integer $k$, + +\[\begin{aligned} + \forall n < k, x[n] = y[n]\quad + \Longrightarrow &\;\begin{cases} + \forall n < k, A(x)[n] = A(y)[n]\\ + \forall n < k, B(x)[n] = B(y)[n] + \end{cases}\\ + \Longrightarrow &\;\forall n < k, B(A(x))[n] = B(A(y))[n]\\ + \Longleftrightarrow &\;\forall n < k, C(x)[n] = C(y)[n] +\end{aligned}\] + +then $C$ is also causal. + +## BIBO Stability + +If $A$ and $B$ are stable, i.e. there exists a signal $x$ +and scalars $a$ and $b$ that for all integers $n$, + +\[\begin{aligned} + |x[n]| < a &\Longrightarrow |A(x)[n]| < b\\ + |x[n]| < a &\Longrightarrow |B(x)[n]| < b +\end{aligned}\] + +then $C$ is also stable, i.e. there exists a signal $x$ +and scalars $a$, $b$ and $c$ that for all integers $n$, + +\[\begin{aligned} + |x[n]| < a\quad + \Longrightarrow &\;|A(x)[n]| < b\\ + \Longrightarrow &\;|B(A(x))[n]| < c\\ + \Longleftrightarrow &\;|C(x)[n]| < c +\end{aligned}\] -- cgit 1.4.1