diff options
-rw-r--r-- | docs/best_practices.md | 106 |
1 files changed, 61 insertions, 45 deletions
diff --git a/docs/best_practices.md b/docs/best_practices.md index e08ae6ab..6e514003 100644 --- a/docs/best_practices.md +++ b/docs/best_practices.md @@ -1,18 +1,69 @@ # Best practices +## Contents + +### Targets + + * [Fuzzing a GUI program](#fuzzing-a-gui-program) + * [Fuzzing a network service](#fuzzing-a-network-service) + +### Improvements + + * [Improving speed](#improving-speed) + * [Improving stability?](#improving-stability) + +## Targets + +### Fuzzing a binary-only target + +For a comprehensive guide, see [binaryonly_fuzzing.md](binaryonly_fuzzing.md). + +### Fuzzing a GUI program + +If the GUI program can read the fuzz data from a file (via the command line, a fixed location or via an environment variable) without needing any user interaction, then it would be suitable for fuzzing. + +Otherwise, it is not possible without modifying the source code - which is a very good idea anyway as the GUI functionality is a huge CPU/time overhead for the fuzzing. + +So create a new `main()` that just reads the test case and calls the functionality for processing the input that the GUI program is using. + +### Fuzzing a network service + +Fuzzing a network service does not work "out of the box". + +Using a network channel is inadequate for several reasons: +- it has a slow-down of x10-20 on the fuzzing speed +- it does not scale to fuzzing multiple instances easily, +- instead of one initial data packet often a back-and-forth interplay of packets is needed for stateful protocols (which is totally unsupported by most coverage aware fuzzers). + +The established method to fuzz network services is to modify the source code +to read from a file or stdin (fd 0) (or even faster via shared memory, combine +this with persistent mode [instrumentation/README.persistent_mode.md](../instrumentation/README.persistent_mode.md) +and you have a performance gain of x10 instead of a performance loss of over +x10 - that is a x100 difference!). + +If modifying the source is not an option (e.g. because you only have a binary +and perform binary fuzzing) you can also use a shared library with AFL_PRELOAD +to emulate the network. This is also much faster than the real network would be. +See [utils/socket_fuzzing/](../utils/socket_fuzzing/). + +There is an outdated AFL++ branch that implements networking if you are +desperate though: [https://github.com/AFLplusplus/AFLplusplus/tree/networking](https://github.com/AFLplusplus/AFLplusplus/tree/networking) - +however a better option is AFLnet ([https://github.com/aflnet/aflnet](https://github.com/aflnet/aflnet)) +which allows you to define network state with different type of data packets. + ## Improvements -### Improving speed <a name="#improving-speed"></a> +### Improving speed - 1. Use [llvm_mode](../instrumentation/README.llvm.md): afl-clang-lto (llvm >= 11) or afl-clang-fast (llvm >= 9 recommended). - 2. Use [persistent mode](../instrumentation/README.persistent_mode.md) (x2-x20 speed increase). - 3. Use the [AFL++ snapshot module](https://github.com/AFLplusplus/AFL-Snapshot-LKM) (x2 speed increase). - 4. If you do not use shmem persistent mode, use `AFL_TMPDIR` to put the input file directory on a tempfs location, see [docs/env_variables.md](docs/env_variables.md). - 5. Improve Linux kernel performance: modify `/etc/default/grub`, set `GRUB_CMDLINE_LINUX_DEFAULT="ibpb=off ibrs=off kpti=off l1tf=off mds=off mitigations=off no_stf_barrier noibpb noibrs nopcid nopti nospec_store_bypass_disable nospectre_v1 nospectre_v2 pcid=off pti=off spec_store_bypass_disable=off spectre_v2=off stf_barrier=off"`; then `update-grub` and `reboot` (warning: makes the system less secure). - 6. Running on an `ext2` filesystem with `noatime` mount option will be a bit faster than on any other journaling filesystem. - 7. Use your cores! [README.md:3.b) Using multiple cores/threads](../README.md#b-using-multiple-coresthreads). +1. Use [llvm_mode](../instrumentation/README.llvm.md): afl-clang-lto (llvm >= 11) or afl-clang-fast (llvm >= 9 recommended). +2. Use [persistent mode](../instrumentation/README.persistent_mode.md) (x2-x20 speed increase). +3. Use the [AFL++ snapshot module](https://github.com/AFLplusplus/AFL-Snapshot-LKM) (x2 speed increase). +4. If you do not use shmem persistent mode, use `AFL_TMPDIR` to put the input file directory on a tempfs location, see [docs/env_variables.md](docs/env_variables.md). +5. Improve Linux kernel performance: modify `/etc/default/grub`, set `GRUB_CMDLINE_LINUX_DEFAULT="ibpb=off ibrs=off kpti=off l1tf=off mds=off mitigations=off no_stf_barrier noibpb noibrs nopcid nopti nospec_store_bypass_disable nospectre_v1 nospectre_v2 pcid=off pti=off spec_store_bypass_disable=off spectre_v2=off stf_barrier=off"`; then `update-grub` and `reboot` (warning: makes the system less secure). +6. Running on an `ext2` filesystem with `noatime` mount option will be a bit faster than on any other journaling filesystem. +7. Use your cores! [README.md:3.b) Using multiple cores/threads](../README.md#b-using-multiple-coresthreads). -### Improving stability <a name="#improving-stability"></a> +### Improving stability For fuzzing a 100% stable target that covers all edges is the best case. A 90% stable target that covers all edges is however better than a 100% stable target that ignores 10% of the edges. @@ -65,39 +116,4 @@ Four steps are required to do this and it also requires quite some knowledge of Recompile, fuzz it, be happy :) - This link explains this process for [Fuzzbench](https://github.com/google/fuzzbench/issues/677). - -## Targets - -### Fuzzing a GUI program <a name="#fuzzing-gui-program"></a> - -If the GUI program can read the fuzz data from a file (via the command line, a fixed location or via an environment variable) without needing any user interaction, then it would be suitable for fuzzing. - -Otherwise, it is not possible without modifying the source code - which is a very good idea anyway as the GUI functionality is a huge CPU/time overhead for the fuzzing. - -So create a new `main()` that just reads the test case and calls the functionality for processing the input that the GUI program is using. - -### Fuzzing a network service <a name="#fuzzing-network-service"></a> - -The short answer is - you cannot, at least not "out of the box". - -Using a network channel is inadequate for several reasons: -- it has a slow-down of x10-20 on the fuzzing speed -- it does not scale to fuzzing multiple instances easily, -- instead of one initial data packet often a back-and-forth interplay of packets is needed for stateful protocols (which is totally unsupported by most coverage aware fuzzers). - -The established method to fuzz network services is to modify the source code -to read from a file or stdin (fd 0) (or even faster via shared memory, combine -this with persistent mode [instrumentation/README.persistent_mode.md](../instrumentation/README.persistent_mode.md) -and you have a performance gain of x10 instead of a performance loss of over -x10 - that is a x100 difference!). - -If modifying the source is not an option (e.g. because you only have a binary -and perform binary fuzzing) you can also use a shared library with AFL_PRELOAD -to emulate the network. This is also much faster than the real network would be. -See [utils/socket_fuzzing/](../utils/socket_fuzzing/). - -There is an outdated AFL++ branch that implements networking if you are -desperate though: [https://github.com/AFLplusplus/AFLplusplus/tree/networking](https://github.com/AFLplusplus/AFLplusplus/tree/networking) - -however a better option is AFLnet ([https://github.com/aflnet/aflnet](https://github.com/aflnet/aflnet)) -which allows you to define network state with different type of data packets. \ No newline at end of file + This link explains this process for [Fuzzbench](https://github.com/google/fuzzbench/issues/677). \ No newline at end of file |