aboutsummaryrefslogtreecommitdiff
path: root/include
diff options
context:
space:
mode:
Diffstat (limited to 'include')
-rw-r--r--include/xxh3.h3187
-rw-r--r--include/xxhash.h3721
2 files changed, 3433 insertions, 3475 deletions
diff --git a/include/xxh3.h b/include/xxh3.h
deleted file mode 100644
index 2354bde9..00000000
--- a/include/xxh3.h
+++ /dev/null
@@ -1,3187 +0,0 @@
-/*
- * xxHash - Extremely Fast Hash algorithm
- * Development source file for `xxh3`
- * Copyright (C) 2019-2020 Yann Collet
- *
- * BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php)
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are
- * met:
- *
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above
- * copyright notice, this list of conditions and the following disclaimer
- * in the documentation and/or other materials provided with the
- * distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- * You can contact the author at:
- * - xxHash homepage: https://www.xxhash.com
- * - xxHash source repository: https://github.com/Cyan4973/xxHash
- */
-
-/*
- * Note: This file is separated for development purposes.
- * It will be integrated into `xxhash.h` when development stage is completed.
- *
- * Credit: most of the work on vectorial and asm variants comes from
- * @easyaspi314
- */
-
-#ifndef XXH3_H_1397135465
-#define XXH3_H_1397135465
-
-/* === Dependencies === */
-#ifndef XXHASH_H_5627135585666179
- /* special: when including `xxh3.h` directly, turn on XXH_INLINE_ALL */
- #undef XXH_INLINE_ALL /* avoid redefinition */
- #define XXH_INLINE_ALL
-#endif
-#include "xxhash.h"
-
-/* === Compiler specifics === */
-
-#if defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* >= C99 */
- #define XXH_RESTRICT restrict
-#else
- /* Note: it might be useful to define __restrict or __restrict__ for some C++
- * compilers */
- #define XXH_RESTRICT /* disable */
-#endif
-
-#if (defined(__GNUC__) && (__GNUC__ >= 3)) || \
- (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 800)) || \
- defined(__clang__)
- #define XXH_likely(x) __builtin_expect(x, 1)
- #define XXH_unlikely(x) __builtin_expect(x, 0)
-#else
- #define XXH_likely(x) (x)
- #define XXH_unlikely(x) (x)
-#endif
-
-#if defined(__GNUC__)
- #if defined(__AVX2__)
- #include <immintrin.h>
- #elif defined(__SSE2__)
- #include <emmintrin.h>
- #elif defined(__ARM_NEON__) || defined(__ARM_NEON)
- #define inline __inline__ /* clang bug */
- #include <arm_neon.h>
- #undef inline
- #endif
-#elif defined(_MSC_VER)
- #include <intrin.h>
-#endif
-
-/*
- * One goal of XXH3 is to make it fast on both 32-bit and 64-bit, while
- * remaining a true 64-bit/128-bit hash function.
- *
- * This is done by prioritizing a subset of 64-bit operations that can be
- * emulated without too many steps on the average 32-bit machine.
- *
- * For example, these two lines seem similar, and run equally fast on 64-bit:
- *
- * xxh_u64 x;
- * x ^= (x >> 47); // good
- * x ^= (x >> 13); // bad
- *
- * However, to a 32-bit machine, there is a major difference.
- *
- * x ^= (x >> 47) looks like this:
- *
- * x.lo ^= (x.hi >> (47 - 32));
- *
- * while x ^= (x >> 13) looks like this:
- *
- * // note: funnel shifts are not usually cheap.
- * x.lo ^= (x.lo >> 13) | (x.hi << (32 - 13));
- * x.hi ^= (x.hi >> 13);
- *
- * The first one is significantly faster than the second, simply because the
- * shift is larger than 32. This means:
- * - All the bits we need are in the upper 32 bits, so we can ignore the lower
- * 32 bits in the shift.
- * - The shift result will always fit in the lower 32 bits, and therefore,
- * we can ignore the upper 32 bits in the xor.
- *
- * Thanks to this optimization, XXH3 only requires these features to be
- * efficient:
- *
- * - Usable unaligned access
- * - A 32-bit or 64-bit ALU
- * - If 32-bit, a decent ADC instruction
- * - A 32 or 64-bit multiply with a 64-bit result
- * - For the 128-bit variant, a decent byteswap helps short inputs.
- *
- * The first two are already required by XXH32, and almost all 32-bit and 64-bit
- * platforms which can run XXH32 can run XXH3 efficiently.
- *
- * Thumb-1, the classic 16-bit only subset of ARM's instruction set, is one
- * notable exception.
- *
- * First of all, Thumb-1 lacks support for the UMULL instruction which
- * performs the important long multiply. This means numerous __aeabi_lmul
- * calls.
- *
- * Second of all, the 8 functional registers are just not enough.
- * Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need
- * Lo registers, and this shuffling results in thousands more MOVs than A32.
- *
- * A32 and T32 don't have this limitation. They can access all 14 registers,
- * do a 32->64 multiply with UMULL, and the flexible operand allowing free
- * shifts is helpful, too.
- *
- * Therefore, we do a quick sanity check.
- *
- * If compiling Thumb-1 for a target which supports ARM instructions, we will
- * emit a warning, as it is not a "sane" platform to compile for.
- *
- * Usually, if this happens, it is because of an accident and you probably need
- * to specify -march, as you likely meant to compile for a newer architecture.
- */
-#if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM)
- #warning "XXH3 is highly inefficient without ARM or Thumb-2."
-#endif
-
-/* ==========================================
- * Vectorization detection
- * ========================================== */
-#define XXH_SCALAR 0 /* Portable scalar version */
-#define XXH_SSE2 1 /* SSE2 for Pentium 4 and all x86_64 */
-#define XXH_AVX2 2 /* AVX2 for Haswell and Bulldozer */
-#define XXH_AVX512 3 /* AVX512 for Skylake and Icelake */
-#define XXH_NEON 4 /* NEON for most ARMv7-A and all AArch64 */
-#define XXH_VSX 5 /* VSX and ZVector for POWER8/z13 */
-
-#ifndef XXH_VECTOR /* can be defined on command line */
- #if defined(__AVX512F__)
- #define XXH_VECTOR XXH_AVX512
- #elif defined(__AVX2__)
- #define XXH_VECTOR XXH_AVX2
- #elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || \
- (defined(_M_IX86_FP) && (_M_IX86_FP == 2))
- #define XXH_VECTOR XXH_SSE2
- #elif defined(__GNUC__) /* msvc support maybe later */ \
- && (defined(__ARM_NEON__) || defined(__ARM_NEON)) && \
- (defined(__LITTLE_ENDIAN__) /* We only support little endian NEON */ \
- || \
- (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__))
- #define XXH_VECTOR XXH_NEON
- #elif (defined(__PPC64__) && defined(__POWER8_VECTOR__)) || \
- (defined(__s390x__) && defined(__VEC__)) && \
- defined(__GNUC__) /* TODO: IBM XL */
- #define XXH_VECTOR XXH_VSX
- #else
- #define XXH_VECTOR XXH_SCALAR
- #endif
-#endif
-
-/*
- * Controls the alignment of the accumulator,
- * for compatibility with aligned vector loads, which are usually faster.
- */
-#ifndef XXH_ACC_ALIGN
- #if defined(XXH_X86DISPATCH)
- #define XXH_ACC_ALIGN 64 /* for compatibility with avx512 */
- #elif XXH_VECTOR == XXH_SCALAR /* scalar */
- #define XXH_ACC_ALIGN 8
- #elif XXH_VECTOR == XXH_SSE2 /* sse2 */
- #define XXH_ACC_ALIGN 16
- #elif XXH_VECTOR == XXH_AVX2 /* avx2 */
- #define XXH_ACC_ALIGN 32
- #elif XXH_VECTOR == XXH_NEON /* neon */
- #define XXH_ACC_ALIGN 16
- #elif XXH_VECTOR == XXH_VSX /* vsx */
- #define XXH_ACC_ALIGN 16
- #elif XXH_VECTOR == XXH_AVX512 /* avx512 */
- #define XXH_ACC_ALIGN 64
- #endif
-#endif
-
-#if defined(XXH_X86DISPATCH) || XXH_VECTOR == XXH_SSE2 || \
- XXH_VECTOR == XXH_AVX2 || XXH_VECTOR == XXH_AVX512
- #define XXH_SEC_ALIGN XXH_ACC_ALIGN
-#else
- #define XXH_SEC_ALIGN 8
-#endif
-
-/*
- * UGLY HACK:
- * GCC usually generates the best code with -O3 for xxHash.
- *
- * However, when targeting AVX2, it is overzealous in its unrolling resulting
- * in code roughly 3/4 the speed of Clang.
- *
- * There are other issues, such as GCC splitting _mm256_loadu_si256 into
- * _mm_loadu_si128 + _mm256_inserti128_si256. This is an optimization which
- * only applies to Sandy and Ivy Bridge... which don't even support AVX2.
- *
- * That is why when compiling the AVX2 version, it is recommended to use either
- * -O2 -mavx2 -march=haswell
- * or
- * -O2 -mavx2 -mno-avx256-split-unaligned-load
- * for decent performance, or to use Clang instead.
- *
- * Fortunately, we can control the first one with a pragma that forces GCC into
- * -O2, but the other one we can't control without "failed to inline always
- * inline function due to target mismatch" warnings.
- */
-#if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
- && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
- && defined(__OPTIMIZE__) && \
- !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */
- #pragma GCC push_options
- #pragma GCC optimize("-O2")
-#endif
-
-#if XXH_VECTOR == XXH_NEON
- /*
- * NEON's setup for vmlal_u32 is a little more complicated than it is on
- * SSE2, AVX2, and VSX.
- *
- * While PMULUDQ and VMULEUW both perform a mask, VMLAL.U32 performs an
- * upcast.
- *
- * To do the same operation, the 128-bit 'Q' register needs to be split into
- * two 64-bit 'D' registers, performing this operation::
- *
- * [ a | b ]
- * | '---------. .--------' |
- * | x |
- * | .---------' '--------. |
- * [ a & 0xFFFFFFFF | b & 0xFFFFFFFF ],[ a >> 32 | b >> 32 ]
- *
- * Due to significant changes in aarch64, the fastest method for aarch64 is
- * completely different than the fastest method for ARMv7-A.
- *
- * ARMv7-A treats D registers as unions overlaying Q registers, so modifying
- * D11 will modify the high half of Q5. This is similar to how modifying AH
- * will only affect bits 8-15 of AX on x86.
- *
- * VZIP takes two registers, and puts even lanes in one register and odd lanes
- * in the other.
- *
- * On ARMv7-A, this strangely modifies both parameters in place instead of
- * taking the usual 3-operand form.
- *
- * Therefore, if we want to do this, we can simply use a D-form VZIP.32 on the
- * lower and upper halves of the Q register to end up with the high and low
- * halves where we want - all in one instruction.
- *
- * vzip.32 d10, d11 @ d10 = { d10[0], d11[0] }; d11 = { d10[1],
- * d11[1] }
- *
- * Unfortunately we need inline assembly for this: Instructions modifying two
- * registers at once is not possible in GCC or Clang's IR, and they have to
- * create a copy.
- *
- * aarch64 requires a different approach.
- *
- * In order to make it easier to write a decent compiler for aarch64, many
- * quirks were removed, such as conditional execution.
- *
- * NEON was also affected by this.
- *
- * aarch64 cannot access the high bits of a Q-form register, and writes to a
- * D-form register zero the high bits, similar to how writes to W-form scalar
- * registers (or DWORD registers on x86_64) work.
- *
- * The formerly free vget_high intrinsics now require a vext (with a few
- * exceptions)
- *
- * Additionally, VZIP was replaced by ZIP1 and ZIP2, which are the equivalent
- * of PUNPCKL* and PUNPCKH* in SSE, respectively, in order to only modify one
- * operand.
- *
- * The equivalent of the VZIP.32 on the lower and upper halves would be this
- * mess:
- *
- * ext v2.4s, v0.4s, v0.4s, #2 // v2 = { v0[2], v0[3], v0[0], v0[1] }
- * zip1 v1.2s, v0.2s, v2.2s // v1 = { v0[0], v2[0] }
- * zip2 v0.2s, v0.2s, v1.2s // v0 = { v0[1], v2[1] }
- *
- * Instead, we use a literal downcast, vmovn_u64 (XTN), and vshrn_n_u64
- * (SHRN):
- *
- * shrn v1.2s, v0.2d, #32 // v1 = (uint32x2_t)(v0 >> 32);
- * xtn v0.2s, v0.2d // v0 = (uint32x2_t)(v0 & 0xFFFFFFFF);
- *
- * This is available on ARMv7-A, but is less efficient than a single VZIP.32.
- */
-
- /*
- * Function-like macro:
- * void XXH_SPLIT_IN_PLACE(uint64x2_t &in, uint32x2_t &outLo, uint32x2_t
- * &outHi)
- * {
-
- * outLo = (uint32x2_t)(in & 0xFFFFFFFF);
- * outHi = (uint32x2_t)(in >> 32);
- * in = UNDEFINED;
- * }
- */
- #if !defined(XXH_NO_VZIP_HACK) /* define to disable */ \
- && defined(__GNUC__) && !defined(__aarch64__) && !defined(__arm64__)
- #define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \
- do { \
- \
- /* Undocumented GCC/Clang operand modifier: %e0 = lower D half, %f0 = \
- * upper D half */ \
- /* https://github.com/gcc-mirror/gcc/blob/38cf91e5/gcc/config/arm/arm.c#L22486 \
- */ \
- /* https://github.com/llvm-mirror/llvm/blob/2c4ca683/lib/Target/ARM/ARMAsmPrinter.cpp#L399 \
- */ \
- __asm__("vzip.32 %e0, %f0" : "+w"(in)); \
- (outLo) = vget_low_u32(vreinterpretq_u32_u64(in)); \
- (outHi) = vget_high_u32(vreinterpretq_u32_u64(in)); \
- \
- } while (0)
-
- #else
- #define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \
- do { \
- \
- (outLo) = vmovn_u64(in); \
- (outHi) = vshrn_n_u64((in), 32); \
- \
- } while (0)
-
- #endif
-#endif /* XXH_VECTOR == XXH_NEON */
-
-/*
- * VSX and Z Vector helpers.
- *
- * This is very messy, and any pull requests to clean this up are welcome.
- *
- * There are a lot of problems with supporting VSX and s390x, due to
- * inconsistent intrinsics, spotty coverage, and multiple endiannesses.
- */
-#if XXH_VECTOR == XXH_VSX
- #if defined(__s390x__)
- #include <s390intrin.h>
- #else
- #include <altivec.h>
- #endif
-
- #undef vector /* Undo the pollution */
-
-typedef __vector unsigned long long xxh_u64x2;
-typedef __vector unsigned char xxh_u8x16;
-typedef __vector unsigned xxh_u32x4;
-
- #ifndef XXH_VSX_BE
- #if defined(__BIG_ENDIAN__) || \
- (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
- #define XXH_VSX_BE 1
- #elif defined(__VEC_ELEMENT_REG_ORDER__) && \
- __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__
- #warning "-maltivec=be is not recommended. Please use native endianness."
- #define XXH_VSX_BE 1
- #else
- #define XXH_VSX_BE 0
- #endif
- #endif /* !defined(XXH_VSX_BE) */
-
- #if XXH_VSX_BE
- /* A wrapper for POWER9's vec_revb. */
- #if defined(__POWER9_VECTOR__) || (defined(__clang__) && defined(__s390x__))
- #define XXH_vec_revb vec_revb
- #else
-XXH_FORCE_INLINE xxh_u64x2 XXH_vec_revb(xxh_u64x2 val) {
-
- xxh_u8x16 const vByteSwap = {0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
- 0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08};
- return vec_perm(val, val, vByteSwap);
-
-}
-
- #endif
- #endif /* XXH_VSX_BE */
-
-/*
- * Performs an unaligned load and byte swaps it on big endian.
- */
-XXH_FORCE_INLINE xxh_u64x2 XXH_vec_loadu(const void *ptr) {
-
- xxh_u64x2 ret;
- memcpy(&ret, ptr, sizeof(xxh_u64x2));
- #if XXH_VSX_BE
- ret = XXH_vec_revb(ret);
- #endif
- return ret;
-
-}
-
- /*
- * vec_mulo and vec_mule are very problematic intrinsics on PowerPC
- *
- * These intrinsics weren't added until GCC 8, despite existing for a while,
- * and they are endian dependent. Also, their meaning swap depending on
- * version.
- * */
- #if defined(__s390x__)
- /* s390x is always big endian, no issue on this platform */
- #define XXH_vec_mulo vec_mulo
- #define XXH_vec_mule vec_mule
- #elif defined(__clang__) && XXH_HAS_BUILTIN(__builtin_altivec_vmuleuw)
- /* Clang has a better way to control this, we can just use the builtin which
- * doesn't swap. */
- #define XXH_vec_mulo __builtin_altivec_vmulouw
- #define XXH_vec_mule __builtin_altivec_vmuleuw
- #else
-/* gcc needs inline assembly */
-/* Adapted from
- * https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */
-XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mulo(xxh_u32x4 a, xxh_u32x4 b) {
-
- xxh_u64x2 result;
- __asm__("vmulouw %0, %1, %2" : "=v"(result) : "v"(a), "v"(b));
- return result;
-
-}
-
-XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mule(xxh_u32x4 a, xxh_u32x4 b) {
-
- xxh_u64x2 result;
- __asm__("vmuleuw %0, %1, %2" : "=v"(result) : "v"(a), "v"(b));
- return result;
-
-}
-
- #endif /* XXH_vec_mulo, XXH_vec_mule */
-#endif /* XXH_VECTOR == XXH_VSX */
-
-/* prefetch
- * can be disabled, by declaring XXH_NO_PREFETCH build macro */
-#if defined(XXH_NO_PREFETCH)
- #define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */
-#else
- #if defined(_MSC_VER) && \
- (defined(_M_X64) || \
- defined(_M_I86)) /* _mm_prefetch() is not defined outside of x86/x64 */
- #include <mmintrin.h> /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */
- #define XXH_PREFETCH(ptr) _mm_prefetch((const char *)(ptr), _MM_HINT_T0)
- #elif defined(__GNUC__) && \
- ((__GNUC__ >= 4) || ((__GNUC__ == 3) && (__GNUC_MINOR__ >= 1)))
- #define XXH_PREFETCH(ptr) \
- __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */)
- #else
- #define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */
- #endif
-#endif /* XXH_NO_PREFETCH */
-
-/* ==========================================
- * XXH3 default settings
- * ========================================== */
-
-#define XXH_SECRET_DEFAULT_SIZE 192 /* minimum XXH3_SECRET_SIZE_MIN */
-
-#if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN)
- #error "default keyset is not large enough"
-#endif
-
-/* Pseudorandom secret taken directly from FARSH */
-XXH_ALIGN(64)
-static const xxh_u8 XXH3_kSecret[XXH_SECRET_DEFAULT_SIZE] = {
-
- 0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c,
- 0xf7, 0x21, 0xad, 0x1c, 0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb,
- 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f, 0xcb, 0x79, 0xe6, 0x4e,
- 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21,
- 0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6,
- 0x81, 0x3a, 0x26, 0x4c, 0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb,
- 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3, 0x71, 0x64, 0x48, 0x97,
- 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8,
- 0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7,
- 0xc7, 0x0b, 0x4f, 0x1d, 0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31,
- 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64,
-
- 0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff,
- 0xfa, 0x13, 0x63, 0xeb, 0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49,
- 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e, 0x2b, 0x16, 0xbe, 0x58,
- 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce,
- 0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca,
- 0xbb, 0x4b, 0x40, 0x7e,
-
-};
-
-#ifdef XXH_OLD_NAMES
- #define kSecret XXH3_kSecret
-#endif
-
-/*
- * Calculates a 32-bit to 64-bit long multiply.
- *
- * Wraps __emulu on MSVC x86 because it tends to call __allmul when it doesn't
- * need to (but it shouldn't need to anyways, it is about 7 instructions to do
- * a 64x64 multiply...). Since we know that this will _always_ emit MULL, we
- * use that instead of the normal method.
- *
- * If you are compiling for platforms like Thumb-1 and don't have a better
- * option, you may also want to write your own long multiply routine here.
- *
- * XXH_FORCE_INLINE xxh_u64 XXH_mult32to64(xxh_u64 x, xxh_u64 y)
- * {
-
- * return (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF);
- * }
- */
-#if defined(_MSC_VER) && defined(_M_IX86)
- #include <intrin.h>
- #define XXH_mult32to64(x, y) __emulu((unsigned)(x), (unsigned)(y))
-#else
- /*
- * Downcast + upcast is usually better than masking on older compilers like
- * GCC 4.2 (especially 32-bit ones), all without affecting newer compilers.
- *
- * The other method, (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF), will AND both
- * operands and perform a full 64x64 multiply -- entirely redundant on 32-bit.
- */
- #define XXH_mult32to64(x, y) ((xxh_u64)(xxh_u32)(x) * (xxh_u64)(xxh_u32)(y))
-#endif
-
-/*
- * Calculates a 64->128-bit long multiply.
- *
- * Uses __uint128_t and _umul128 if available, otherwise uses a scalar version.
- */
-static XXH128_hash_t XXH_mult64to128(xxh_u64 lhs, xxh_u64 rhs) {
-
- /*
- * GCC/Clang __uint128_t method.
- *
- * On most 64-bit targets, GCC and Clang define a __uint128_t type.
- * This is usually the best way as it usually uses a native long 64-bit
- * multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64.
- *
- * Usually.
- *
- * Despite being a 32-bit platform, Clang (and emscripten) define this type
- * despite not having the arithmetic for it. This results in a laggy
- * compiler builtin call which calculates a full 128-bit multiply.
- * In that case it is best to use the portable one.
- * https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677
- */
-#if defined(__GNUC__) && !defined(__wasm__) && defined(__SIZEOF_INT128__) || \
- (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128)
-
- __uint128_t const product = (__uint128_t)lhs * (__uint128_t)rhs;
- XXH128_hash_t r128;
- r128.low64 = (xxh_u64)(product);
- r128.high64 = (xxh_u64)(product >> 64);
- return r128;
-
- /*
- * MSVC for x64's _umul128 method.
- *
- * xxh_u64 _umul128(xxh_u64 Multiplier, xxh_u64 Multiplicand, xxh_u64
- * *HighProduct);
- *
- * This compiles to single operand MUL on x64.
- */
-#elif defined(_M_X64) || defined(_M_IA64)
-
- #ifndef _MSC_VER
- #pragma intrinsic(_umul128)
- #endif
- xxh_u64 product_high;
- xxh_u64 const product_low = _umul128(lhs, rhs, &product_high);
- XXH128_hash_t r128;
- r128.low64 = product_low;
- r128.high64 = product_high;
- return r128;
-
-#else
- /*
- * Portable scalar method. Optimized for 32-bit and 64-bit ALUs.
- *
- * This is a fast and simple grade school multiply, which is shown below
- * with base 10 arithmetic instead of base 0x100000000.
- *
- * 9 3 // D2 lhs = 93
- * x 7 5 // D2 rhs = 75
- * ----------
- * 1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15
- * 4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45
- * 2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21
- * + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63
- * ---------
- * 2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27
- * + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67
- * ---------
- * 6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975
- *
- * The reasons for adding the products like this are:
- * 1. It avoids manual carry tracking. Just like how
- * (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX.
- * This avoids a lot of complexity.
- *
- * 2. It hints for, and on Clang, compiles to, the powerful UMAAL
- * instruction available in ARM's Digital Signal Processing extension
- * in 32-bit ARMv6 and later, which is shown below:
- *
- * void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm)
- * {
-
- * xxh_u64 product = (xxh_u64)*RdLo * (xxh_u64)*RdHi + Rn + Rm;
- * *RdLo = (xxh_u32)(product & 0xFFFFFFFF);
- * *RdHi = (xxh_u32)(product >> 32);
- * }
- *
- * This instruction was designed for efficient long multiplication, and
- * allows this to be calculated in only 4 instructions at speeds
- * comparable to some 64-bit ALUs.
- *
- * 3. It isn't terrible on other platforms. Usually this will be a couple
- * of 32-bit ADD/ADCs.
- */
-
- /* First calculate all of the cross products. */
- xxh_u64 const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF);
- xxh_u64 const hi_lo = XXH_mult32to64(lhs >> 32, rhs & 0xFFFFFFFF);
- xxh_u64 const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32);
- xxh_u64 const hi_hi = XXH_mult32to64(lhs >> 32, rhs >> 32);
-
- /* Now add the products together. These will never overflow. */
- xxh_u64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
- xxh_u64 const upper = (hi_lo >> 32) + (cross >> 32) + hi_hi;
- xxh_u64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
-
- XXH128_hash_t r128;
- r128.low64 = lower;
- r128.high64 = upper;
- return r128;
-#endif
-
-}
-
-/*
- * Does a 64-bit to 128-bit multiply, then XOR folds it.
- *
- * The reason for the separate function is to prevent passing too many structs
- * around by value. This will hopefully inline the multiply, but we don't force
- * it.
- */
-static xxh_u64 XXH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs) {
-
- XXH128_hash_t product = XXH_mult64to128(lhs, rhs);
- return product.low64 ^ product.high64;
-
-}
-
-/* Seems to produce slightly better code on GCC for some reason. */
-XXH_FORCE_INLINE xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift) {
-
- XXH_ASSERT(0 <= shift && shift < 64);
- return v64 ^ (v64 >> shift);
-
-}
-
-/*
- * We don't need to (or want to) mix as much as XXH64.
- *
- * Short hashes are more evenly distributed, so it isn't necessary.
- */
-static XXH64_hash_t XXH3_avalanche(xxh_u64 h64) {
-
- h64 = XXH_xorshift64(h64, 37);
- h64 *= 0x165667919E3779F9ULL;
- h64 = XXH_xorshift64(h64, 32);
- return h64;
-
-}
-
-/* ==========================================
- * Short keys
- * ==========================================
- * One of the shortcomings of XXH32 and XXH64 was that their performance was
- * sub-optimal on short lengths. It used an iterative algorithm which strongly
- * favored lengths that were a multiple of 4 or 8.
- *
- * Instead of iterating over individual inputs, we use a set of single shot
- * functions which piece together a range of lengths and operate in constant
- * time.
- *
- * Additionally, the number of multiplies has been significantly reduced. This
- * reduces latency, especially when emulating 64-bit multiplies on 32-bit.
- *
- * Depending on the platform, this may or may not be faster than XXH32, but it
- * is almost guaranteed to be faster than XXH64.
- */
-
-/*
- * At very short lengths, there isn't enough input to fully hide secrets, or use
- * the entire secret.
- *
- * There is also only a limited amount of mixing we can do before significantly
- * impacting performance.
- *
- * Therefore, we use different sections of the secret and always mix two secret
- * samples with an XOR. This should have no effect on performance on the
- * seedless or withSeed variants because everything _should_ be constant folded
- * by modern compilers.
- *
- * The XOR mixing hides individual parts of the secret and increases entropy.
- *
- * This adds an extra layer of strength for custom secrets.
- */
-XXH_FORCE_INLINE XXH64_hash_t XXH3_len_1to3_64b(const xxh_u8 *input, size_t len,
- const xxh_u8 *secret,
- XXH64_hash_t seed) {
-
- XXH_ASSERT(input != NULL);
- XXH_ASSERT(1 <= len && len <= 3);
- XXH_ASSERT(secret != NULL);
- /*
- * len = 1: combined = { input[0], 0x01, input[0], input[0] }
- * len = 2: combined = { input[1], 0x02, input[0], input[1] }
- * len = 3: combined = { input[2], 0x03, input[0], input[1] }
- */
- {
-
- xxh_u8 const c1 = input[0];
- xxh_u8 const c2 = input[len >> 1];
- xxh_u8 const c3 = input[len - 1];
- xxh_u32 const combined = ((xxh_u32)c1 << 16) | ((xxh_u32)c2 << 24) |
- ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8);
- xxh_u64 const bitflip =
- (XXH_readLE32(secret) ^ XXH_readLE32(secret + 4)) + seed;
- xxh_u64 const keyed = (xxh_u64)combined ^ bitflip;
- xxh_u64 const mixed = keyed * XXH_PRIME64_1;
- return XXH3_avalanche(mixed);
-
- }
-
-}
-
-XXH_FORCE_INLINE XXH64_hash_t XXH3_len_4to8_64b(const xxh_u8 *input, size_t len,
- const xxh_u8 *secret,
- XXH64_hash_t seed) {
-
- XXH_ASSERT(input != NULL);
- XXH_ASSERT(secret != NULL);
- XXH_ASSERT(4 <= len && len < 8);
- seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
- {
-
- xxh_u32 const input1 = XXH_readLE32(input);
- xxh_u32 const input2 = XXH_readLE32(input + len - 4);
- xxh_u64 const bitflip =
- (XXH_readLE64(secret + 8) ^ XXH_readLE64(secret + 16)) - seed;
- xxh_u64 const input64 = input2 + (((xxh_u64)input1) << 32);
- xxh_u64 x = input64 ^ bitflip;
- /* this mix is inspired by Pelle Evensen's rrmxmx */
- x ^= XXH_rotl64(x, 49) ^ XXH_rotl64(x, 24);
- x *= 0x9FB21C651E98DF25ULL;
- x ^= (x >> 35) + len;
- x *= 0x9FB21C651E98DF25ULL;
- return XXH_xorshift64(x, 28);
-
- }
-
-}
-
-XXH_FORCE_INLINE XXH64_hash_t XXH3_len_9to16_64b(const xxh_u8 *input,
- size_t len,
- const xxh_u8 *secret,
- XXH64_hash_t seed) {
-
- XXH_ASSERT(input != NULL);
- XXH_ASSERT(secret != NULL);
- XXH_ASSERT(8 <= len && len <= 16);
- {
-
- xxh_u64 const bitflip1 =
- (XXH_readLE64(secret + 24) ^ XXH_readLE64(secret + 32)) + seed;
- xxh_u64 const bitflip2 =
- (XXH_readLE64(secret + 40) ^ XXH_readLE64(secret + 48)) - seed;
- xxh_u64 const input_lo = XXH_readLE64(input) ^ bitflip1;
- xxh_u64 const input_hi = XXH_readLE64(input + len - 8) ^ bitflip2;
- xxh_u64 const acc = len + XXH_swap64(input_lo) + input_hi +
- XXH3_mul128_fold64(input_lo, input_hi);
- return XXH3_avalanche(acc);
-
- }
-
-}
-
-XXH_FORCE_INLINE XXH64_hash_t XXH3_len_0to16_64b(const xxh_u8 *input,
- size_t len,
- const xxh_u8 *secret,
- XXH64_hash_t seed) {
-
- XXH_ASSERT(len <= 16);
- {
-
- if (XXH_likely(len > 8))
- return XXH3_len_9to16_64b(input, len, secret, seed);
- if (XXH_likely(len >= 4))
- return XXH3_len_4to8_64b(input, len, secret, seed);
- if (len) return XXH3_len_1to3_64b(input, len, secret, seed);
- return XXH3_avalanche((XXH_PRIME64_1 + seed) ^ (XXH_readLE64(secret + 56) ^
- XXH_readLE64(secret + 64)));
-
- }
-
-}
-
-/*
- * DISCLAIMER: There are known *seed-dependent* multicollisions here due to
- * multiplication by zero, affecting hashes of lengths 17 to 240.
- *
- * However, they are very unlikely.
- *
- * Keep this in mind when using the unseeded XXH3_64bits() variant: As with all
- * unseeded non-cryptographic hashes, it does not attempt to defend itself
- * against specially crafted inputs, only random inputs.
- *
- * Compared to classic UMAC where a 1 in 2^31 chance of 4 consecutive bytes
- * cancelling out the secret is taken an arbitrary number of times (addressed
- * in XXH3_accumulate_512), this collision is very unlikely with random inputs
- * and/or proper seeding:
- *
- * This only has a 1 in 2^63 chance of 8 consecutive bytes cancelling out, in a
- * function that is only called up to 16 times per hash with up to 240 bytes of
- * input.
- *
- * This is not too bad for a non-cryptographic hash function, especially with
- * only 64 bit outputs.
- *
- * The 128-bit variant (which trades some speed for strength) is NOT affected
- * by this, although it is always a good idea to use a proper seed if you care
- * about strength.
- */
-XXH_FORCE_INLINE xxh_u64 XXH3_mix16B(const xxh_u8 *XXH_RESTRICT input,
- const xxh_u8 *XXH_RESTRICT secret,
- xxh_u64 seed64) {
-
-#if defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
- && defined(__i386__) && defined(__SSE2__) /* x86 + SSE2 */ \
- && \
- !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable like XXH32 hack */
- /*
- * UGLY HACK:
- * GCC for x86 tends to autovectorize the 128-bit multiply, resulting in
- * slower code.
- *
- * By forcing seed64 into a register, we disrupt the cost model and
- * cause it to scalarize. See `XXH32_round()`
- *
- * FIXME: Clang's output is still _much_ faster -- On an AMD Ryzen 3600,
- * XXH3_64bits @ len=240 runs at 4.6 GB/s with Clang 9, but 3.3 GB/s on
- * GCC 9.2, despite both emitting scalar code.
- *
- * GCC generates much better scalar code than Clang for the rest of XXH3,
- * which is why finding a more optimal codepath is an interest.
- */
- __asm__("" : "+r"(seed64));
-#endif
- {
-
- xxh_u64 const input_lo = XXH_readLE64(input);
- xxh_u64 const input_hi = XXH_readLE64(input + 8);
- return XXH3_mul128_fold64(input_lo ^ (XXH_readLE64(secret) + seed64),
- input_hi ^ (XXH_readLE64(secret + 8) - seed64));
-
- }
-
-}
-
-/* For mid range keys, XXH3 uses a Mum-hash variant. */
-XXH_FORCE_INLINE XXH64_hash_t XXH3_len_17to128_64b(
- const xxh_u8 *XXH_RESTRICT input, size_t len,
- const xxh_u8 *XXH_RESTRICT secret, size_t secretSize, XXH64_hash_t seed) {
-
- XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
- (void)secretSize;
- XXH_ASSERT(16 < len && len <= 128);
-
- {
-
- xxh_u64 acc = len * XXH_PRIME64_1;
- if (len > 32) {
-
- if (len > 64) {
-
- if (len > 96) {
-
- acc += XXH3_mix16B(input + 48, secret + 96, seed);
- acc += XXH3_mix16B(input + len - 64, secret + 112, seed);
-
- }
-
- acc += XXH3_mix16B(input + 32, secret + 64, seed);
- acc += XXH3_mix16B(input + len - 48, secret + 80, seed);
-
- }
-
- acc += XXH3_mix16B(input + 16, secret + 32, seed);
- acc += XXH3_mix16B(input + len - 32, secret + 48, seed);
-
- }
-
- acc += XXH3_mix16B(input + 0, secret + 0, seed);
- acc += XXH3_mix16B(input + len - 16, secret + 16, seed);
-
- return XXH3_avalanche(acc);
-
- }
-
-}
-
-#define XXH3_MIDSIZE_MAX 240
-
-XXH_NO_INLINE XXH64_hash_t XXH3_len_129to240_64b(
- const xxh_u8 *XXH_RESTRICT input, size_t len,
- const xxh_u8 *XXH_RESTRICT secret, size_t secretSize, XXH64_hash_t seed) {
-
- XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
- (void)secretSize;
- XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
-
-#define XXH3_MIDSIZE_STARTOFFSET 3
-#define XXH3_MIDSIZE_LASTOFFSET 17
-
- {
-
- xxh_u64 acc = len * XXH_PRIME64_1;
- int const nbRounds = (int)len / 16;
- int i;
- for (i = 0; i < 8; i++) {
-
- acc += XXH3_mix16B(input + (16 * i), secret + (16 * i), seed);
-
- }
-
- acc = XXH3_avalanche(acc);
- XXH_ASSERT(nbRounds >= 8);
-#if defined(__clang__) /* Clang */ \
- && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \
- && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */
- /*
- * UGLY HACK:
- * Clang for ARMv7-A tries to vectorize this loop, similar to GCC x86.
- * In everywhere else, it uses scalar code.
- *
- * For 64->128-bit multiplies, even if the NEON was 100% optimal, it
- * would still be slower than UMAAL (see XXH_mult64to128).
- *
- * Unfortunately, Clang doesn't handle the long multiplies properly and
- * converts them to the nonexistent "vmulq_u64" intrinsic, which is then
- * scalarized into an ugly mess of VMOV.32 instructions.
- *
- * This mess is difficult to avoid without turning autovectorization
- * off completely, but they are usually relatively minor and/or not
- * worth it to fix.
- *
- * This loop is the easiest to fix, as unlike XXH32, this pragma
- * _actually works_ because it is a loop vectorization instead of an
- * SLP vectorization.
- */
- #pragma clang loop vectorize(disable)
-#endif
- for (i = 8; i < nbRounds; i++) {
-
- acc +=
- XXH3_mix16B(input + (16 * i),
- secret + (16 * (i - 8)) + XXH3_MIDSIZE_STARTOFFSET, seed);
-
- }
-
- /* last bytes */
- acc += XXH3_mix16B(input + len - 16,
- secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET,
- seed);
- return XXH3_avalanche(acc);
-
- }
-
-}
-
-/* ======= Long Keys ======= */
-
-#define XXH_STRIPE_LEN 64
-#define XXH_SECRET_CONSUME_RATE \
- 8 /* nb of secret bytes consumed at each accumulation */
-#define XXH_ACC_NB (XXH_STRIPE_LEN / sizeof(xxh_u64))
-
-#ifdef XXH_OLD_NAMES
- #define STRIPE_LEN XXH_STRIPE_LEN
- #define ACC_NB XXH_ACC_NB
-#endif
-
-typedef enum { XXH3_acc_64bits, XXH3_acc_128bits } XXH3_accWidth_e;
-
-XXH_FORCE_INLINE void XXH_writeLE64(void *dst, xxh_u64 v64) {
-
- if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64);
- memcpy(dst, &v64, sizeof(v64));
-
-}
-
-/* Several intrinsic functions below are supposed to accept __int64 as argument,
- * as documented in
- * https://software.intel.com/sites/landingpage/IntrinsicsGuide/ . However,
- * several environments do not define __int64 type, requiring a workaround.
- */
-#if !defined(__VMS) && \
- (defined(__cplusplus) || \
- (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */))
-typedef int64_t xxh_i64;
-#else
-/* the following type must have a width of 64-bit */
-typedef long long xxh_i64;
-#endif
-
-/*
- * XXH3_accumulate_512 is the tightest loop for long inputs, and it is the most
- * optimized.
- *
- * It is a hardened version of UMAC, based off of FARSH's implementation.
- *
- * This was chosen because it adapts quite well to 32-bit, 64-bit, and SIMD
- * implementations, and it is ridiculously fast.
- *
- * We harden it by mixing the original input to the accumulators as well as the
- * product.
- *
- * This means that in the (relatively likely) case of a multiply by zero, the
- * original input is preserved.
- *
- * On 128-bit inputs, we swap 64-bit pairs when we add the input to improve
- * cross-pollination, as otherwise the upper and lower halves would be
- * essentially independent.
- *
- * This doesn't matter on 64-bit hashes since they all get merged together in
- * the end, so we skip the extra step.
- *
- * Both XXH3_64bits and XXH3_128bits use this subroutine.
- */
-
-#if (XXH_VECTOR == XXH_AVX512) || defined(XXH_X86DISPATCH)
-
- #ifndef XXH_TARGET_AVX512
- #define XXH_TARGET_AVX512 /* disable attribute target */
- #endif
-
-XXH_FORCE_INLINE XXH_TARGET_AVX512 void XXH3_accumulate_512_avx512(
- void *XXH_RESTRICT acc, const void *XXH_RESTRICT input,
- const void *XXH_RESTRICT secret, XXH3_accWidth_e accWidth) {
-
- XXH_ALIGN(64) __m512i *const xacc = (__m512i *)acc;
- XXH_ASSERT((((size_t)acc) & 63) == 0);
- XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));
-
- {
-
- /* data_vec = input[0]; */
- __m512i const data_vec = _mm512_loadu_si512(input);
- /* key_vec = secret[0]; */
- __m512i const key_vec = _mm512_loadu_si512(secret);
- /* data_key = data_vec ^ key_vec; */
- __m512i const data_key = _mm512_xor_si512(data_vec, key_vec);
- /* data_key_lo = data_key >> 32; */
- __m512i const data_key_lo =
- _mm512_shuffle_epi32(data_key, _MM_SHUFFLE(0, 3, 0, 1));
- /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
- __m512i const product = _mm512_mul_epu32(data_key, data_key_lo);
- if (accWidth == XXH3_acc_128bits) {
-
- /* xacc[0] += swap(data_vec); */
- __m512i const data_swap =
- _mm512_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2));
- __m512i const sum = _mm512_add_epi64(*xacc, data_swap);
- /* xacc[0] += product; */
- *xacc = _mm512_add_epi64(product, sum);
-
- } else { /* XXH3_acc_64bits */
-
- /* xacc[0] += data_vec; */
- __m512i const sum = _mm512_add_epi64(*xacc, data_vec);
- /* xacc[0] += product; */
- *xacc = _mm512_add_epi64(product, sum);
-
- }
-
- }
-
-}
-
-/*
- * XXH3_scrambleAcc: Scrambles the accumulators to improve mixing.
- *
- * Multiplication isn't perfect, as explained by Google in HighwayHash:
- *
- * // Multiplication mixes/scrambles bytes 0-7 of the 64-bit result to
- * // varying degrees. In descending order of goodness, bytes
- * // 3 4 2 5 1 6 0 7 have quality 228 224 164 160 100 96 36 32.
- * // As expected, the upper and lower bytes are much worse.
- *
- * Source:
- * https://github.com/google/highwayhash/blob/0aaf66b/highwayhash/hh_avx2.h#L291
- *
- * Since our algorithm uses a pseudorandom secret to add some variance into the
- * mix, we don't need to (or want to) mix as often or as much as HighwayHash
- * does.
- *
- * This isn't as tight as XXH3_accumulate, but still written in SIMD to avoid
- * extraction.
- *
- * Both XXH3_64bits and XXH3_128bits use this subroutine.
- */
-
-XXH_FORCE_INLINE XXH_TARGET_AVX512 void XXH3_scrambleAcc_avx512(
- void *XXH_RESTRICT acc, const void *XXH_RESTRICT secret) {
-
- XXH_ASSERT((((size_t)acc) & 63) == 0);
- XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));
- {
-
- XXH_ALIGN(64) __m512i *const xacc = (__m512i *)acc;
- const __m512i prime32 = _mm512_set1_epi32((int)XXH_PRIME32_1);
-
- /* xacc[0] ^= (xacc[0] >> 47) */
- __m512i const acc_vec = *xacc;
- __m512i const shifted = _mm512_srli_epi64(acc_vec, 47);
- __m512i const data_vec = _mm512_xor_si512(acc_vec, shifted);
- /* xacc[0] ^= secret; */
- __m512i const key_vec = _mm512_loadu_si512(secret);
- __m512i const data_key = _mm512_xor_si512(data_vec, key_vec);
-
- /* xacc[0] *= XXH_PRIME32_1; */
- __m512i const data_key_hi =
- _mm512_shuffle_epi32(data_key, _MM_SHUFFLE(0, 3, 0, 1));
- __m512i const prod_lo = _mm512_mul_epu32(data_key, prime32);
- __m512i const prod_hi = _mm512_mul_epu32(data_key_hi, prime32);
- *xacc = _mm512_add_epi64(prod_lo, _mm512_slli_epi64(prod_hi, 32));
-
- }
-
-}
-
-XXH_FORCE_INLINE XXH_TARGET_AVX512 void XXH3_initCustomSecret_avx512(
- void *XXH_RESTRICT customSecret, xxh_u64 seed64) {
-
- XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 63) == 0);
- XXH_STATIC_ASSERT(XXH_SEC_ALIGN == 64);
- XXH_ASSERT(((size_t)customSecret & 63) == 0);
- (void)(&XXH_writeLE64);
- {
-
- int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m512i);
- __m512i const seed = _mm512_mask_set1_epi64(
- _mm512_set1_epi64((xxh_i64)seed64), 0xAA, -(xxh_i64)seed64);
-
- XXH_ALIGN(64) const __m512i *const src = (const __m512i *)XXH3_kSecret;
- XXH_ALIGN(64) __m512i *const dest = (__m512i *)customSecret;
- int i;
- for (i = 0; i < nbRounds; ++i) {
-
- // GCC has a bug, _mm512_stream_load_si512 accepts 'void*', not 'void
- // const*', this will warn "discards ‘const’ qualifier".
- union {
-
- XXH_ALIGN(64) const __m512i *const cp;
- XXH_ALIGN(64) void *const p;
-
- } const remote_const_void = {.cp = src + i};
-
- dest[i] =
- _mm512_add_epi64(_mm512_stream_load_si512(remote_const_void.p), seed);
-
- }
-
- }
-
-}
-
-#endif
-
-#if (XXH_VECTOR == XXH_AVX2) || defined(XXH_X86DISPATCH)
-
- #ifndef XXH_TARGET_AVX2
- #define XXH_TARGET_AVX2 /* disable attribute target */
- #endif
-
-XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_accumulate_512_avx2(
- void *XXH_RESTRICT acc, const void *XXH_RESTRICT input,
- const void *XXH_RESTRICT secret, XXH3_accWidth_e accWidth) {
-
- XXH_ASSERT((((size_t)acc) & 31) == 0);
- {
-
- XXH_ALIGN(32) __m256i *const xacc = (__m256i *)acc;
- /* Unaligned. This is mainly for pointer arithmetic, and because
- * _mm256_loadu_si256 requires a const __m256i * pointer for some reason.
- */
- const __m256i *const xinput = (const __m256i *)input;
- /* Unaligned. This is mainly for pointer arithmetic, and because
- * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
- const __m256i *const xsecret = (const __m256i *)secret;
-
- size_t i;
- for (i = 0; i < XXH_STRIPE_LEN / sizeof(__m256i); i++) {
-
- /* data_vec = xinput[i]; */
- __m256i const data_vec = _mm256_loadu_si256(xinput + i);
- /* key_vec = xsecret[i]; */
- __m256i const key_vec = _mm256_loadu_si256(xsecret + i);
- /* data_key = data_vec ^ key_vec; */
- __m256i const data_key = _mm256_xor_si256(data_vec, key_vec);
- /* data_key_lo = data_key >> 32; */
- __m256i const data_key_lo =
- _mm256_shuffle_epi32(data_key, _MM_SHUFFLE(0, 3, 0, 1));
- /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
- __m256i const product = _mm256_mul_epu32(data_key, data_key_lo);
- if (accWidth == XXH3_acc_128bits) {
-
- /* xacc[i] += swap(data_vec); */
- __m256i const data_swap =
- _mm256_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2));
- __m256i const sum = _mm256_add_epi64(xacc[i], data_swap);
- /* xacc[i] += product; */
- xacc[i] = _mm256_add_epi64(product, sum);
-
- } else { /* XXH3_acc_64bits */
-
- /* xacc[i] += data_vec; */
- __m256i const sum = _mm256_add_epi64(xacc[i], data_vec);
- /* xacc[i] += product; */
- xacc[i] = _mm256_add_epi64(product, sum);
-
- }
-
- }
-
- }
-
-}
-
-XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_scrambleAcc_avx2(
- void *XXH_RESTRICT acc, const void *XXH_RESTRICT secret) {
-
- XXH_ASSERT((((size_t)acc) & 31) == 0);
- {
-
- XXH_ALIGN(32) __m256i *const xacc = (__m256i *)acc;
- /* Unaligned. This is mainly for pointer arithmetic, and because
- * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
- const __m256i *const xsecret = (const __m256i *)secret;
- const __m256i prime32 = _mm256_set1_epi32((int)XXH_PRIME32_1);
-
- size_t i;
- for (i = 0; i < XXH_STRIPE_LEN / sizeof(__m256i); i++) {
-
- /* xacc[i] ^= (xacc[i] >> 47) */
- __m256i const acc_vec = xacc[i];
- __m256i const shifted = _mm256_srli_epi64(acc_vec, 47);
- __m256i const data_vec = _mm256_xor_si256(acc_vec, shifted);
- /* xacc[i] ^= xsecret; */
- __m256i const key_vec = _mm256_loadu_si256(xsecret + i);
- __m256i const data_key = _mm256_xor_si256(data_vec, key_vec);
-
- /* xacc[i] *= XXH_PRIME32_1; */
- __m256i const data_key_hi =
- _mm256_shuffle_epi32(data_key, _MM_SHUFFLE(0, 3, 0, 1));
- __m256i const prod_lo = _mm256_mul_epu32(data_key, prime32);
- __m256i const prod_hi = _mm256_mul_epu32(data_key_hi, prime32);
- xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32));
-
- }
-
- }
-
-}
-
-XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_initCustomSecret_avx2(
- void *XXH_RESTRICT customSecret, xxh_u64 seed64) {
-
- XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 31) == 0);
- XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE / sizeof(__m256i)) == 6);
- XXH_STATIC_ASSERT(XXH_SEC_ALIGN <= 64);
- (void)(&XXH_writeLE64);
- XXH_PREFETCH(customSecret);
- {
-
- __m256i const seed = _mm256_set_epi64x(-(xxh_i64)seed64, (xxh_i64)seed64,
- -(xxh_i64)seed64, (xxh_i64)seed64);
-
- XXH_ALIGN(64) const __m256i *const src = (const __m256i *)XXH3_kSecret;
- XXH_ALIGN(64) __m256i * dest = (__m256i *)customSecret;
-
- #if defined(__GNUC__) || defined(__clang__)
- /*
- * On GCC & Clang, marking 'dest' as modified will cause the compiler:
- * - do not extract the secret from sse registers in the internal loop
- * - use less common registers, and avoid pushing these reg into stack
- * The asm hack causes Clang to assume that XXH3_kSecretPtr aliases with
- * customSecret, and on aarch64, this prevented LDP from merging two
- * loads together for free. Putting the loads together before the stores
- * properly generates LDP.
- */
- __asm__("" : "+r"(dest));
- #endif
-
- /* GCC -O2 need unroll loop manually */
- dest[0] = _mm256_add_epi64(_mm256_stream_load_si256(src + 0), seed);
- dest[1] = _mm256_add_epi64(_mm256_stream_load_si256(src + 1), seed);
- dest[2] = _mm256_add_epi64(_mm256_stream_load_si256(src + 2), seed);
- dest[3] = _mm256_add_epi64(_mm256_stream_load_si256(src + 3), seed);
- dest[4] = _mm256_add_epi64(_mm256_stream_load_si256(src + 4), seed);
- dest[5] = _mm256_add_epi64(_mm256_stream_load_si256(src + 5), seed);
-
- }
-
-}
-
-#endif
-
-#if (XXH_VECTOR == XXH_SSE2) || defined(XXH_X86DISPATCH)
-
- #ifndef XXH_TARGET_SSE2
- #define XXH_TARGET_SSE2 /* disable attribute target */
- #endif
-
-XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_accumulate_512_sse2(
- void *XXH_RESTRICT acc, const void *XXH_RESTRICT input,
- const void *XXH_RESTRICT secret, XXH3_accWidth_e accWidth) {
-
- /* SSE2 is just a half-scale version of the AVX2 version. */
- XXH_ASSERT((((size_t)acc) & 15) == 0);
- {
-
- XXH_ALIGN(16) __m128i *const xacc = (__m128i *)acc;
- /* Unaligned. This is mainly for pointer arithmetic, and because
- * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
- const __m128i *const xinput = (const __m128i *)input;
- /* Unaligned. This is mainly for pointer arithmetic, and because
- * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
- const __m128i *const xsecret = (const __m128i *)secret;
-
- size_t i;
- for (i = 0; i < XXH_STRIPE_LEN / sizeof(__m128i); i++) {
-
- /* data_vec = xinput[i]; */
- __m128i const data_vec = _mm_loadu_si128(xinput + i);
- /* key_vec = xsecret[i]; */
- __m128i const key_vec = _mm_loadu_si128(xsecret + i);
- /* data_key = data_vec ^ key_vec; */
- __m128i const data_key = _mm_xor_si128(data_vec, key_vec);
- /* data_key_lo = data_key >> 32; */
- __m128i const data_key_lo =
- _mm_shuffle_epi32(data_key, _MM_SHUFFLE(0, 3, 0, 1));
- /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
- __m128i const product = _mm_mul_epu32(data_key, data_key_lo);
- if (accWidth == XXH3_acc_128bits) {
-
- /* xacc[i] += swap(data_vec); */
- __m128i const data_swap =
- _mm_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2));
- __m128i const sum = _mm_add_epi64(xacc[i], data_swap);
- /* xacc[i] += product; */
- xacc[i] = _mm_add_epi64(product, sum);
-
- } else { /* XXH3_acc_64bits */
-
- /* xacc[i] += data_vec; */
- __m128i const sum = _mm_add_epi64(xacc[i], data_vec);
- /* xacc[i] += product; */
- xacc[i] = _mm_add_epi64(product, sum);
-
- }
-
- }
-
- }
-
-}
-
-XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_scrambleAcc_sse2(
- void *XXH_RESTRICT acc, const void *XXH_RESTRICT secret) {
-
- XXH_ASSERT((((size_t)acc) & 15) == 0);
- {
-
- XXH_ALIGN(16) __m128i *const xacc = (__m128i *)acc;
- /* Unaligned. This is mainly for pointer arithmetic, and because
- * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
- const __m128i *const xsecret = (const __m128i *)secret;
- const __m128i prime32 = _mm_set1_epi32((int)XXH_PRIME32_1);
-
- size_t i;
- for (i = 0; i < XXH_STRIPE_LEN / sizeof(__m128i); i++) {
-
- /* xacc[i] ^= (xacc[i] >> 47) */
- __m128i const acc_vec = xacc[i];
- __m128i const shifted = _mm_srli_epi64(acc_vec, 47);
- __m128i const data_vec = _mm_xor_si128(acc_vec, shifted);
- /* xacc[i] ^= xsecret[i]; */
- __m128i const key_vec = _mm_loadu_si128(xsecret + i);
- __m128i const data_key = _mm_xor_si128(data_vec, key_vec);
-
- /* xacc[i] *= XXH_PRIME32_1; */
- __m128i const data_key_hi =
- _mm_shuffle_epi32(data_key, _MM_SHUFFLE(0, 3, 0, 1));
- __m128i const prod_lo = _mm_mul_epu32(data_key, prime32);
- __m128i const prod_hi = _mm_mul_epu32(data_key_hi, prime32);
- xacc[i] = _mm_add_epi64(prod_lo, _mm_slli_epi64(prod_hi, 32));
-
- }
-
- }
-
-}
-
-XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_initCustomSecret_sse2(
- void *XXH_RESTRICT customSecret, xxh_u64 seed64) {
-
- XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
- (void)(&XXH_writeLE64);
- {
-
- int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m128i);
-
- #if defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER < 1900
- // MSVC 32bit mode does not support _mm_set_epi64x before 2015
- XXH_ALIGN(16)
- const xxh_i64 seed64x2[2] = {(xxh_i64)seed64, -(xxh_i64)seed64};
- __m128i const seed = _mm_load_si128((__m128i const *)seed64x2);
- #else
- __m128i const seed = _mm_set_epi64x(-(xxh_i64)seed64, (xxh_i64)seed64);
- #endif
- int i;
-
- XXH_ALIGN(64) const float *const src = (float const *)XXH3_kSecret;
- XXH_ALIGN(XXH_SEC_ALIGN) __m128i *dest = (__m128i *)customSecret;
- #if defined(__GNUC__) || defined(__clang__)
- /*
- * On GCC & Clang, marking 'dest' as modified will cause the compiler:
- * - do not extract the secret from sse registers in the internal loop
- * - use less common registers, and avoid pushing these reg into stack
- */
- __asm__("" : "+r"(dest));
- #endif
-
- for (i = 0; i < nbRounds; ++i) {
-
- dest[i] = _mm_add_epi64(_mm_castps_si128(_mm_load_ps(src + i * 4)), seed);
-
- }
-
- }
-
-}
-
-#endif
-
-#if (XXH_VECTOR == XXH_NEON)
-
-XXH_FORCE_INLINE void XXH3_accumulate_512_neon(void *XXH_RESTRICT acc,
- const void *XXH_RESTRICT input,
- const void *XXH_RESTRICT secret,
- XXH3_accWidth_e accWidth) {
-
- XXH_ASSERT((((size_t)acc) & 15) == 0);
- {
-
- XXH_ALIGN(16) uint64x2_t *const xacc = (uint64x2_t *)acc;
- /* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7.
- */
- uint8_t const *const xinput = (const uint8_t *)input;
- uint8_t const *const xsecret = (const uint8_t *)secret;
-
- size_t i;
- for (i = 0; i < XXH_STRIPE_LEN / sizeof(uint64x2_t); i++) {
-
- /* data_vec = xinput[i]; */
- uint8x16_t data_vec = vld1q_u8(xinput + (i * 16));
- /* key_vec = xsecret[i]; */
- uint8x16_t key_vec = vld1q_u8(xsecret + (i * 16));
- uint64x2_t data_key;
- uint32x2_t data_key_lo, data_key_hi;
- if (accWidth == XXH3_acc_64bits) {
-
- /* xacc[i] += data_vec; */
- xacc[i] = vaddq_u64(xacc[i], vreinterpretq_u64_u8(data_vec));
-
- } else { /* XXH3_acc_128bits */
-
- /* xacc[i] += swap(data_vec); */
- uint64x2_t const data64 = vreinterpretq_u64_u8(data_vec);
- uint64x2_t const swapped = vextq_u64(data64, data64, 1);
- xacc[i] = vaddq_u64(xacc[i], swapped);
-
- }
-
- /* data_key = data_vec ^ key_vec; */
- data_key = vreinterpretq_u64_u8(veorq_u8(data_vec, key_vec));
- /* data_key_lo = (uint32x2_t) (data_key & 0xFFFFFFFF);
- * data_key_hi = (uint32x2_t) (data_key >> 32);
- * data_key = UNDEFINED; */
- XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi);
- /* xacc[i] += (uint64x2_t) data_key_lo * (uint64x2_t) data_key_hi; */
- xacc[i] = vmlal_u32(xacc[i], data_key_lo, data_key_hi);
-
- }
-
- }
-
-}
-
-XXH_FORCE_INLINE void XXH3_scrambleAcc_neon(void *XXH_RESTRICT acc,
- const void *XXH_RESTRICT secret) {
-
- XXH_ASSERT((((size_t)acc) & 15) == 0);
-
- {
-
- uint64x2_t * xacc = (uint64x2_t *)acc;
- uint8_t const *xsecret = (uint8_t const *)secret;
- uint32x2_t prime = vdup_n_u32(XXH_PRIME32_1);
-
- size_t i;
- for (i = 0; i < XXH_STRIPE_LEN / sizeof(uint64x2_t); i++) {
-
- /* xacc[i] ^= (xacc[i] >> 47); */
- uint64x2_t acc_vec = xacc[i];
- uint64x2_t shifted = vshrq_n_u64(acc_vec, 47);
- uint64x2_t data_vec = veorq_u64(acc_vec, shifted);
-
- /* xacc[i] ^= xsecret[i]; */
- uint8x16_t key_vec = vld1q_u8(xsecret + (i * 16));
- uint64x2_t data_key = veorq_u64(data_vec, vreinterpretq_u64_u8(key_vec));
-
- /* xacc[i] *= XXH_PRIME32_1 */
- uint32x2_t data_key_lo, data_key_hi;
- /* data_key_lo = (uint32x2_t) (xacc[i] & 0xFFFFFFFF);
- * data_key_hi = (uint32x2_t) (xacc[i] >> 32);
- * xacc[i] = UNDEFINED; */
- XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi);
- { /*
- * prod_hi = (data_key >> 32) * XXH_PRIME32_1;
- *
- * Avoid vmul_u32 + vshll_n_u32 since Clang 6 and 7 will
- * incorrectly "optimize" this:
- * tmp = vmul_u32(vmovn_u64(a), vmovn_u64(b));
- * shifted = vshll_n_u32(tmp, 32);
- * to this:
- * tmp = "vmulq_u64"(a, b); // no such thing!
- * shifted = vshlq_n_u64(tmp, 32);
- *
- * However, unlike SSE, Clang lacks a 64-bit multiply routine
- * for NEON, and it scalarizes two 64-bit multiplies instead.
- *
- * vmull_u32 has the same timing as vmul_u32, and it avoids
- * this bug completely.
- * See https://bugs.llvm.org/show_bug.cgi?id=39967
- */
- uint64x2_t prod_hi = vmull_u32(data_key_hi, prime);
- /* xacc[i] = prod_hi << 32; */
- xacc[i] = vshlq_n_u64(prod_hi, 32);
- /* xacc[i] += (prod_hi & 0xFFFFFFFF) * XXH_PRIME32_1; */
- xacc[i] = vmlal_u32(xacc[i], data_key_lo, prime);
-
- }
-
- }
-
- }
-
-}
-
-#endif
-
-#if (XXH_VECTOR == XXH_VSX)
-
-XXH_FORCE_INLINE void XXH3_accumulate_512_vsx(void *XXH_RESTRICT acc,
- const void *XXH_RESTRICT input,
- const void *XXH_RESTRICT secret,
- XXH3_accWidth_e accWidth) {
-
- xxh_u64x2 *const xacc = (xxh_u64x2 *)acc; /* presumed aligned */
- xxh_u64x2 const *const xinput =
- (xxh_u64x2 const *)input; /* no alignment restriction */
- xxh_u64x2 const *const xsecret =
- (xxh_u64x2 const *)secret; /* no alignment restriction */
- xxh_u64x2 const v32 = {32, 32};
- size_t i;
- for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
-
- /* data_vec = xinput[i]; */
- xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + i);
- /* key_vec = xsecret[i]; */
- xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i);
- xxh_u64x2 const data_key = data_vec ^ key_vec;
- /* shuffled = (data_key << 32) | (data_key >> 32); */
- xxh_u32x4 const shuffled = (xxh_u32x4)vec_rl(data_key, v32);
- /* product = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)shuffled &
- * 0xFFFFFFFF); */
- xxh_u64x2 const product = XXH_vec_mulo((xxh_u32x4)data_key, shuffled);
- xacc[i] += product;
-
- if (accWidth == XXH3_acc_64bits) {
-
- xacc[i] += data_vec;
-
- } else { /* XXH3_acc_128bits */
-
- /* swap high and low halves */
- #ifdef __s390x__
- xxh_u64x2 const data_swapped = vec_permi(data_vec, data_vec, 2);
- #else
- xxh_u64x2 const data_swapped = vec_xxpermdi(data_vec, data_vec, 2);
- #endif
- xacc[i] += data_swapped;
-
- }
-
- }
-
-}
-
-XXH_FORCE_INLINE void XXH3_scrambleAcc_vsx(void *XXH_RESTRICT acc,
- const void *XXH_RESTRICT secret) {
-
- XXH_ASSERT((((size_t)acc) & 15) == 0);
-
- {
-
- xxh_u64x2 *const xacc = (xxh_u64x2 *)acc;
- const xxh_u64x2 *const xsecret = (const xxh_u64x2 *)secret;
- /* constants */
- xxh_u64x2 const v32 = {32, 32};
- xxh_u64x2 const v47 = {47, 47};
- xxh_u32x4 const prime = {XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1,
- XXH_PRIME32_1};
- size_t i;
- for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
-
- /* xacc[i] ^= (xacc[i] >> 47); */
- xxh_u64x2 const acc_vec = xacc[i];
- xxh_u64x2 const data_vec = acc_vec ^ (acc_vec >> v47);
-
- /* xacc[i] ^= xsecret[i]; */
- xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i);
- xxh_u64x2 const data_key = data_vec ^ key_vec;
-
- /* xacc[i] *= XXH_PRIME32_1 */
- /* prod_lo = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)prime &
- * 0xFFFFFFFF); */
- xxh_u64x2 const prod_even = XXH_vec_mule((xxh_u32x4)data_key, prime);
- /* prod_hi = ((xxh_u64x2)data_key >> 32) * ((xxh_u64x2)prime >> 32); */
- xxh_u64x2 const prod_odd = XXH_vec_mulo((xxh_u32x4)data_key, prime);
- xacc[i] = prod_odd + (prod_even << v32);
-
- }
-
- }
-
-}
-
-#endif
-
-/* scalar variants - universal */
-
-XXH_FORCE_INLINE void XXH3_accumulate_512_scalar(
- void *XXH_RESTRICT acc, const void *XXH_RESTRICT input,
- const void *XXH_RESTRICT secret, XXH3_accWidth_e accWidth) {
-
- XXH_ALIGN(XXH_ACC_ALIGN)
- xxh_u64 *const xacc = (xxh_u64 *)acc; /* presumed aligned */
- const xxh_u8 *const xinput =
- (const xxh_u8 *)input; /* no alignment restriction */
- const xxh_u8 *const xsecret =
- (const xxh_u8 *)secret; /* no alignment restriction */
- size_t i;
- XXH_ASSERT(((size_t)acc & (XXH_ACC_ALIGN - 1)) == 0);
- for (i = 0; i < XXH_ACC_NB; i++) {
-
- xxh_u64 const data_val = XXH_readLE64(xinput + 8 * i);
- xxh_u64 const data_key = data_val ^ XXH_readLE64(xsecret + i * 8);
-
- if (accWidth == XXH3_acc_64bits) {
-
- xacc[i] += data_val;
-
- } else {
-
- xacc[i ^ 1] += data_val; /* swap adjacent lanes */
-
- }
-
- xacc[i] += XXH_mult32to64(data_key & 0xFFFFFFFF, data_key >> 32);
-
- }
-
-}
-
-XXH_FORCE_INLINE void XXH3_scrambleAcc_scalar(void *XXH_RESTRICT acc,
- const void *XXH_RESTRICT secret) {
-
- XXH_ALIGN(XXH_ACC_ALIGN)
- xxh_u64 *const xacc = (xxh_u64 *)acc; /* presumed aligned */
- const xxh_u8 *const xsecret =
- (const xxh_u8 *)secret; /* no alignment restriction */
- size_t i;
- XXH_ASSERT((((size_t)acc) & (XXH_ACC_ALIGN - 1)) == 0);
- for (i = 0; i < XXH_ACC_NB; i++) {
-
- xxh_u64 const key64 = XXH_readLE64(xsecret + 8 * i);
- xxh_u64 acc64 = xacc[i];
- acc64 = XXH_xorshift64(acc64, 47);
- acc64 ^= key64;
- acc64 *= XXH_PRIME32_1;
- xacc[i] = acc64;
-
- }
-
-}
-
-XXH_FORCE_INLINE void XXH3_initCustomSecret_scalar(
- void *XXH_RESTRICT customSecret, xxh_u64 seed64) {
-
- /*
- * We need a separate pointer for the hack below,
- * which requires a non-const pointer.
- * Any decent compiler will optimize this out otherwise.
- */
- const xxh_u8 *kSecretPtr = XXH3_kSecret;
- XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
-
-#if defined(__clang__) && defined(__aarch64__)
- /*
- * UGLY HACK:
- * Clang generates a bunch of MOV/MOVK pairs for aarch64, and they are
- * placed sequentially, in order, at the top of the unrolled loop.
- *
- * While MOVK is great for generating constants (2 cycles for a 64-bit
- * constant compared to 4 cycles for LDR), long MOVK chains stall the
- * integer pipelines:
- * I L S
- * MOVK
- * MOVK
- * MOVK
- * MOVK
- * ADD
- * SUB STR
- * STR
- * By forcing loads from memory (as the asm line causes Clang to assume
- * that XXH3_kSecretPtr has been changed), the pipelines are used more
- * efficiently:
- * I L S
- * LDR
- * ADD LDR
- * SUB STR
- * STR
- * XXH3_64bits_withSeed, len == 256, Snapdragon 835
- * without hack: 2654.4 MB/s
- * with hack: 3202.9 MB/s
- */
- __asm__("" : "+r"(kSecretPtr));
-#endif
- /*
- * Note: in debug mode, this overrides the asm optimization
- * and Clang will emit MOVK chains again.
- */
- XXH_ASSERT(kSecretPtr == XXH3_kSecret);
-
- {
-
- int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16;
- int i;
- for (i = 0; i < nbRounds; i++) {
-
- /*
- * The asm hack causes Clang to assume that kSecretPtr aliases with
- * customSecret, and on aarch64, this prevented LDP from merging two
- * loads together for free. Putting the loads together before the stores
- * properly generates LDP.
- */
- xxh_u64 lo = XXH_readLE64(kSecretPtr + 16 * i) + seed64;
- xxh_u64 hi = XXH_readLE64(kSecretPtr + 16 * i + 8) - seed64;
- XXH_writeLE64((xxh_u8 *)customSecret + 16 * i, lo);
- XXH_writeLE64((xxh_u8 *)customSecret + 16 * i + 8, hi);
-
- }
-
- }
-
-}
-
-typedef void (*XXH3_f_accumulate_512)(void *XXH_RESTRICT, const void *,
- const void *, XXH3_accWidth_e);
-typedef void (*XXH3_f_scrambleAcc)(void *XXH_RESTRICT, const void *);
-typedef void (*XXH3_f_initCustomSecret)(void *XXH_RESTRICT, xxh_u64);
-
-#if (XXH_VECTOR == XXH_AVX512)
-
- #define XXH3_accumulate_512 XXH3_accumulate_512_avx512
- #define XXH3_scrambleAcc XXH3_scrambleAcc_avx512
- #define XXH3_initCustomSecret XXH3_initCustomSecret_avx512
-
-#elif (XXH_VECTOR == XXH_AVX2)
-
- #define XXH3_accumulate_512 XXH3_accumulate_512_avx2
- #define XXH3_scrambleAcc XXH3_scrambleAcc_avx2
- #define XXH3_initCustomSecret XXH3_initCustomSecret_avx2
-
-#elif (XXH_VECTOR == XXH_SSE2)
-
- #define XXH3_accumulate_512 XXH3_accumulate_512_sse2
- #define XXH3_scrambleAcc XXH3_scrambleAcc_sse2
- #define XXH3_initCustomSecret XXH3_initCustomSecret_sse2
-
-#elif (XXH_VECTOR == XXH_NEON)
-
- #define XXH3_accumulate_512 XXH3_accumulate_512_neon
- #define XXH3_scrambleAcc XXH3_scrambleAcc_neon
- #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
-
-#elif (XXH_VECTOR == XXH_VSX)
-
- #define XXH3_accumulate_512 XXH3_accumulate_512_vsx
- #define XXH3_scrambleAcc XXH3_scrambleAcc_vsx
- #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
-
-#else /* scalar */
-
- #define XXH3_accumulate_512 XXH3_accumulate_512_scalar
- #define XXH3_scrambleAcc XXH3_scrambleAcc_scalar
- #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
-
-#endif
-
-#ifndef XXH_PREFETCH_DIST
- #ifdef __clang__
- #define XXH_PREFETCH_DIST 320
- #else
- #if (XXH_VECTOR == XXH_AVX512)
- #define XXH_PREFETCH_DIST 512
- #else
- #define XXH_PREFETCH_DIST 384
- #endif
- #endif /* __clang__ */
-#endif /* XXH_PREFETCH_DIST */
-
-/*
- * XXH3_accumulate()
- * Loops over XXH3_accumulate_512().
- * Assumption: nbStripes will not overflow the secret size
- */
-XXH_FORCE_INLINE void XXH3_accumulate(xxh_u64 *XXH_RESTRICT acc,
- const xxh_u8 *XXH_RESTRICT input,
- const xxh_u8 *XXH_RESTRICT secret,
- size_t nbStripes,
- XXH3_accWidth_e accWidth,
- XXH3_f_accumulate_512 f_acc512) {
-
- size_t n;
- for (n = 0; n < nbStripes; n++) {
-
- const xxh_u8 *const in = input + n * XXH_STRIPE_LEN;
- XXH_PREFETCH(in + XXH_PREFETCH_DIST);
- f_acc512(acc, in, secret + n * XXH_SECRET_CONSUME_RATE, accWidth);
-
- }
-
-}
-
-XXH_FORCE_INLINE void XXH3_hashLong_internal_loop(
- xxh_u64 *XXH_RESTRICT acc, const xxh_u8 *XXH_RESTRICT input, size_t len,
- const xxh_u8 *XXH_RESTRICT secret, size_t secretSize,
- XXH3_accWidth_e accWidth, XXH3_f_accumulate_512 f_acc512,
- XXH3_f_scrambleAcc f_scramble) {
-
- size_t const nb_rounds =
- (secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE;
- size_t const block_len = XXH_STRIPE_LEN * nb_rounds;
- size_t const nb_blocks = len / block_len;
-
- size_t n;
-
- XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
-
- for (n = 0; n < nb_blocks; n++) {
-
- XXH3_accumulate(acc, input + n * block_len, secret, nb_rounds, accWidth,
- f_acc512);
- f_scramble(acc, secret + secretSize - XXH_STRIPE_LEN);
-
- }
-
- /* last partial block */
- XXH_ASSERT(len > XXH_STRIPE_LEN);
- {
-
- size_t const nbStripes = (len - (block_len * nb_blocks)) / XXH_STRIPE_LEN;
- XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE));
- XXH3_accumulate(acc, input + nb_blocks * block_len, secret, nbStripes,
- accWidth, f_acc512);
-
- /* last stripe */
- if (len & (XXH_STRIPE_LEN - 1)) {
-
- const xxh_u8 *const p = input + len - XXH_STRIPE_LEN;
- /* Do not align on 8, so that the secret is different from the scrambler
- */
-#define XXH_SECRET_LASTACC_START 7
- f_acc512(acc, p,
- secret + secretSize - XXH_STRIPE_LEN - XXH_SECRET_LASTACC_START,
- accWidth);
-
- }
-
- }
-
-}
-
-XXH_FORCE_INLINE xxh_u64 XXH3_mix2Accs(const xxh_u64 *XXH_RESTRICT acc,
- const xxh_u8 *XXH_RESTRICT secret) {
-
- return XXH3_mul128_fold64(acc[0] ^ XXH_readLE64(secret),
- acc[1] ^ XXH_readLE64(secret + 8));
-
-}
-
-static XXH64_hash_t XXH3_mergeAccs(const xxh_u64 *XXH_RESTRICT acc,
- const xxh_u8 *XXH_RESTRICT secret,
- xxh_u64 start) {
-
- xxh_u64 result64 = start;
- size_t i = 0;
-
- for (i = 0; i < 4; i++) {
-
- result64 += XXH3_mix2Accs(acc + 2 * i, secret + 16 * i);
-#if defined(__clang__) /* Clang */ \
- && (defined(__arm__) || defined(__thumb__)) /* ARMv7 */ \
- && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \
- && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */
- /*
- * UGLY HACK:
- * Prevent autovectorization on Clang ARMv7-a. Exact same problem as
- * the one in XXH3_len_129to240_64b. Speeds up shorter keys > 240b.
- * XXH3_64bits, len == 256, Snapdragon 835:
- * without hack: 2063.7 MB/s
- * with hack: 2560.7 MB/s
- */
- __asm__("" : "+r"(result64));
-#endif
-
- }
-
- return XXH3_avalanche(result64);
-
-}
-
-#define XXH3_INIT_ACC \
- { \
- \
- XXH_PRIME32_3, XXH_PRIME64_1, XXH_PRIME64_2, XXH_PRIME64_3, XXH_PRIME64_4, \
- XXH_PRIME32_2, XXH_PRIME64_5, XXH_PRIME32_1 \
- \
- }
-
-XXH_FORCE_INLINE XXH64_hash_t XXH3_hashLong_64b_internal(
- const xxh_u8 *XXH_RESTRICT input, size_t len,
- const xxh_u8 *XXH_RESTRICT secret, size_t secretSize,
- XXH3_f_accumulate_512 f_acc512, XXH3_f_scrambleAcc f_scramble) {
-
- XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
-
- XXH3_hashLong_internal_loop(acc, input, len, secret, secretSize,
- XXH3_acc_64bits, f_acc512, f_scramble);
-
- /* converge into final hash */
- XXH_STATIC_ASSERT(sizeof(acc) == 64);
- /* do not align on 8, so that the secret is different from the accumulator */
-#define XXH_SECRET_MERGEACCS_START 11
- XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
- return XXH3_mergeAccs(acc, secret + XXH_SECRET_MERGEACCS_START,
- (xxh_u64)len * XXH_PRIME64_1);
-
-}
-
-/*
- * It's important for performance that XXH3_hashLong is not inlined.
- */
-XXH_NO_INLINE XXH64_hash_t XXH3_hashLong_64b_withSecret(
- const xxh_u8 *XXH_RESTRICT input, size_t len, XXH64_hash_t seed64,
- const xxh_u8 *XXH_RESTRICT secret, size_t secretLen) {
-
- (void)seed64;
- return XXH3_hashLong_64b_internal(input, len, secret, secretLen,
- XXH3_accumulate_512, XXH3_scrambleAcc);
-
-}
-
-/*
- * XXH3_hashLong_64b_withSeed():
- * Generate a custom key based on alteration of default XXH3_kSecret with the
- * seed, and then use this key for long mode hashing.
- *
- * This operation is decently fast but nonetheless costs a little bit of time.
- * Try to avoid it whenever possible (typically when seed==0).
- *
- * It's important for performance that XXH3_hashLong is not inlined. Not sure
- * why (uop cache maybe?), but the difference is large and easily measurable.
- */
-XXH_FORCE_INLINE XXH64_hash_t XXH3_hashLong_64b_withSeed_internal(
- const xxh_u8 *input, size_t len, XXH64_hash_t seed,
- XXH3_f_accumulate_512 f_acc512, XXH3_f_scrambleAcc f_scramble,
- XXH3_f_initCustomSecret f_initSec) {
-
- if (seed == 0)
- return XXH3_hashLong_64b_internal(
- input, len, XXH3_kSecret, sizeof(XXH3_kSecret), f_acc512, f_scramble);
- {
-
- XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
- f_initSec(secret, seed);
- return XXH3_hashLong_64b_internal(input, len, secret, sizeof(secret),
- f_acc512, f_scramble);
-
- }
-
-}
-
-/*
- * It's important for performance that XXH3_hashLong is not inlined.
- */
-XXH_NO_INLINE XXH64_hash_t XXH3_hashLong_64b_withSeed(const xxh_u8 *input,
- size_t len,
- XXH64_hash_t seed,
- const xxh_u8 *secret,
- size_t secretLen) {
-
- (void)secret;
- (void)secretLen;
- return XXH3_hashLong_64b_withSeed_internal(
- input, len, seed, XXH3_accumulate_512, XXH3_scrambleAcc,
- XXH3_initCustomSecret);
-
-}
-
-typedef XXH64_hash_t (*XXH3_hashLong64_f)(const xxh_u8 *XXH_RESTRICT, size_t,
- XXH64_hash_t,
- const xxh_u8 *XXH_RESTRICT, size_t);
-
-XXH_FORCE_INLINE XXH64_hash_t
-XXH3_64bits_internal(const void *XXH_RESTRICT input, size_t len,
- XXH64_hash_t seed64, const void *XXH_RESTRICT secret,
- size_t secretLen, XXH3_hashLong64_f f_hashLong) {
-
- XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
- /*
- * If an action is to be taken if `secretLen` condition is not respected,
- * it should be done here.
- * For now, it's a contract pre-condition.
- * Adding a check and a branch here would cost performance at every hash.
- * Also, note that function signature doesn't offer room to return an error.
- */
- if (len <= 16)
- return XXH3_len_0to16_64b((const xxh_u8 *)input, len,
- (const xxh_u8 *)secret, seed64);
- if (len <= 128)
- return XXH3_len_17to128_64b((const xxh_u8 *)input, len,
- (const xxh_u8 *)secret, secretLen, seed64);
- if (len <= XXH3_MIDSIZE_MAX)
- return XXH3_len_129to240_64b((const xxh_u8 *)input, len,
- (const xxh_u8 *)secret, secretLen, seed64);
- return f_hashLong((const xxh_u8 *)input, len, seed64, (const xxh_u8 *)secret,
- secretLen);
-
-}
-
-/* === Public entry point === */
-
-XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void *input, size_t len) {
-
- return XXH3_64bits_internal(input, len, 0, XXH3_kSecret, sizeof(XXH3_kSecret),
- XXH3_hashLong_64b_withSecret);
-
-}
-
-XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSecret(const void *input,
- size_t len,
- const void *secret,
- size_t secretSize) {
-
- return XXH3_64bits_internal(input, len, 0, secret, secretSize,
- XXH3_hashLong_64b_withSecret);
-
-}
-
-XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSeed(const void *input, size_t len,
- XXH64_hash_t seed) {
-
- return XXH3_64bits_internal(input, len, seed, XXH3_kSecret,
- sizeof(XXH3_kSecret), XXH3_hashLong_64b_withSeed);
-
-}
-
-/* === XXH3 streaming === */
-
-/*
- * Malloc's a pointer that is always aligned to align.
- *
- * This must be freed with `XXH_alignedFree()`.
- *
- * malloc typically guarantees 16 byte alignment on 64-bit systems and 8 byte
- * alignment on 32-bit. This isn't enough for the 32 byte aligned loads in AVX2
- * or on 32-bit, the 16 byte aligned loads in SSE2 and NEON.
- *
- * This underalignment previously caused a rather obvious crash which went
- * completely unnoticed due to XXH3_createState() not actually being tested.
- * Credit to RedSpah for noticing this bug.
- *
- * The alignment is done manually: Functions like posix_memalign or _mm_malloc
- * are avoided: To maintain portability, we would have to write a fallback
- * like this anyways, and besides, testing for the existence of library
- * functions without relying on external build tools is impossible.
- *
- * The method is simple: Overallocate, manually align, and store the offset
- * to the original behind the returned pointer.
- *
- * Align must be a power of 2 and 8 <= align <= 128.
- */
-static void *XXH_alignedMalloc(size_t s, size_t align) {
-
- XXH_ASSERT(align <= 128 && align >= 8); /* range check */
- XXH_ASSERT((align & (align - 1)) == 0); /* power of 2 */
- XXH_ASSERT(s != 0 && s < (s + align)); /* empty/overflow */
- { /* Overallocate to make room for manual realignment and an offset byte */
- xxh_u8 *base = (xxh_u8 *)XXH_malloc(s + align);
- if (base != NULL) {
-
- /*
- * Get the offset needed to align this pointer.
- *
- * Even if the returned pointer is aligned, there will always be
- * at least one byte to store the offset to the original pointer.
- */
- size_t offset = align - ((size_t)base & (align - 1)); /* base % align */
- /* Add the offset for the now-aligned pointer */
- xxh_u8 *ptr = base + offset;
-
- XXH_ASSERT((size_t)ptr % align == 0);
-
- /* Store the offset immediately before the returned pointer. */
- ptr[-1] = (xxh_u8)offset;
- return ptr;
-
- }
-
- return NULL;
-
- }
-
-}
-
-/*
- * Frees an aligned pointer allocated by XXH_alignedMalloc(). Don't pass
- * normal malloc'd pointers, XXH_alignedMalloc has a specific data layout.
- */
-static void XXH_alignedFree(void *p) {
-
- if (p != NULL) {
-
- xxh_u8 *ptr = (xxh_u8 *)p;
- /* Get the offset byte we added in XXH_malloc. */
- xxh_u8 offset = ptr[-1];
- /* Free the original malloc'd pointer */
- xxh_u8 *base = ptr - offset;
- XXH_free(base);
-
- }
-
-}
-
-XXH_PUBLIC_API XXH3_state_t *XXH3_createState(void) {
-
- return (XXH3_state_t *)XXH_alignedMalloc(sizeof(XXH3_state_t), 64);
-
-}
-
-XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t *statePtr) {
-
- XXH_alignedFree(statePtr);
- return XXH_OK;
-
-}
-
-XXH_PUBLIC_API void XXH3_copyState(XXH3_state_t * dst_state,
- const XXH3_state_t *src_state) {
-
- memcpy(dst_state, src_state, sizeof(*dst_state));
-
-}
-
-static void XXH3_64bits_reset_internal(XXH3_state_t *statePtr,
- XXH64_hash_t seed, const xxh_u8 *secret,
- size_t secretSize) {
-
- XXH_ASSERT(statePtr != NULL);
- memset(statePtr, 0, sizeof(*statePtr));
- statePtr->acc[0] = XXH_PRIME32_3;
- statePtr->acc[1] = XXH_PRIME64_1;
- statePtr->acc[2] = XXH_PRIME64_2;
- statePtr->acc[3] = XXH_PRIME64_3;
- statePtr->acc[4] = XXH_PRIME64_4;
- statePtr->acc[5] = XXH_PRIME32_2;
- statePtr->acc[6] = XXH_PRIME64_5;
- statePtr->acc[7] = XXH_PRIME32_1;
- statePtr->seed = seed;
- XXH_ASSERT(secret != NULL);
- statePtr->extSecret = secret;
- XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
- statePtr->secretLimit = secretSize - XXH_STRIPE_LEN;
- statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE;
-
-}
-
-XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH3_state_t *statePtr) {
-
- if (statePtr == NULL) return XXH_ERROR;
- XXH3_64bits_reset_internal(statePtr, 0, XXH3_kSecret,
- XXH_SECRET_DEFAULT_SIZE);
- return XXH_OK;
-
-}
-
-XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(
- XXH3_state_t *statePtr, const void *secret, size_t secretSize) {
-
- if (statePtr == NULL) return XXH_ERROR;
- XXH3_64bits_reset_internal(statePtr, 0, (const xxh_u8 *)secret, secretSize);
- if (secret == NULL) return XXH_ERROR;
- if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
- return XXH_OK;
-
-}
-
-XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH3_state_t *statePtr,
- XXH64_hash_t seed) {
-
- if (statePtr == NULL) return XXH_ERROR;
- XXH3_64bits_reset_internal(statePtr, seed, XXH3_kSecret,
- XXH_SECRET_DEFAULT_SIZE);
- XXH3_initCustomSecret(statePtr->customSecret, seed);
- statePtr->extSecret = NULL;
- return XXH_OK;
-
-}
-
-XXH_FORCE_INLINE void XXH3_consumeStripes(
- xxh_u64 *XXH_RESTRICT acc, size_t *XXH_RESTRICT nbStripesSoFarPtr,
- size_t nbStripesPerBlock, const xxh_u8 *XXH_RESTRICT input,
- size_t totalStripes, const xxh_u8 *XXH_RESTRICT secret, size_t secretLimit,
- XXH3_accWidth_e accWidth, XXH3_f_accumulate_512 f_acc512,
- XXH3_f_scrambleAcc f_scramble) {
-
- XXH_ASSERT(*nbStripesSoFarPtr < nbStripesPerBlock);
- if (nbStripesPerBlock - *nbStripesSoFarPtr <= totalStripes) {
-
- /* need a scrambling operation */
- size_t const nbStripes = nbStripesPerBlock - *nbStripesSoFarPtr;
- XXH3_accumulate(acc, input,
- secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE,
- nbStripes, accWidth, f_acc512);
- f_scramble(acc, secret + secretLimit);
- XXH3_accumulate(acc, input + nbStripes * XXH_STRIPE_LEN, secret,
- totalStripes - nbStripes, accWidth, f_acc512);
- *nbStripesSoFarPtr = totalStripes - nbStripes;
-
- } else {
-
- XXH3_accumulate(acc, input,
- secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE,
- totalStripes, accWidth, f_acc512);
- *nbStripesSoFarPtr += totalStripes;
-
- }
-
-}
-
-/*
- * Both XXH3_64bits_update and XXH3_128bits_update use this routine.
- */
-XXH_FORCE_INLINE XXH_errorcode XXH3_update(XXH3_state_t *state,
- const xxh_u8 *input, size_t len,
- XXH3_accWidth_e accWidth,
- XXH3_f_accumulate_512 f_acc512,
- XXH3_f_scrambleAcc f_scramble) {
-
- if (input == NULL)
-#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && \
- (XXH_ACCEPT_NULL_INPUT_POINTER >= 1)
- return XXH_OK;
-#else
- return XXH_ERROR;
-#endif
-
- {
-
- const xxh_u8 *const bEnd = input + len;
- const unsigned char *const secret =
- (state->extSecret == NULL) ? state->customSecret : state->extSecret;
-
- state->totalLen += len;
-
- if (state->bufferedSize + len <=
- XXH3_INTERNALBUFFER_SIZE) { /* fill in tmp buffer */
- XXH_memcpy(state->buffer + state->bufferedSize, input, len);
- state->bufferedSize += (XXH32_hash_t)len;
- return XXH_OK;
-
- }
-
- /* input is now > XXH3_INTERNALBUFFER_SIZE */
-
-#define XXH3_INTERNALBUFFER_STRIPES (XXH3_INTERNALBUFFER_SIZE / XXH_STRIPE_LEN)
- XXH_STATIC_ASSERT(XXH3_INTERNALBUFFER_SIZE % XXH_STRIPE_LEN ==
- 0); /* clean multiple */
-
- /*
- * There is some input left inside the internal buffer.
- * Fill it, then consume it.
- */
- if (state->bufferedSize) {
-
- size_t const loadSize = XXH3_INTERNALBUFFER_SIZE - state->bufferedSize;
- XXH_memcpy(state->buffer + state->bufferedSize, input, loadSize);
- input += loadSize;
- XXH3_consumeStripes(state->acc, &state->nbStripesSoFar,
- state->nbStripesPerBlock, state->buffer,
- XXH3_INTERNALBUFFER_STRIPES, secret,
- state->secretLimit, accWidth, f_acc512, f_scramble);
- state->bufferedSize = 0;
-
- }
-
- /* Consume input by full buffer quantities */
- if (input + XXH3_INTERNALBUFFER_SIZE <= bEnd) {
-
- const xxh_u8 *const limit = bEnd - XXH3_INTERNALBUFFER_SIZE;
- do {
-
- XXH3_consumeStripes(state->acc, &state->nbStripesSoFar,
- state->nbStripesPerBlock, input,
- XXH3_INTERNALBUFFER_STRIPES, secret,
- state->secretLimit, accWidth, f_acc512, f_scramble);
- input += XXH3_INTERNALBUFFER_SIZE;
-
- } while (input <= limit);
-
- /* for last partial stripe */
- memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN,
- input - XXH_STRIPE_LEN, XXH_STRIPE_LEN);
-
- }
-
- if (input < bEnd) { /* Some remaining input: buffer it */
- XXH_memcpy(state->buffer, input, (size_t)(bEnd - input));
- state->bufferedSize = (XXH32_hash_t)(bEnd - input);
-
- }
-
- }
-
- return XXH_OK;
-
-}
-
-XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update(XXH3_state_t *state,
- const void *input, size_t len) {
-
- return XXH3_update(state, (const xxh_u8 *)input, len, XXH3_acc_64bits,
- XXH3_accumulate_512, XXH3_scrambleAcc);
-
-}
-
-XXH_FORCE_INLINE void XXH3_digest_long(XXH64_hash_t * acc,
- const XXH3_state_t * state,
- const unsigned char *secret,
- XXH3_accWidth_e accWidth) {
-
- /*
- * Digest on a local copy. This way, the state remains unaltered, and it can
- * continue ingesting more input afterwards.
- */
- memcpy(acc, state->acc, sizeof(state->acc));
- if (state->bufferedSize >= XXH_STRIPE_LEN) {
-
- size_t const nbStripes = state->bufferedSize / XXH_STRIPE_LEN;
- size_t nbStripesSoFar = state->nbStripesSoFar;
- XXH3_consumeStripes(acc, &nbStripesSoFar, state->nbStripesPerBlock,
- state->buffer, nbStripes, secret, state->secretLimit,
- accWidth, XXH3_accumulate_512, XXH3_scrambleAcc);
- if (state->bufferedSize % XXH_STRIPE_LEN) { /* one last partial stripe */
- XXH3_accumulate_512(
- acc, state->buffer + state->bufferedSize - XXH_STRIPE_LEN,
- secret + state->secretLimit - XXH_SECRET_LASTACC_START, accWidth);
-
- }
-
- } else { /* bufferedSize < XXH_STRIPE_LEN */
-
- if (state->bufferedSize) { /* one last stripe */
- xxh_u8 lastStripe[XXH_STRIPE_LEN];
- size_t const catchupSize = XXH_STRIPE_LEN - state->bufferedSize;
- memcpy(lastStripe, state->buffer + sizeof(state->buffer) - catchupSize,
- catchupSize);
- memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize);
- XXH3_accumulate_512(
- acc, lastStripe,
- secret + state->secretLimit - XXH_SECRET_LASTACC_START, accWidth);
-
- }
-
- }
-
-}
-
-XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest(const XXH3_state_t *state) {
-
- const unsigned char *const secret =
- (state->extSecret == NULL) ? state->customSecret : state->extSecret;
- if (state->totalLen > XXH3_MIDSIZE_MAX) {
-
- XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
- XXH3_digest_long(acc, state, secret, XXH3_acc_64bits);
- return XXH3_mergeAccs(acc, secret + XXH_SECRET_MERGEACCS_START,
- (xxh_u64)state->totalLen * XXH_PRIME64_1);
-
- }
-
- /* totalLen <= XXH3_MIDSIZE_MAX: digesting a short input */
- if (state->seed)
- return XXH3_64bits_withSeed(state->buffer, (size_t)state->totalLen,
- state->seed);
- return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen),
- secret, state->secretLimit + XXH_STRIPE_LEN);
-
-}
-
-#define XXH_MIN(x, y) (((x) > (y)) ? (y) : (x))
-
-XXH_PUBLIC_API void XXH3_generateSecret(void * secretBuffer,
- const void *customSeed,
- size_t customSeedSize) {
-
- XXH_ASSERT(secretBuffer != NULL);
- if (customSeedSize == 0) {
-
- memcpy(secretBuffer, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE);
- return;
-
- }
-
- XXH_ASSERT(customSeed != NULL);
-
- {
-
- size_t const segmentSize = sizeof(XXH128_hash_t);
- size_t const nbSegments = XXH_SECRET_DEFAULT_SIZE / segmentSize;
- XXH128_canonical_t scrambler;
- XXH64_hash_t seeds[12];
- size_t segnb;
- XXH_ASSERT(nbSegments == 12);
- XXH_ASSERT(segmentSize * nbSegments ==
- XXH_SECRET_DEFAULT_SIZE); /* exact multiple */
- XXH128_canonicalFromHash(&scrambler, XXH128(customSeed, customSeedSize, 0));
-
- /*
- * Copy customSeed to seeds[], truncating or repeating as necessary.
- */
- {
-
- size_t toFill = XXH_MIN(customSeedSize, sizeof(seeds));
- size_t filled = toFill;
- memcpy(seeds, customSeed, toFill);
- while (filled < sizeof(seeds)) {
-
- toFill = XXH_MIN(filled, sizeof(seeds) - filled);
- memcpy((char *)seeds + filled, seeds, toFill);
- filled += toFill;
-
- }
-
- }
-
- /* generate secret */
- memcpy(secretBuffer, &scrambler, sizeof(scrambler));
- for (segnb = 1; segnb < nbSegments; segnb++) {
-
- size_t const segmentStart = segnb * segmentSize;
- XXH128_canonical_t segment;
- XXH128_canonicalFromHash(&segment,
- XXH128(&scrambler, sizeof(scrambler),
- XXH_readLE64(seeds + segnb) + segnb));
- memcpy((char *)secretBuffer + segmentStart, &segment, sizeof(segment));
-
- }
-
- }
-
-}
-
-/* ==========================================
- * XXH3 128 bits (a.k.a XXH128)
- * ==========================================
- * XXH3's 128-bit variant has better mixing and strength than the 64-bit
- * variant, even without counting the significantly larger output size.
- *
- * For example, extra steps are taken to avoid the seed-dependent collisions
- * in 17-240 byte inputs (See XXH3_mix16B and XXH128_mix32B).
- *
- * This strength naturally comes at the cost of some speed, especially on short
- * lengths. Note that longer hashes are about as fast as the 64-bit version
- * due to it using only a slight modification of the 64-bit loop.
- *
- * XXH128 is also more oriented towards 64-bit machines. It is still extremely
- * fast for a _128-bit_ hash on 32-bit (it usually clears XXH64).
- */
-
-XXH_FORCE_INLINE XXH128_hash_t XXH3_len_1to3_128b(const xxh_u8 *input,
- size_t len,
- const xxh_u8 *secret,
- XXH64_hash_t seed) {
-
- /* A doubled version of 1to3_64b with different constants. */
- XXH_ASSERT(input != NULL);
- XXH_ASSERT(1 <= len && len <= 3);
- XXH_ASSERT(secret != NULL);
- /*
- * len = 1: combinedl = { input[0], 0x01, input[0], input[0] }
- * len = 2: combinedl = { input[1], 0x02, input[0], input[1] }
- * len = 3: combinedl = { input[2], 0x03, input[0], input[1] }
- */
- {
-
- xxh_u8 const c1 = input[0];
- xxh_u8 const c2 = input[len >> 1];
- xxh_u8 const c3 = input[len - 1];
- xxh_u32 const combinedl = ((xxh_u32)c1 << 16) | ((xxh_u32)c2 << 24) |
- ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8);
- xxh_u32 const combinedh = XXH_rotl32(XXH_swap32(combinedl), 13);
- xxh_u64 const bitflipl =
- (XXH_readLE32(secret) ^ XXH_readLE32(secret + 4)) + seed;
- xxh_u64 const bitfliph =
- (XXH_readLE32(secret + 8) ^ XXH_readLE32(secret + 12)) - seed;
- xxh_u64 const keyed_lo = (xxh_u64)combinedl ^ bitflipl;
- xxh_u64 const keyed_hi = (xxh_u64)combinedh ^ bitfliph;
- xxh_u64 const mixedl = keyed_lo * XXH_PRIME64_1;
- xxh_u64 const mixedh = keyed_hi * XXH_PRIME64_5;
- XXH128_hash_t h128;
- h128.low64 = XXH3_avalanche(mixedl);
- h128.high64 = XXH3_avalanche(mixedh);
- return h128;
-
- }
-
-}
-
-XXH_FORCE_INLINE XXH128_hash_t XXH3_len_4to8_128b(const xxh_u8 *input,
- size_t len,
- const xxh_u8 *secret,
- XXH64_hash_t seed) {
-
- XXH_ASSERT(input != NULL);
- XXH_ASSERT(secret != NULL);
- XXH_ASSERT(4 <= len && len <= 8);
- seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
- {
-
- xxh_u32 const input_lo = XXH_readLE32(input);
- xxh_u32 const input_hi = XXH_readLE32(input + len - 4);
- xxh_u64 const input_64 = input_lo + ((xxh_u64)input_hi << 32);
- xxh_u64 const bitflip =
- (XXH_readLE64(secret + 16) ^ XXH_readLE64(secret + 24)) + seed;
- xxh_u64 const keyed = input_64 ^ bitflip;
-
- /* Shift len to the left to ensure it is even, this avoids even multiplies.
- */
- XXH128_hash_t m128 = XXH_mult64to128(keyed, XXH_PRIME64_1 + (len << 2));
-
- m128.high64 += (m128.low64 << 1);
- m128.low64 ^= (m128.high64 >> 3);
-
- m128.low64 = XXH_xorshift64(m128.low64, 35);
- m128.low64 *= 0x9FB21C651E98DF25ULL;
- m128.low64 = XXH_xorshift64(m128.low64, 28);
- m128.high64 = XXH3_avalanche(m128.high64);
- return m128;
-
- }
-
-}
-
-XXH_FORCE_INLINE XXH128_hash_t XXH3_len_9to16_128b(const xxh_u8 *input,
- size_t len,
- const xxh_u8 *secret,
- XXH64_hash_t seed) {
-
- XXH_ASSERT(input != NULL);
- XXH_ASSERT(secret != NULL);
- XXH_ASSERT(9 <= len && len <= 16);
- {
-
- xxh_u64 const bitflipl =
- (XXH_readLE64(secret + 32) ^ XXH_readLE64(secret + 40)) - seed;
- xxh_u64 const bitfliph =
- (XXH_readLE64(secret + 48) ^ XXH_readLE64(secret + 56)) + seed;
- xxh_u64 const input_lo = XXH_readLE64(input);
- xxh_u64 input_hi = XXH_readLE64(input + len - 8);
- XXH128_hash_t m128 =
- XXH_mult64to128(input_lo ^ input_hi ^ bitflipl, XXH_PRIME64_1);
- /*
- * Put len in the middle of m128 to ensure that the length gets mixed to
- * both the low and high bits in the 128x64 multiply below.
- */
- m128.low64 += (xxh_u64)(len - 1) << 54;
- input_hi ^= bitfliph;
- /*
- * Add the high 32 bits of input_hi to the high 32 bits of m128, then
- * add the long product of the low 32 bits of input_hi and XXH_PRIME32_2 to
- * the high 64 bits of m128.
- *
- * The best approach to this operation is different on 32-bit and 64-bit.
- */
- if (sizeof(void *) < sizeof(xxh_u64)) { /* 32-bit */
- /*
- * 32-bit optimized version, which is more readable.
- *
- * On 32-bit, it removes an ADC and delays a dependency between the two
- * halves of m128.high64, but it generates an extra mask on 64-bit.
- */
- m128.high64 += (input_hi & 0xFFFFFFFF00000000) +
- XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2);
-
- } else {
-
- /*
- * 64-bit optimized (albeit more confusing) version.
- *
- * Uses some properties of addition and multiplication to remove the mask:
- *
- * Let:
- * a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF)
- * b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000)
- * c = XXH_PRIME32_2
- *
- * a + (b * c)
- * Inverse Property: x + y - x == y
- * a + (b * (1 + c - 1))
- * Distributive Property: x * (y + z) == (x * y) + (x * z)
- * a + (b * 1) + (b * (c - 1))
- * Identity Property: x * 1 == x
- * a + b + (b * (c - 1))
- *
- * Substitute a, b, and c:
- * input_hi.hi + input_hi.lo + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 -
- * 1))
- *
- * Since input_hi.hi + input_hi.lo == input_hi, we get this:
- * input_hi + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1))
- */
- m128.high64 +=
- input_hi + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2 - 1);
-
- }
-
- /* m128 ^= XXH_swap64(m128 >> 64); */
- m128.low64 ^= XXH_swap64(m128.high64);
-
- { /* 128x64 multiply: h128 = m128 * XXH_PRIME64_2; */
- XXH128_hash_t h128 = XXH_mult64to128(m128.low64, XXH_PRIME64_2);
- h128.high64 += m128.high64 * XXH_PRIME64_2;
-
- h128.low64 = XXH3_avalanche(h128.low64);
- h128.high64 = XXH3_avalanche(h128.high64);
- return h128;
-
- }
-
- }
-
-}
-
-/*
- * Assumption: `secret` size is >= XXH3_SECRET_SIZE_MIN
- */
-XXH_FORCE_INLINE XXH128_hash_t XXH3_len_0to16_128b(const xxh_u8 *input,
- size_t len,
- const xxh_u8 *secret,
- XXH64_hash_t seed) {
-
- XXH_ASSERT(len <= 16);
- {
-
- if (len > 8) return XXH3_len_9to16_128b(input, len, secret, seed);
- if (len >= 4) return XXH3_len_4to8_128b(input, len, secret, seed);
- if (len) return XXH3_len_1to3_128b(input, len, secret, seed);
- {
-
- XXH128_hash_t h128;
- xxh_u64 const bitflipl =
- XXH_readLE64(secret + 64) ^ XXH_readLE64(secret + 72);
- xxh_u64 const bitfliph =
- XXH_readLE64(secret + 80) ^ XXH_readLE64(secret + 88);
- h128.low64 = XXH3_avalanche((XXH_PRIME64_1 + seed) ^ bitflipl);
- h128.high64 = XXH3_avalanche((XXH_PRIME64_2 - seed) ^ bitfliph);
- return h128;
-
- }
-
- }
-
-}
-
-/*
- * A bit slower than XXH3_mix16B, but handles multiply by zero better.
- */
-XXH_FORCE_INLINE XXH128_hash_t XXH128_mix32B(XXH128_hash_t acc,
- const xxh_u8 *input_1,
- const xxh_u8 *input_2,
- const xxh_u8 *secret,
- XXH64_hash_t seed) {
-
- acc.low64 += XXH3_mix16B(input_1, secret + 0, seed);
- acc.low64 ^= XXH_readLE64(input_2) + XXH_readLE64(input_2 + 8);
- acc.high64 += XXH3_mix16B(input_2, secret + 16, seed);
- acc.high64 ^= XXH_readLE64(input_1) + XXH_readLE64(input_1 + 8);
- return acc;
-
-}
-
-XXH_FORCE_INLINE XXH128_hash_t XXH3_len_17to128_128b(
- const xxh_u8 *XXH_RESTRICT input, size_t len,
- const xxh_u8 *XXH_RESTRICT secret, size_t secretSize, XXH64_hash_t seed) {
-
- XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
- (void)secretSize;
- XXH_ASSERT(16 < len && len <= 128);
-
- {
-
- XXH128_hash_t acc;
- acc.low64 = len * XXH_PRIME64_1;
- acc.high64 = 0;
- if (len > 32) {
-
- if (len > 64) {
-
- if (len > 96) {
-
- acc = XXH128_mix32B(acc, input + 48, input + len - 64, secret + 96,
- seed);
-
- }
-
- acc =
- XXH128_mix32B(acc, input + 32, input + len - 48, secret + 64, seed);
-
- }
-
- acc = XXH128_mix32B(acc, input + 16, input + len - 32, secret + 32, seed);
-
- }
-
- acc = XXH128_mix32B(acc, input, input + len - 16, secret, seed);
- {
-
- XXH128_hash_t h128;
- h128.low64 = acc.low64 + acc.high64;
- h128.high64 = (acc.low64 * XXH_PRIME64_1) + (acc.high64 * XXH_PRIME64_4) +
- ((len - seed) * XXH_PRIME64_2);
- h128.low64 = XXH3_avalanche(h128.low64);
- h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
- return h128;
-
- }
-
- }
-
-}
-
-XXH_NO_INLINE XXH128_hash_t XXH3_len_129to240_128b(
- const xxh_u8 *XXH_RESTRICT input, size_t len,
- const xxh_u8 *XXH_RESTRICT secret, size_t secretSize, XXH64_hash_t seed) {
-
- XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
- (void)secretSize;
- XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
-
- {
-
- XXH128_hash_t acc;
- int const nbRounds = (int)len / 32;
- int i;
- acc.low64 = len * XXH_PRIME64_1;
- acc.high64 = 0;
- for (i = 0; i < 4; i++) {
-
- acc = XXH128_mix32B(acc, input + (32 * i), input + (32 * i) + 16,
- secret + (32 * i), seed);
-
- }
-
- acc.low64 = XXH3_avalanche(acc.low64);
- acc.high64 = XXH3_avalanche(acc.high64);
- XXH_ASSERT(nbRounds >= 4);
- for (i = 4; i < nbRounds; i++) {
-
- acc = XXH128_mix32B(acc, input + (32 * i), input + (32 * i) + 16,
- secret + XXH3_MIDSIZE_STARTOFFSET + (32 * (i - 4)),
- seed);
-
- }
-
- /* last bytes */
- acc = XXH128_mix32B(
- acc, input + len - 16, input + len - 32,
- secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16,
- 0ULL - seed);
-
- {
-
- XXH128_hash_t h128;
- h128.low64 = acc.low64 + acc.high64;
- h128.high64 = (acc.low64 * XXH_PRIME64_1) + (acc.high64 * XXH_PRIME64_4) +
- ((len - seed) * XXH_PRIME64_2);
- h128.low64 = XXH3_avalanche(h128.low64);
- h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
- return h128;
-
- }
-
- }
-
-}
-
-XXH_FORCE_INLINE XXH128_hash_t XXH3_hashLong_128b_internal(
- const xxh_u8 *XXH_RESTRICT input, size_t len,
- const xxh_u8 *XXH_RESTRICT secret, size_t secretSize,
- XXH3_f_accumulate_512 f_acc512, XXH3_f_scrambleAcc f_scramble) {
-
- XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
-
- XXH3_hashLong_internal_loop(acc, input, len, secret, secretSize,
- XXH3_acc_128bits, f_acc512, f_scramble);
-
- /* converge into final hash */
- XXH_STATIC_ASSERT(sizeof(acc) == 64);
- XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
- {
-
- XXH128_hash_t h128;
- h128.low64 = XXH3_mergeAccs(acc, secret + XXH_SECRET_MERGEACCS_START,
- (xxh_u64)len * XXH_PRIME64_1);
- h128.high64 = XXH3_mergeAccs(
- acc, secret + secretSize - sizeof(acc) - XXH_SECRET_MERGEACCS_START,
- ~((xxh_u64)len * XXH_PRIME64_2));
- return h128;
-
- }
-
-}
-
-/*
- * It's important for performance that XXH3_hashLong is not inlined.
- */
-XXH_NO_INLINE XXH128_hash_t XXH3_hashLong_128b_defaultSecret(
- const xxh_u8 *XXH_RESTRICT input, size_t len, XXH64_hash_t seed64,
- const xxh_u8 *XXH_RESTRICT secret, size_t secretLen) {
-
- (void)seed64;
- (void)secret;
- (void)secretLen;
- return XXH3_hashLong_128b_internal(input, len, XXH3_kSecret,
- sizeof(XXH3_kSecret), XXH3_accumulate_512,
- XXH3_scrambleAcc);
-
-}
-
-/*
- * It's important for performance that XXH3_hashLong is not inlined.
- */
-XXH_NO_INLINE XXH128_hash_t XXH3_hashLong_128b_withSecret(
- const xxh_u8 *XXH_RESTRICT input, size_t len, XXH64_hash_t seed64,
- const xxh_u8 *XXH_RESTRICT secret, size_t secretLen) {
-
- (void)seed64;
- return XXH3_hashLong_128b_internal(input, len, secret, secretLen,
- XXH3_accumulate_512, XXH3_scrambleAcc);
-
-}
-
-XXH_FORCE_INLINE XXH128_hash_t XXH3_hashLong_128b_withSeed_internal(
- const xxh_u8 *XXH_RESTRICT input, size_t len, XXH64_hash_t seed64,
- XXH3_f_accumulate_512 f_acc512, XXH3_f_scrambleAcc f_scramble,
- XXH3_f_initCustomSecret f_initSec) {
-
- if (seed64 == 0)
- return XXH3_hashLong_128b_internal(
- input, len, XXH3_kSecret, sizeof(XXH3_kSecret), f_acc512, f_scramble);
- {
-
- XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
- f_initSec(secret, seed64);
- return XXH3_hashLong_128b_internal(input, len, secret, sizeof(secret),
- f_acc512, f_scramble);
-
- }
-
-}
-
-/*
- * It's important for performance that XXH3_hashLong is not inlined.
- */
-XXH_NO_INLINE XXH128_hash_t XXH3_hashLong_128b_withSeed(
- const xxh_u8 *input, size_t len, XXH64_hash_t seed64,
- const xxh_u8 *XXH_RESTRICT secret, size_t secretLen) {
-
- (void)secret;
- (void)secretLen;
- return XXH3_hashLong_128b_withSeed_internal(
- input, len, seed64, XXH3_accumulate_512, XXH3_scrambleAcc,
- XXH3_initCustomSecret);
-
-}
-
-typedef XXH128_hash_t (*XXH3_hashLong128_f)(const xxh_u8 *XXH_RESTRICT, size_t,
- XXH64_hash_t,
- const xxh_u8 *XXH_RESTRICT, size_t);
-
-XXH_FORCE_INLINE XXH128_hash_t
-XXH3_128bits_internal(const void *input, size_t len, XXH64_hash_t seed64,
- const xxh_u8 *XXH_RESTRICT secret, size_t secretLen,
- XXH3_hashLong128_f f_hl128) {
-
- XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
- /*
- * If an action is to be taken if `secret` conditions are not respected,
- * it should be done here.
- * For now, it's a contract pre-condition.
- * Adding a check and a branch here would cost performance at every hash.
- */
- if (len <= 16)
- return XXH3_len_0to16_128b((const xxh_u8 *)input, len, secret, seed64);
- if (len <= 128)
- return XXH3_len_17to128_128b((const xxh_u8 *)input, len, secret, secretLen,
- seed64);
- if (len <= XXH3_MIDSIZE_MAX)
- return XXH3_len_129to240_128b((const xxh_u8 *)input, len, secret, secretLen,
- seed64);
- return f_hl128((const xxh_u8 *)input, len, seed64, secret, secretLen);
-
-}
-
-/* === Public XXH128 API === */
-
-XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void *input, size_t len) {
-
- return XXH3_128bits_internal(input, len, 0, XXH3_kSecret,
- sizeof(XXH3_kSecret),
- XXH3_hashLong_128b_withSecret);
-
-}
-
-XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSecret(const void *input,
- size_t len,
- const void *secret,
- size_t secretSize) {
-
- return XXH3_128bits_internal(input, len, 0, (const xxh_u8 *)secret,
- secretSize, XXH3_hashLong_128b_defaultSecret);
-
-}
-
-XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSeed(const void * input,
- size_t len,
- XXH64_hash_t seed) {
-
- return XXH3_128bits_internal(input, len, seed, XXH3_kSecret,
- sizeof(XXH3_kSecret),
- XXH3_hashLong_128b_withSeed);
-
-}
-
-XXH_PUBLIC_API XXH128_hash_t XXH128(const void *input, size_t len,
- XXH64_hash_t seed) {
-
- return XXH3_128bits_withSeed(input, len, seed);
-
-}
-
-/* === XXH3 128-bit streaming === */
-
-/*
- * All the functions are actually the same as for 64-bit streaming variant.
- * The only difference is the finalizatiom routine.
- */
-
-static void XXH3_128bits_reset_internal(XXH3_state_t *statePtr,
- XXH64_hash_t seed, const xxh_u8 *secret,
- size_t secretSize) {
-
- XXH3_64bits_reset_internal(statePtr, seed, secret, secretSize);
-
-}
-
-XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH3_state_t *statePtr) {
-
- if (statePtr == NULL) return XXH_ERROR;
- XXH3_128bits_reset_internal(statePtr, 0, XXH3_kSecret,
- XXH_SECRET_DEFAULT_SIZE);
- return XXH_OK;
-
-}
-
-XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(
- XXH3_state_t *statePtr, const void *secret, size_t secretSize) {
-
- if (statePtr == NULL) return XXH_ERROR;
- XXH3_128bits_reset_internal(statePtr, 0, (const xxh_u8 *)secret, secretSize);
- if (secret == NULL) return XXH_ERROR;
- if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
- return XXH_OK;
-
-}
-
-XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH3_state_t *statePtr,
- XXH64_hash_t seed) {
-
- if (statePtr == NULL) return XXH_ERROR;
- XXH3_128bits_reset_internal(statePtr, seed, XXH3_kSecret,
- XXH_SECRET_DEFAULT_SIZE);
- XXH3_initCustomSecret(statePtr->customSecret, seed);
- statePtr->extSecret = NULL;
- return XXH_OK;
-
-}
-
-XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update(XXH3_state_t *state,
- const void * input,
- size_t len) {
-
- return XXH3_update(state, (const xxh_u8 *)input, len, XXH3_acc_128bits,
- XXH3_accumulate_512, XXH3_scrambleAcc);
-
-}
-
-XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest(const XXH3_state_t *state) {
-
- const unsigned char *const secret =
- (state->extSecret == NULL) ? state->customSecret : state->extSecret;
- if (state->totalLen > XXH3_MIDSIZE_MAX) {
-
- XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
- XXH3_digest_long(acc, state, secret, XXH3_acc_128bits);
- XXH_ASSERT(state->secretLimit + XXH_STRIPE_LEN >=
- sizeof(acc) + XXH_SECRET_MERGEACCS_START);
- {
-
- XXH128_hash_t h128;
- h128.low64 = XXH3_mergeAccs(acc, secret + XXH_SECRET_MERGEACCS_START,
- (xxh_u64)state->totalLen * XXH_PRIME64_1);
- h128.high64 =
- XXH3_mergeAccs(acc,
- secret + state->secretLimit + XXH_STRIPE_LEN -
- sizeof(acc) - XXH_SECRET_MERGEACCS_START,
- ~((xxh_u64)state->totalLen * XXH_PRIME64_2));
- return h128;
-
- }
-
- }
-
- /* len <= XXH3_MIDSIZE_MAX : short code */
- if (state->seed)
- return XXH3_128bits_withSeed(state->buffer, (size_t)state->totalLen,
- state->seed);
- return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen),
- secret, state->secretLimit + XXH_STRIPE_LEN);
-
-}
-
-/* 128-bit utility functions */
-
-#include <string.h> /* memcmp, memcpy */
-
-/* return : 1 is equal, 0 if different */
-XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2) {
-
- /* note : XXH128_hash_t is compact, it has no padding byte */
- return !(memcmp(&h1, &h2, sizeof(h1)));
-
-}
-
-/* This prototype is compatible with stdlib's qsort().
- * return : >0 if *h128_1 > *h128_2
- * <0 if *h128_1 < *h128_2
- * =0 if *h128_1 == *h128_2 */
-XXH_PUBLIC_API int XXH128_cmp(const void *h128_1, const void *h128_2) {
-
- XXH128_hash_t const h1 = *(const XXH128_hash_t *)h128_1;
- XXH128_hash_t const h2 = *(const XXH128_hash_t *)h128_2;
- int const hcmp = (h1.high64 > h2.high64) - (h2.high64 > h1.high64);
- /* note : bets that, in most cases, hash values are different */
- if (hcmp) return hcmp;
- return (h1.low64 > h2.low64) - (h2.low64 > h1.low64);
-
-}
-
-/*====== Canonical representation ======*/
-XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH128_canonical_t *dst,
- XXH128_hash_t hash) {
-
- XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t));
- if (XXH_CPU_LITTLE_ENDIAN) {
-
- hash.high64 = XXH_swap64(hash.high64);
- hash.low64 = XXH_swap64(hash.low64);
-
- }
-
- memcpy(dst, &hash.high64, sizeof(hash.high64));
- memcpy((char *)dst + sizeof(hash.high64), &hash.low64, sizeof(hash.low64));
-
-}
-
-XXH_PUBLIC_API XXH128_hash_t
-XXH128_hashFromCanonical(const XXH128_canonical_t *src) {
-
- XXH128_hash_t h;
- h.high64 = XXH_readBE64(src);
- h.low64 = XXH_readBE64(src->digest + 8);
- return h;
-
-}
-
-/* Pop our optimization override from above */
-#if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
- && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
- && defined(__OPTIMIZE__) && \
- !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */
- #pragma GCC pop_options
-#endif
-
-#endif /* XXH3_H_1397135465 */
-
diff --git a/include/xxhash.h b/include/xxhash.h
index 826f39bd..0472f881 100644
--- a/include/xxhash.h
+++ b/include/xxhash.h
@@ -197,6 +197,7 @@ extern "C" {
#define XXH_CAT(A, B) A##B
#define XXH_NAME2(A, B) XXH_CAT(A, B)
#define XXH_versionNumber XXH_NAME2(XXH_NAMESPACE, XXH_versionNumber)
+ /* XXH32 */
#define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32)
#define XXH32_createState XXH_NAME2(XXH_NAMESPACE, XXH32_createState)
#define XXH32_freeState XXH_NAME2(XXH_NAMESPACE, XXH32_freeState)
@@ -208,6 +209,7 @@ extern "C" {
XXH_NAME2(XXH_NAMESPACE, XXH32_canonicalFromHash)
#define XXH32_hashFromCanonical \
XXH_NAME2(XXH_NAMESPACE, XXH32_hashFromCanonical)
+ /* XXH64 */
#define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64)
#define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState)
#define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState)
@@ -219,14 +221,50 @@ extern "C" {
XXH_NAME2(XXH_NAMESPACE, XXH64_canonicalFromHash)
#define XXH64_hashFromCanonical \
XXH_NAME2(XXH_NAMESPACE, XXH64_hashFromCanonical)
+ /* XXH3_64bits */
+ #define XXH3_64bits XXH_NAME2(XXH_NAMESPACE, XXH3_64bits)
+ #define XXH3_64bits_withSecret \
+ XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecret)
+ #define XXH3_64bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSeed)
+ #define XXH3_createState XXH_NAME2(XXH_NAMESPACE, XXH3_createState)
+ #define XXH3_freeState XXH_NAME2(XXH_NAMESPACE, XXH3_freeState)
+ #define XXH3_copyState XXH_NAME2(XXH_NAMESPACE, XXH3_copyState)
+ #define XXH3_64bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset)
+ #define XXH3_64bits_reset_withSeed \
+ XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSeed)
+ #define XXH3_64bits_reset_withSecret \
+ XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecret)
+ #define XXH3_64bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_update)
+ #define XXH3_64bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_digest)
+ #define XXH3_generateSecret XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret)
+ /* XXH3_128bits */
+ #define XXH128 XXH_NAME2(XXH_NAMESPACE, XXH128)
+ #define XXH3_128bits XXH_NAME2(XXH_NAMESPACE, XXH3_128bits)
+ #define XXH3_128bits_withSeed \
+ XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSeed)
+ #define XXH3_128bits_withSecret \
+ XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecret)
+ #define XXH3_128bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset)
+ #define XXH3_128bits_reset_withSeed \
+ XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSeed)
+ #define XXH3_128bits_reset_withSecret \
+ XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecret)
+ #define XXH3_128bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_update)
+ #define XXH3_128bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_digest)
+ #define XXH128_isEqual XXH_NAME2(XXH_NAMESPACE, XXH128_isEqual)
+ #define XXH128_cmp XXH_NAME2(XXH_NAMESPACE, XXH128_cmp)
+ #define XXH128_canonicalFromHash \
+ XXH_NAME2(XXH_NAMESPACE, XXH128_canonicalFromHash)
+ #define XXH128_hashFromCanonical \
+ XXH_NAME2(XXH_NAMESPACE, XXH128_hashFromCanonical)
#endif
/* *************************************
* Version
***************************************/
#define XXH_VERSION_MAJOR 0
- #define XXH_VERSION_MINOR 7
- #define XXH_VERSION_RELEASE 4
+ #define XXH_VERSION_MINOR 8
+ #define XXH_VERSION_RELEASE 0
#define XXH_VERSION_NUMBER \
(XXH_VERSION_MAJOR * 100 * 100 + XXH_VERSION_MINOR * 100 + \
XXH_VERSION_RELEASE)
@@ -401,145 +439,56 @@ XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t *dst,
XXH_PUBLIC_API XXH64_hash_t
XXH64_hashFromCanonical(const XXH64_canonical_t *src);
- #endif /* XXH_NO_LONG_LONG */
-
-#endif /* XXHASH_H_5627135585666179 */
-
-#if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742)
- #define XXHASH_H_STATIC_13879238742
-/* ****************************************************************************
- * This section contains declarations which are not guaranteed to remain stable.
- * They may change in future versions, becoming incompatible with a different
- * version of the library.
- * These declarations should only be used with static linking.
- * Never use them in association with dynamic linking!
- *****************************************************************************
- */
+/*-**********************************************************************
+ * XXH3 64-bit variant
+ ************************************************************************/
-/*
- * These definitions are only present to allow static allocation of an XXH
- * state, for example, on the stack or in a struct.
- * Never **ever** access members directly.
+/* ************************************************************************
+ * XXH3 is a new hash algorithm featuring:
+ * - Improved speed for both small and large inputs
+ * - True 64-bit and 128-bit outputs
+ * - SIMD acceleration
+ * - Improved 32-bit viability
+ *
+ * Speed analysis methodology is explained here:
+ *
+ * https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html
+ *
+ * In general, expect XXH3 to run about ~2x faster on large inputs and >3x
+ * faster on small ones compared to XXH64, though exact differences depend on
+ * the platform.
+ *
+ * The algorithm is portable: Like XXH32 and XXH64, it generates the same hash
+ * on all platforms.
+ *
+ * It benefits greatly from SIMD and 64-bit arithmetic, but does not require it.
+ *
+ * Almost all 32-bit and 64-bit targets that can run XXH32 smoothly can run
+ * XXH3 at competitive speeds, even if XXH64 runs slowly. Further details are
+ * explained in the implementation.
+ *
+ * Optimized implementations are provided for AVX512, AVX2, SSE2, NEON, POWER8,
+ * ZVector and scalar targets. This can be controlled with the XXH_VECTOR macro.
+ *
+ * XXH3 offers 2 variants, _64bits and _128bits.
+ * When only 64 bits are needed, prefer calling the _64bits variant, as it
+ * reduces the amount of mixing, resulting in faster speed on small inputs.
+ *
+ * It's also generally simpler to manipulate a scalar return type than a struct.
+ *
+ * The 128-bit version adds additional strength, but it is slightly slower.
+ *
+ * Return values of XXH3 and XXH128 are officially finalized starting
+ * with v0.8.0 and will no longer change in future versions.
+ * Avoid storing values from before that release in long-term storage.
+ *
+ * Results produced by v0.7.x are not comparable with results from v0.7.y.
+ * However, the API is completely stable, and it can safely be used for
+ * ephemeral data (local sessions).
+ *
+ * The API supports one-shot hashing, streaming mode, and custom secrets.
*/
-struct XXH32_state_s {
-
- XXH32_hash_t total_len_32;
- XXH32_hash_t large_len;
- XXH32_hash_t v1;
- XXH32_hash_t v2;
- XXH32_hash_t v3;
- XXH32_hash_t v4;
- XXH32_hash_t mem32[4];
- XXH32_hash_t memsize;
- XXH32_hash_t
- reserved; /* never read nor write, might be removed in a future version */
-
-}; /* typedef'd to XXH32_state_t */
-
- #ifndef XXH_NO_LONG_LONG /* defined when there is no 64-bit support */
-
-struct XXH64_state_s {
-
- XXH64_hash_t total_len;
- XXH64_hash_t v1;
- XXH64_hash_t v2;
- XXH64_hash_t v3;
- XXH64_hash_t v4;
- XXH64_hash_t mem64[4];
- XXH32_hash_t memsize;
- XXH32_hash_t reserved32; /* required for padding anyway */
- XXH64_hash_t reserved64; /* never read nor write, might be removed in a future
- version */
-
-}; /* typedef'd to XXH64_state_t */
-
- /*-**********************************************************************
- * XXH3
- * New experimental hash
- ************************************************************************/
-
- /* ************************************************************************
- * XXH3 is a new hash algorithm featuring:
- * - Improved speed for both small and large inputs
- * - True 64-bit and 128-bit outputs
- * - SIMD acceleration
- * - Improved 32-bit viability
- *
- * Speed analysis methodology is explained here:
- *
- * https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html
- *
- * In general, expect XXH3 to run about ~2x faster on large inputs and >3x
- * faster on small ones compared to XXH64, though exact differences depend on
- * the platform.
- *
- * The algorithm is portable: Like XXH32 and XXH64, it generates the same hash
- * on all platforms.
- *
- * It benefits greatly from SIMD and 64-bit arithmetic, but does not require
- * it.
- *
- * Almost all 32-bit and 64-bit targets that can run XXH32 smoothly can run
- * XXH3 at competitive speeds, even if XXH64 runs slowly. Further details are
- * explained in the implementation.
- *
- * Optimized implementations are provided for AVX512, AVX2, SSE2, NEON,
- * POWER8, ZVector and scalar targets. This can be controlled with the
- * XXH_VECTOR macro.
- *
- * XXH3 offers 2 variants, _64bits and _128bits.
- * When only 64 bits are needed, prefer calling the _64bits variant, as it
- * reduces the amount of mixing, resulting in faster speed on small inputs.
- *
- * It's also generally simpler to manipulate a scalar return type than a
- * struct.
- *
- * The 128-bit version adds additional strength, but it is slightly slower.
- *
- * The XXH3 algorithm is still in development.
- * The results it produces may still change in future versions.
- *
- * Results produced by v0.7.x are not comparable with results from v0.7.y.
- * However, the API is completely stable, and it can safely be used for
- * ephemeral data (local sessions).
- *
- * Avoid storing values in long-term storage until the algorithm is finalized.
- *
- * Since v0.7.3, XXH3 has reached "release candidate" status, meaning that, if
- * everything remains fine, its current format will be "frozen" and become the
- * final one.
- *
- * After which, return values of XXH3 and XXH128 will no longer change in
- * future versions.
- *
- * XXH3's return values will be officially finalized upon reaching v0.8.0.
- *
- * The API supports one-shot hashing, streaming mode, and custom secrets.
- */
-
- #ifdef XXH_NAMESPACE
- #define XXH3_64bits XXH_NAME2(XXH_NAMESPACE, XXH3_64bits)
- #define XXH3_64bits_withSecret \
- XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecret)
- #define XXH3_64bits_withSeed \
- XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSeed)
-
- #define XXH3_createState XXH_NAME2(XXH_NAMESPACE, XXH3_createState)
- #define XXH3_freeState XXH_NAME2(XXH_NAMESPACE, XXH3_freeState)
- #define XXH3_copyState XXH_NAME2(XXH_NAMESPACE, XXH3_copyState)
-
- #define XXH3_64bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset)
- #define XXH3_64bits_reset_withSeed \
- XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSeed)
- #define XXH3_64bits_reset_withSecret \
- XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecret)
- #define XXH3_64bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_update)
- #define XXH3_64bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_digest)
-
- #define XXH3_generateSecret XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret)
- #endif
-
/* XXH3_64bits():
* default 64-bit variant, using default secret and default seed of 0.
* It's the fastest variant. */
@@ -547,8 +496,8 @@ XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void *data, size_t len);
/*
* XXH3_64bits_withSeed():
- * This variant generates a custom secret on the fly based on the default
- * secret, altered using the `seed` value.
+ * This variant generates a custom secret on the fly
+ * based on default secret altered using the `seed` value.
* While this operation is decently fast, note that it's not completely free.
* Note: seed==0 produces the same results as XXH3_64bits().
*/
@@ -559,74 +508,28 @@ XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSeed(const void *data, size_t len,
* XXH3_64bits_withSecret():
* It's possible to provide any blob of bytes as a "secret" to generate the
* hash. This makes it more difficult for an external actor to prepare an
- * intentional collision. secretSize *must* be large enough (>=
- * XXH3_SECRET_SIZE_MIN). The hash quality depends on the secret's high
- * entropy, meaning that the secret should look like a bunch of random
- * bytes. Avoid "trivial" sequences such as text or a bunch of repeated
- * characters. If you are unsure of the "randonmess" of the blob of bytes,
- * consider making it a "custom seed" instead,
- * and use "XXH_generateSecret()" to generate a high quality secret.
+ * intentional collision. The main condition is that secretSize *must* be
+ * large enough (>= XXH3_SECRET_SIZE_MIN). However, the quality of produced
+ * hash values depends on secret's entropy. Technically, the secret must
+ * look like a bunch of random bytes. Avoid "trivial" or structured data
+ * such as repeated sequences or a text document. Whenever unsure about the
+ * "randomness" of the blob of bytes, consider relabelling it as a "custom
+ * seed" instead, and employ "XXH3_generateSecret()" (see below) to generate
+ * a high entropy secret derived from the custom seed.
*/
#define XXH3_SECRET_SIZE_MIN 136
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSecret(const void *data, size_t len,
const void *secret,
size_t secretSize);
- /* streaming 64-bit */
-
- #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* C11+ */
- #include <stdalign.h>
- #define XXH_ALIGN(n) alignas(n)
- #elif defined(__GNUC__)
- #define XXH_ALIGN(n) __attribute__((aligned(n)))
- #elif defined(_MSC_VER)
- #define XXH_ALIGN(n) __declspec(align(n))
- #else
- #define XXH_ALIGN(n) /* disabled */
- #endif
-
- /* Old GCC versions only accept the attribute after the type in structures.
- */
- #if !(defined(__STDC_VERSION__) && \
- (__STDC_VERSION__ >= 201112L)) /* C11+ */ \
- && defined(__GNUC__)
- #define XXH_ALIGN_MEMBER(align, type) type XXH_ALIGN(align)
- #else
- #define XXH_ALIGN_MEMBER(align, type) XXH_ALIGN(align) type
- #endif
-
-typedef struct XXH3_state_s XXH3_state_t;
-
- #define XXH3_INTERNALBUFFER_SIZE 256
- #define XXH3_SECRET_DEFAULT_SIZE 192
-struct XXH3_state_s {
-
- XXH_ALIGN_MEMBER(64, XXH64_hash_t acc[8]);
- /* used to store a custom secret generated from a seed */
- XXH_ALIGN_MEMBER(64, unsigned char customSecret[XXH3_SECRET_DEFAULT_SIZE]);
- XXH_ALIGN_MEMBER(64, unsigned char buffer[XXH3_INTERNALBUFFER_SIZE]);
- XXH32_hash_t bufferedSize;
- XXH32_hash_t reserved32;
- size_t nbStripesPerBlock;
- size_t nbStripesSoFar;
- size_t secretLimit;
- XXH64_hash_t totalLen;
- XXH64_hash_t seed;
- XXH64_hash_t reserved64;
- const unsigned char *extSecret; /* reference to external secret;
- * if == NULL, use .customSecret instead */
- /* note: there may be some padding at the end due to alignment on 64 bytes */
-
-}; /* typedef'd to XXH3_state_t */
-
- #undef XXH_ALIGN_MEMBER
-
+/******* Streaming *******/
/*
* Streaming requires state maintenance.
* This operation costs memory and CPU.
* As a consequence, streaming is slower than one-shot hashing.
- * For better performance, prefer one-shot functions whenever possible.
+ * For better performance, prefer one-shot functions whenever applicable.
*/
+typedef struct XXH3_state_s XXH3_state_t;
XXH_PUBLIC_API XXH3_state_t *XXH3_createState(void);
XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t *statePtr);
XXH_PUBLIC_API void XXH3_copyState(XXH3_state_t * dst_state,
@@ -634,8 +537,8 @@ XXH_PUBLIC_API void XXH3_copyState(XXH3_state_t * dst_state,
/*
* XXH3_64bits_reset():
- * Initialize with the default parameters.
- * The result will be equivalent to `XXH3_64bits()`.
+ * Initialize with default parameters.
+ * digest will be equivalent to `XXH3_64bits()`.
*/
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH3_state_t *statePtr);
/*
@@ -647,9 +550,12 @@ XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH3_state_t *statePtr,
XXH64_hash_t seed);
/*
* XXH3_64bits_reset_withSecret():
- * `secret` is referenced, and must outlive the hash streaming session, so
- * be careful when using stack arrays.
- * `secretSize` must be >= `XXH3_SECRET_SIZE_MIN`.
+ * `secret` is referenced, it _must outlive_ the hash streaming session.
+ * Similar to one-shot API, `secretSize` must be >= `XXH3_SECRET_SIZE_MIN`,
+ * and the quality of produced hash values depends on secret's entropy
+ * (secret's content should look like a bunch of random bytes).
+ * When in doubt about the randomness of a candidate `secret`,
+ * consider employing `XXH3_generateSecret()` instead (see below).
*/
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(
XXH3_state_t *statePtr, const void *secret, size_t secretSize);
@@ -659,31 +565,12 @@ XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update(XXH3_state_t *statePtr,
size_t length);
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest(const XXH3_state_t *statePtr);
- /* 128-bit */
-
- #ifdef XXH_NAMESPACE
- #define XXH128 XXH_NAME2(XXH_NAMESPACE, XXH128)
- #define XXH3_128bits XXH_NAME2(XXH_NAMESPACE, XXH3_128bits)
- #define XXH3_128bits_withSeed \
- XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSeed)
- #define XXH3_128bits_withSecret \
- XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecret)
-
- #define XXH3_128bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset)
- #define XXH3_128bits_reset_withSeed \
- XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSeed)
- #define XXH3_128bits_reset_withSecret \
- XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecret)
- #define XXH3_128bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_update)
- #define XXH3_128bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_digest)
-
- #define XXH128_isEqual XXH_NAME2(XXH_NAMESPACE, XXH128_isEqual)
- #define XXH128_cmp XXH_NAME2(XXH_NAMESPACE, XXH128_cmp)
- #define XXH128_canonicalFromHash \
- XXH_NAME2(XXH_NAMESPACE, XXH128_canonicalFromHash)
- #define XXH128_hashFromCanonical \
- XXH_NAME2(XXH_NAMESPACE, XXH128_hashFromCanonical)
- #endif
+/* note : canonical representation of XXH3 is the same as XXH64
+ * since they both produce XXH64_hash_t values */
+
+/*-**********************************************************************
+ * XXH3 128-bit variant
+ ************************************************************************/
typedef struct {
@@ -692,16 +579,28 @@ typedef struct {
} XXH128_hash_t;
-XXH_PUBLIC_API XXH128_hash_t XXH128(const void *data, size_t len,
- XXH64_hash_t seed);
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void *data, size_t len);
-XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSeed(
- const void *data, size_t len, XXH64_hash_t seed); /* == XXH128() */
+XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSeed(const void *data, size_t len,
+ XXH64_hash_t seed);
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSecret(const void *data,
size_t len,
const void *secret,
size_t secretSize);
+/******* Streaming *******/
+/*
+ * Streaming requires state maintenance.
+ * This operation costs memory and CPU.
+ * As a consequence, streaming is slower than one-shot hashing.
+ * For better performance, prefer one-shot functions whenever applicable.
+ *
+ * XXH3_128bits uses the same XXH3_state_t as XXH3_64bits().
+ * Use already declared XXH3_createState() and XXH3_freeState().
+ *
+ * All reset and streaming functions have same meaning as their 64-bit
+ * counterpart.
+ */
+
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH3_state_t *statePtr);
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH3_state_t *statePtr,
XXH64_hash_t seed);
@@ -713,7 +612,10 @@ XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update(XXH3_state_t *statePtr,
size_t length);
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest(const XXH3_state_t *statePtr);
-/* Note: For better performance, these functions can be inlined using
+/* Following helper functions make it possible to compare XXH128_hast_t values.
+ * Since XXH128_hash_t is a structure, this capability is not offered by the
+ * language.
+ * Note: For better performance, these functions can be inlined using
* XXH_INLINE_ALL */
/*!
@@ -745,6 +647,116 @@ XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH128_canonical_t *dst,
XXH_PUBLIC_API XXH128_hash_t
XXH128_hashFromCanonical(const XXH128_canonical_t *src);
+ #endif /* XXH_NO_LONG_LONG */
+
+#endif /* XXHASH_H_5627135585666179 */
+
+#if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742)
+ #define XXHASH_H_STATIC_13879238742
+/* ****************************************************************************
+ * This section contains declarations which are not guaranteed to remain stable.
+ * They may change in future versions, becoming incompatible with a different
+ * version of the library.
+ * These declarations should only be used with static linking.
+ * Never use them in association with dynamic linking!
+ *****************************************************************************
+*/
+
+/*
+ * These definitions are only present to allow static allocation
+ * of XXH states, on stack or in a struct, for example.
+ * Never **ever** access their members directly.
+ */
+
+struct XXH32_state_s {
+
+ XXH32_hash_t total_len_32;
+ XXH32_hash_t large_len;
+ XXH32_hash_t v1;
+ XXH32_hash_t v2;
+ XXH32_hash_t v3;
+ XXH32_hash_t v4;
+ XXH32_hash_t mem32[4];
+ XXH32_hash_t memsize;
+ XXH32_hash_t
+ reserved; /* never read nor write, might be removed in a future version */
+
+}; /* typedef'd to XXH32_state_t */
+
+ #ifndef XXH_NO_LONG_LONG /* defined when there is no 64-bit support */
+
+struct XXH64_state_s {
+
+ XXH64_hash_t total_len;
+ XXH64_hash_t v1;
+ XXH64_hash_t v2;
+ XXH64_hash_t v3;
+ XXH64_hash_t v4;
+ XXH64_hash_t mem64[4];
+ XXH32_hash_t memsize;
+ XXH32_hash_t reserved32; /* required for padding anyway */
+ XXH64_hash_t reserved64; /* never read nor write, might be removed in a future
+ version */
+
+}; /* typedef'd to XXH64_state_t */
+
+ #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* C11+ */
+ #include <stdalign.h>
+ #define XXH_ALIGN(n) alignas(n)
+ #elif defined(__GNUC__)
+ #define XXH_ALIGN(n) __attribute__((aligned(n)))
+ #elif defined(_MSC_VER)
+ #define XXH_ALIGN(n) __declspec(align(n))
+ #else
+ #define XXH_ALIGN(n) /* disabled */
+ #endif
+
+ /* Old GCC versions only accept the attribute after the type in structures.
+ */
+ #if !(defined(__STDC_VERSION__) && \
+ (__STDC_VERSION__ >= 201112L)) /* C11+ */ \
+ && defined(__GNUC__)
+ #define XXH_ALIGN_MEMBER(align, type) type XXH_ALIGN(align)
+ #else
+ #define XXH_ALIGN_MEMBER(align, type) XXH_ALIGN(align) type
+ #endif
+
+ #define XXH3_INTERNALBUFFER_SIZE 256
+ #define XXH3_SECRET_DEFAULT_SIZE 192
+struct XXH3_state_s {
+
+ XXH_ALIGN_MEMBER(64, XXH64_hash_t acc[8]);
+ /* used to store a custom secret generated from a seed */
+ XXH_ALIGN_MEMBER(64, unsigned char customSecret[XXH3_SECRET_DEFAULT_SIZE]);
+ XXH_ALIGN_MEMBER(64, unsigned char buffer[XXH3_INTERNALBUFFER_SIZE]);
+ XXH32_hash_t bufferedSize;
+ XXH32_hash_t reserved32;
+ size_t nbStripesSoFar;
+ XXH64_hash_t totalLen;
+ size_t nbStripesPerBlock;
+ size_t secretLimit;
+ XXH64_hash_t seed;
+ XXH64_hash_t reserved64;
+ const unsigned char *extSecret; /* reference to external secret;
+ * if == NULL, use .customSecret instead */
+ /* note: there may be some padding at the end due to alignment on 64 bytes */
+
+}; /* typedef'd to XXH3_state_t */
+
+ #undef XXH_ALIGN_MEMBER
+
+ /* When the XXH3_state_t structure is merely emplaced on stack,
+ * it should be initialized with XXH3_INITSTATE() or a memset()
+ * in case its first reset uses XXH3_NNbits_reset_withSeed().
+ * This init can be omitted if the first reset uses default or _withSecret
+ * mode. This operation isn't necessary when the state is created with
+ * XXH3_createState(). Note that this doesn't prepare the state for a
+ * streaming operation, it's still necessary to use XXH3_NNbits_reset*()
+ * afterwards.
+ */
+ #define XXH3_INITSTATE(XXH3_state_ptr) \
+ { (XXH3_state_ptr)->seed = 0; }
+
/* === Experimental API === */
/* Symbols defined below must be considered tied to a specific library version.
*/
@@ -752,17 +764,19 @@ XXH128_hashFromCanonical(const XXH128_canonical_t *src);
/*
* XXH3_generateSecret():
*
- * Derive a secret for use with `*_withSecret()` prototypes of XXH3.
- * Use this if you need a higher level of security than the one provided by
- * 64bit seed.
+ * Derive a high-entropy secret from any user-defined content, named customSeed.
+ * The generated secret can be used in combination with `*_withSecret()`
+ * functions. The `_withSecret()` variants are useful to provide a higher level
+ * of protection than 64-bit seed, as it becomes much more difficult for an
+ * external actor to guess how to impact the calculation logic.
*
- * Take as input a custom seed of any length and any content,
- * generate from it a high-entropy secret of length XXH3_SECRET_DEFAULT_SIZE
- * into already allocated buffer secretBuffer.
- * The generated secret ALWAYS is XXH_SECRET_DEFAULT_SIZE bytes long.
+ * The function accepts as input a custom seed of any length and any content,
+ * and derives from it a high-entropy secret of length XXH3_SECRET_DEFAULT_SIZE
+ * into an already allocated buffer secretBuffer.
+ * The generated secret is _always_ XXH_SECRET_DEFAULT_SIZE bytes long.
*
* The generated secret can then be used with any `*_withSecret()` variant.
- * The functions `XXH3_128bits_withSecret()`, `XXH3_64bits_withSecret()`,
+ * Functions `XXH3_128bits_withSecret()`, `XXH3_64bits_withSecret()`,
* `XXH3_128bits_reset_withSecret()` and `XXH3_64bits_reset_withSecret()`
* are part of this list. They all accept a `secret` parameter
* which must be very long for implementation reasons (>= XXH3_SECRET_SIZE_MIN)
@@ -771,8 +785,8 @@ XXH128_hashFromCanonical(const XXH128_canonical_t *src);
* this function can be used to generate a secret of proper quality.
*
* customSeed can be anything. It can have any size, even small ones,
- * and its content can be anything, even some "low entropy" source such as a
- * bunch of zeroes. The resulting `secret` will nonetheless respect all expected
+ * and its content can be anything, even stupidly "low entropy" source such as a
+ * bunch of zeroes. The resulting `secret` will nonetheless provide all expected
* qualities.
*
* Supplying NULL as the customSeed copies the default secret into
@@ -783,6 +797,10 @@ XXH_PUBLIC_API void XXH3_generateSecret(void * secretBuffer,
const void *customSeed,
size_t customSeedSize);
+/* simple short-cut to pre-selected XXH3_128bits variant */
+XXH_PUBLIC_API XXH128_hash_t XXH128(const void *data, size_t len,
+ XXH64_hash_t seed);
+
#endif /* XXH_NO_LONG_LONG */
#if defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)
@@ -799,17 +817,23 @@ XXH_PUBLIC_API void XXH3_generateSecret(void * secretBuffer,
/*-**********************************************************************
* xxHash implementation
*-**********************************************************************
- * xxHash's implementation used to be found in xxhash.c.
+ * xxHash's implementation used to be hosted inside xxhash.c.
*
- * However, code inlining requires the implementation to be visible to the
- * compiler, usually within the header.
+ * However, inlining requires implementation to be visible to the compiler,
+ * hence be included alongside the header.
+ * Previously, implementation was hosted inside xxhash.c,
+ * which was then #included when inlining was activated.
+ * This construction created issues with a few build and install systems,
+ * as it required xxhash.c to be stored in /include directory.
*
- * As a workaround, xxhash.c used to be included within xxhash.h. This caused
- * some issues with some build systems, especially ones which treat .c files
- * as source files.
+ * xxHash implementation is now directly integrated within xxhash.h.
+ * As a consequence, xxhash.c is no longer needed in /include.
*
- * Therefore, the implementation is now directly integrated within xxhash.h.
- * Another small advantage is that xxhash.c is no longer needed in /include.
+ * xxhash.c is still available and is still useful.
+ * In a "normal" setup, when xxhash is not inlined,
+ * xxhash.h only exposes the prototypes and public symbols,
+ * while xxhash.c can be built into an object file xxhash.o
+ * which can then be linked into the final binary.
************************************************************************/
#if (defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) || \
@@ -828,10 +852,10 @@ XXH_PUBLIC_API void XXH3_generateSecret(void * secretBuffer,
* Unfortunately, on some target/compiler combinations, the generated assembly
* is sub-optimal.
*
- * The below switch allow to select a different access method for improved
- * performance.
+ * The below switch allow selection of a different access method
+ * in the search for improved performance.
* Method 0 (default):
- * Use `memcpy()`. Safe and portable.
+ * Use `memcpy()`. Safe and portable. Default.
* Method 1:
* `__attribute__((packed))` statement. It depends on compiler extensions
* and is therefore not portable.
@@ -843,7 +867,7 @@ XXH_PUBLIC_API void XXH3_generateSecret(void * secretBuffer,
* It can generate buggy code on targets which do not support unaligned
* memory accesses.
* But in some circumstances, it's the only known way to get the most
- * performance (ie GCC + ARMv6)
+ * performance (example: GCC + ARMv6)
* Method 3:
* Byteshift. This can generate the best code on old compilers which don't
* inline small `memcpy()` calls, and it might also be faster on
@@ -924,7 +948,8 @@ XXH_PUBLIC_API void XXH3_generateSecret(void * secretBuffer,
* -fno-inline with GCC or Clang, this will automatically be defined.
*/
#ifndef XXH_NO_INLINE_HINTS
- #if defined(__OPTIMIZE_SIZE__) || defined(__NO_INLINE__)
+ #if defined(__OPTIMIZE_SIZE__) /* -Os, -Oz */ \
+ || defined(__NO_INLINE__) /* -O0, -fno-inline */
#define XXH_NO_INLINE_HINTS 1
#else
#define XXH_NO_INLINE_HINTS 0
@@ -950,8 +975,8 @@ XXH_PUBLIC_API void XXH3_generateSecret(void * secretBuffer,
* Includes & Memory related functions
***************************************/
/*!
- * Modify the local functions below should you wish to use some other memory
- * routines for malloc() and free()
+ * Modify the local functions below should you wish to use
+ * different memory routines for malloc() and free()
*/
#include <stdlib.h>
@@ -1137,7 +1162,8 @@ typedef enum { XXH_bigEndian = 0, XXH_littleEndian = 1 } XXH_endianess;
* Try to detect endianness automatically, to avoid the nonstandard behavior
* in `XXH_isLittleEndian()`
*/
- #if defined(_WIN32) || defined(__LITTLE_ENDIAN__) || \
+ #if defined(_WIN32) /* Windows is always little endian */ \
+ || defined(__LITTLE_ENDIAN__) || \
(defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
#define XXH_CPU_LITTLE_ENDIAN 1
#elif defined(__BIG_ENDIAN__) || \
@@ -1163,7 +1189,7 @@ static int XXH_isLittleEndian(void) {
return one.c[0];
}
-
+\
#define XXH_CPU_LITTLE_ENDIAN XXH_isLittleEndian()
#endif
#endif
@@ -1371,9 +1397,7 @@ static xxh_u32 XXH32_avalanche(xxh_u32 h32) {
static xxh_u32 XXH32_finalize(xxh_u32 h32, const xxh_u8 *ptr, size_t len,
XXH_alignment align) {
-
- /* dummy comment */
-
+\
#define XXH_PROCESS1 \
do { \
\
@@ -1778,13 +1802,16 @@ typedef XXH64_hash_t xxh_u64;
* rerolled.
*/
#ifndef XXH_REROLL_XXH64
- #if (defined(__ILP32__) || defined(_ILP32)) || \
- !(defined(__x86_64__) || defined(_M_X64) || defined(_M_AMD64) || \
- defined(_M_ARM64) || defined(__aarch64__) || defined(__arm64__) || \
- defined(__PPC64__) || defined(__PPC64LE__) || \
- defined(__ppc64__) || defined(__powerpc64__) || \
- defined(__mips64__) || defined(__mips64)) || \
- (!defined(SIZE_MAX) || SIZE_MAX < ULLONG_MAX)
+ #if (defined(__ILP32__) || \
+ defined(_ILP32)) /* ILP32 is often defined on 32-bit GCC family */ \
+ || !(defined(__x86_64__) || defined(_M_X64) || \
+ defined(_M_AMD64) /* x86-64 */ \
+ || defined(_M_ARM64) || defined(__aarch64__) || \
+ defined(__arm64__) /* aarch64 */ \
+ || defined(__PPC64__) || defined(__PPC64LE__) || \
+ defined(__ppc64__) || defined(__powerpc64__) /* ppc64 */ \
+ || defined(__mips64__) || defined(__mips64)) /* mips64 */ \
+ || (!defined(SIZE_MAX) || SIZE_MAX < ULLONG_MAX) /* check limits */
#define XXH_REROLL_XXH64 1
#else
#define XXH_REROLL_XXH64 0
@@ -1923,21 +1950,16 @@ XXH_FORCE_INLINE xxh_u64 XXH_readLE64_align(const void * ptr,
/******* xxh64 *******/
-static const xxh_u64 XXH_PRIME64_1 =
- 0x9E3779B185EBCA87ULL; /* 0b1001111000110111011110011011000110000101111010111100101010000111
- */
-static const xxh_u64 XXH_PRIME64_2 =
- 0xC2B2AE3D27D4EB4FULL; /* 0b1100001010110010101011100011110100100111110101001110101101001111
- */
-static const xxh_u64 XXH_PRIME64_3 =
- 0x165667B19E3779F9ULL; /* 0b0001011001010110011001111011000110011110001101110111100111111001
- */
-static const xxh_u64 XXH_PRIME64_4 =
- 0x85EBCA77C2B2AE63ULL; /* 0b1000010111101011110010100111011111000010101100101010111001100011
- */
-static const xxh_u64 XXH_PRIME64_5 =
- 0x27D4EB2F165667C5ULL; /* 0b0010011111010100111010110010111100010110010101100110011111000101
- */
+static const xxh_u64 XXH_PRIME64_1 = 0x9E3779B185EBCA87ULL; /* 0b1001111000110111011110011011000110000101111010111100101010000111
+ */
+static const xxh_u64 XXH_PRIME64_2 = 0xC2B2AE3D27D4EB4FULL; /* 0b1100001010110010101011100011110100100111110101001110101101001111
+ */
+static const xxh_u64 XXH_PRIME64_3 = 0x165667B19E3779F9ULL; /* 0b0001011001010110011001111011000110011110001101110111100111111001
+ */
+static const xxh_u64 XXH_PRIME64_4 = 0x85EBCA77C2B2AE63ULL; /* 0b1000010111101011110010100111011111000010101100101010111001100011
+ */
+static const xxh_u64 XXH_PRIME64_5 = 0x27D4EB2F165667C5ULL; /* 0b0010011111010100111010110010111100010110010101100110011111000101
+ */
#ifdef XXH_OLD_NAMES
#define PRIME64_1 XXH_PRIME64_1
@@ -1980,9 +2002,7 @@ static xxh_u64 XXH64_avalanche(xxh_u64 h64) {
static xxh_u64 XXH64_finalize(xxh_u64 h64, const xxh_u8 *ptr, size_t len,
XXH_alignment align) {
-
- /* dummy comment */
-
+\
#define XXH_PROCESS1_64 \
do { \
\
@@ -2428,7 +2448,3132 @@ XXH64_hashFromCanonical(const XXH64_canonical_t *src) {
* New generation hash designed for speed on small keys and vectorization
************************************************************************ */
- #include "xxh3.h"
+ /* === Compiler specifics === */
+
+ #if defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* >= C99 */
+ #define XXH_RESTRICT restrict
+ #else
+ /* Note: it might be useful to define __restrict or __restrict__ for some
+ * C++ compilers */
+ #define XXH_RESTRICT /* disable */
+ #endif
+
+ #if (defined(__GNUC__) && (__GNUC__ >= 3)) || \
+ (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 800)) || \
+ defined(__clang__)
+ #define XXH_likely(x) __builtin_expect(x, 1)
+ #define XXH_unlikely(x) __builtin_expect(x, 0)
+ #else
+ #define XXH_likely(x) (x)
+ #define XXH_unlikely(x) (x)
+ #endif
+
+ #if defined(__GNUC__)
+ #if defined(__AVX2__)
+ #include <immintrin.h>
+ #elif defined(__SSE2__)
+ #include <emmintrin.h>
+ #elif defined(__ARM_NEON__) || defined(__ARM_NEON)
+ #define inline __inline__ /* circumvent a clang bug */
+ #include <arm_neon.h>
+ #undef inline
+ #endif
+ #elif defined(_MSC_VER)
+ #include <intrin.h>
+ #endif
+
+ /*
+ * One goal of XXH3 is to make it fast on both 32-bit and 64-bit, while
+ * remaining a true 64-bit/128-bit hash function.
+ *
+ * This is done by prioritizing a subset of 64-bit operations that can be
+ * emulated without too many steps on the average 32-bit machine.
+ *
+ * For example, these two lines seem similar, and run equally fast on
+ * 64-bit:
+ *
+ * xxh_u64 x;
+ * x ^= (x >> 47); // good
+ * x ^= (x >> 13); // bad
+ *
+ * However, to a 32-bit machine, there is a major difference.
+ *
+ * x ^= (x >> 47) looks like this:
+ *
+ * x.lo ^= (x.hi >> (47 - 32));
+ *
+ * while x ^= (x >> 13) looks like this:
+ *
+ * // note: funnel shifts are not usually cheap.
+ * x.lo ^= (x.lo >> 13) | (x.hi << (32 - 13));
+ * x.hi ^= (x.hi >> 13);
+ *
+ * The first one is significantly faster than the second, simply because the
+ * shift is larger than 32. This means:
+ * - All the bits we need are in the upper 32 bits, so we can ignore the
+ * lower 32 bits in the shift.
+ * - The shift result will always fit in the lower 32 bits, and therefore,
+ * we can ignore the upper 32 bits in the xor.
+ *
+ * Thanks to this optimization, XXH3 only requires these features to be
+ * efficient:
+ *
+ * - Usable unaligned access
+ * - A 32-bit or 64-bit ALU
+ * - If 32-bit, a decent ADC instruction
+ * - A 32 or 64-bit multiply with a 64-bit result
+ * - For the 128-bit variant, a decent byteswap helps short inputs.
+ *
+ * The first two are already required by XXH32, and almost all 32-bit and
+ * 64-bit platforms which can run XXH32 can run XXH3 efficiently.
+ *
+ * Thumb-1, the classic 16-bit only subset of ARM's instruction set, is one
+ * notable exception.
+ *
+ * First of all, Thumb-1 lacks support for the UMULL instruction which
+ * performs the important long multiply. This means numerous __aeabi_lmul
+ * calls.
+ *
+ * Second of all, the 8 functional registers are just not enough.
+ * Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic
+ * need Lo registers, and this shuffling results in thousands more MOVs than
+ * A32.
+ *
+ * A32 and T32 don't have this limitation. They can access all 14 registers,
+ * do a 32->64 multiply with UMULL, and the flexible operand allowing free
+ * shifts is helpful, too.
+ *
+ * Therefore, we do a quick sanity check.
+ *
+ * If compiling Thumb-1 for a target which supports ARM instructions, we
+ * will emit a warning, as it is not a "sane" platform to compile for.
+ *
+ * Usually, if this happens, it is because of an accident and you probably
+ * need to specify -march, as you likely meant to compile for a newer
+ * architecture.
+ *
+ * Credit: large sections of the vectorial and asm source code paths
+ * have been contributed by @easyaspi314
+ */
+ #if defined(__thumb__) && !defined(__thumb2__) && \
+ defined(__ARM_ARCH_ISA_ARM)
+ #warning "XXH3 is highly inefficient without ARM or Thumb-2."
+ #endif
+
+ /* ==========================================
+ * Vectorization detection
+ * ========================================== */
+ #define XXH_SCALAR 0 /* Portable scalar version */
+ #define XXH_SSE2 1 /* SSE2 for Pentium 4 and all x86_64 */
+ #define XXH_AVX2 2 /* AVX2 for Haswell and Bulldozer */
+ #define XXH_AVX512 3 /* AVX512 for Skylake and Icelake */
+ #define XXH_NEON 4 /* NEON for most ARMv7-A and all AArch64 */
+ #define XXH_VSX 5 /* VSX and ZVector for POWER8/z13 */
+
+ #ifndef XXH_VECTOR /* can be defined on command line */
+ #if defined(__AVX512F__)
+ #define XXH_VECTOR XXH_AVX512
+ #elif defined(__AVX2__)
+ #define XXH_VECTOR XXH_AVX2
+ #elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || \
+ (defined(_M_IX86_FP) && (_M_IX86_FP == 2))
+ #define XXH_VECTOR XXH_SSE2
+ #elif defined(__GNUC__) /* msvc support maybe later */ \
+ && (defined(__ARM_NEON__) || defined(__ARM_NEON)) && \
+ (defined(__LITTLE_ENDIAN__) /* We only support little endian NEON */ \
+ || (defined(__BYTE_ORDER__) && \
+ __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__))
+ #define XXH_VECTOR XXH_NEON
+ #elif (defined(__PPC64__) && defined(__POWER8_VECTOR__)) || \
+ (defined(__s390x__) && defined(__VEC__)) && \
+ defined(__GNUC__) /* TODO: IBM XL */
+ #define XXH_VECTOR XXH_VSX
+ #else
+ #define XXH_VECTOR XXH_SCALAR
+ #endif
+ #endif
+
+ /*
+ * Controls the alignment of the accumulator,
+ * for compatibility with aligned vector loads, which are usually faster.
+ */
+ #ifndef XXH_ACC_ALIGN
+ #if defined(XXH_X86DISPATCH)
+ #define XXH_ACC_ALIGN 64 /* for compatibility with avx512 */
+ #elif XXH_VECTOR == XXH_SCALAR /* scalar */
+ #define XXH_ACC_ALIGN 8
+ #elif XXH_VECTOR == XXH_SSE2 /* sse2 */
+ #define XXH_ACC_ALIGN 16
+ #elif XXH_VECTOR == XXH_AVX2 /* avx2 */
+ #define XXH_ACC_ALIGN 32
+ #elif XXH_VECTOR == XXH_NEON /* neon */
+ #define XXH_ACC_ALIGN 16
+ #elif XXH_VECTOR == XXH_VSX /* vsx */
+ #define XXH_ACC_ALIGN 16
+ #elif XXH_VECTOR == XXH_AVX512 /* avx512 */
+ #define XXH_ACC_ALIGN 64
+ #endif
+ #endif
+
+ #if defined(XXH_X86DISPATCH) || XXH_VECTOR == XXH_SSE2 || \
+ XXH_VECTOR == XXH_AVX2 || XXH_VECTOR == XXH_AVX512
+ #define XXH_SEC_ALIGN XXH_ACC_ALIGN
+ #else
+ #define XXH_SEC_ALIGN 8
+ #endif
+
+ /*
+ * UGLY HACK:
+ * GCC usually generates the best code with -O3 for xxHash.
+ *
+ * However, when targeting AVX2, it is overzealous in its unrolling
+ * resulting in code roughly 3/4 the speed of Clang.
+ *
+ * There are other issues, such as GCC splitting _mm256_loadu_si256 into
+ * _mm_loadu_si128 + _mm256_inserti128_si256. This is an optimization which
+ * only applies to Sandy and Ivy Bridge... which don't even support AVX2.
+ *
+ * That is why when compiling the AVX2 version, it is recommended to use
+ * either -O2 -mavx2 -march=haswell or -O2 -mavx2
+ * -mno-avx256-split-unaligned-load for decent performance, or to use Clang
+ * instead.
+ *
+ * Fortunately, we can control the first one with a pragma that forces GCC
+ * into -O2, but the other one we can't control without "failed to inline
+ * always inline function due to target mismatch" warnings.
+ */
+ #if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
+ && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
+ && defined(__OPTIMIZE__) && \
+ !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */
+ #pragma GCC push_options
+ #pragma GCC optimize("-O2")
+ #endif
+
+ #if XXH_VECTOR == XXH_NEON
+ /*
+ * NEON's setup for vmlal_u32 is a little more complicated than it is on
+ * SSE2, AVX2, and VSX.
+ *
+ * While PMULUDQ and VMULEUW both perform a mask, VMLAL.U32 performs an
+ * upcast.
+ *
+ * To do the same operation, the 128-bit 'Q' register needs to be split
+ * into two 64-bit 'D' registers, performing this operation::
+ *
+ * [ a | b ] |
+ * '---------. .--------' | | x |
+ * | .---------' '--------. |
+ * [ a & 0xFFFFFFFF | b & 0xFFFFFFFF ],[ a >> 32 | b >> 32 ]
+ *
+ * Due to significant changes in aarch64, the fastest method for aarch64
+ * is completely different than the fastest method for ARMv7-A.
+ *
+ * ARMv7-A treats D registers as unions overlaying Q registers, so
+ * modifying D11 will modify the high half of Q5. This is similar to how
+ * modifying AH will only affect bits 8-15 of AX on x86.
+ *
+ * VZIP takes two registers, and puts even lanes in one register and odd
+ * lanes in the other.
+ *
+ * On ARMv7-A, this strangely modifies both parameters in place instead of
+ * taking the usual 3-operand form.
+ *
+ * Therefore, if we want to do this, we can simply use a D-form VZIP.32 on
+ * the lower and upper halves of the Q register to end up with the high
+ * and low halves where we want - all in one instruction.
+ *
+ * vzip.32 d10, d11 @ d10 = { d10[0], d11[0] }; d11 = { d10[1],
+ * d11[1] }
+ *
+ * Unfortunately we need inline assembly for this: Instructions modifying
+ * two registers at once is not possible in GCC or Clang's IR, and they
+ * have to create a copy.
+ *
+ * aarch64 requires a different approach.
+ *
+ * In order to make it easier to write a decent compiler for aarch64, many
+ * quirks were removed, such as conditional execution.
+ *
+ * NEON was also affected by this.
+ *
+ * aarch64 cannot access the high bits of a Q-form register, and writes to
+ * a D-form register zero the high bits, similar to how writes to W-form
+ * scalar registers (or DWORD registers on x86_64) work.
+ *
+ * The formerly free vget_high intrinsics now require a vext (with a few
+ * exceptions)
+ *
+ * Additionally, VZIP was replaced by ZIP1 and ZIP2, which are the
+ * equivalent of PUNPCKL* and PUNPCKH* in SSE, respectively, in order to
+ * only modify one operand.
+ *
+ * The equivalent of the VZIP.32 on the lower and upper halves would be
+ * this mess:
+ *
+ * ext v2.4s, v0.4s, v0.4s, #2 // v2 = { v0[2], v0[3], v0[0], v0[1]
+ * } zip1 v1.2s, v0.2s, v2.2s // v1 = { v0[0], v2[0] } zip2 v0.2s,
+ * v0.2s, v1.2s // v0 = { v0[1], v2[1] }
+ *
+ * Instead, we use a literal downcast, vmovn_u64 (XTN), and vshrn_n_u64
+ * (SHRN):
+ *
+ * shrn v1.2s, v0.2d, #32 // v1 = (uint32x2_t)(v0 >> 32);
+ * xtn v0.2s, v0.2d // v0 = (uint32x2_t)(v0 & 0xFFFFFFFF);
+ *
+ * This is available on ARMv7-A, but is less efficient than a single
+ * VZIP.32.
+ */
+
+ /*
+ * Function-like macro:
+ * void XXH_SPLIT_IN_PLACE(uint64x2_t &in, uint32x2_t &outLo, uint32x2_t
+ * &outHi)
+ * {
+
+ * outLo = (uint32x2_t)(in & 0xFFFFFFFF);
+ * outHi = (uint32x2_t)(in >> 32);
+ * in = UNDEFINED;
+ * }
+ */
+ #if !defined(XXH_NO_VZIP_HACK) /* define to disable */ \
+ && defined(__GNUC__) && !defined(__aarch64__) && !defined(__arm64__)
+ #define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \
+ do { \
+ \
+ /* Undocumented GCC/Clang operand modifier: %e0 = lower D half, \
+ * %f0 = upper D half */ \
+ /* https://github.com/gcc-mirror/gcc/blob/38cf91e5/gcc/config/arm/arm.c#L22486 \
+ */ \
+ /* https://github.com/llvm-mirror/llvm/blob/2c4ca683/lib/Target/ARM/ARMAsmPrinter.cpp#L399 \
+ */ \
+ __asm__("vzip.32 %e0, %f0" : "+w"(in)); \
+ (outLo) = vget_low_u32(vreinterpretq_u32_u64(in)); \
+ (outHi) = vget_high_u32(vreinterpretq_u32_u64(in)); \
+ \
+ } while (0)
+ #else
+ #define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \
+ do { \
+ \
+ (outLo) = vmovn_u64(in); \
+ (outHi) = vshrn_n_u64((in), 32); \
+ \
+ } while (0)
+ #endif
+ #endif /* XXH_VECTOR == XXH_NEON */
+
+ /*
+ * VSX and Z Vector helpers.
+ *
+ * This is very messy, and any pull requests to clean this up are welcome.
+ *
+ * There are a lot of problems with supporting VSX and s390x, due to
+ * inconsistent intrinsics, spotty coverage, and multiple endiannesses.
+ */
+ #if XXH_VECTOR == XXH_VSX
+ #if defined(__s390x__)
+ #include <s390intrin.h>
+ #else
+ /* gcc's altivec.h can have the unwanted consequence to unconditionally
+ * #define bool, vector, and pixel keywords,
+ * with bad consequences for programs already using these keywords for
+ * other purposes. The paragraph defining these macros is skipped when
+ * __APPLE_ALTIVEC__ is defined.
+ * __APPLE_ALTIVEC__ is _generally_ defined automatically by the
+ * compiler, but it seems that, in some cases, it isn't. Force the build
+ * macro to be defined, so that keywords are not altered.
+ */
+ #if defined(__GNUC__) && !defined(__APPLE_ALTIVEC__)
+ #define __APPLE_ALTIVEC__
+ #endif
+ #include <altivec.h>
+ #endif
+
+typedef __vector unsigned long long xxh_u64x2;
+typedef __vector unsigned char xxh_u8x16;
+typedef __vector unsigned xxh_u32x4;
+
+ #ifndef XXH_VSX_BE
+ #if defined(__BIG_ENDIAN__) || \
+ (defined(__BYTE_ORDER__) && \
+ __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
+ #define XXH_VSX_BE 1
+ #elif defined(__VEC_ELEMENT_REG_ORDER__) && \
+ __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__
+ #warning \
+ "-maltivec=be is not recommended. Please use native endianness."
+ #define XXH_VSX_BE 1
+ #else
+ #define XXH_VSX_BE 0
+ #endif
+ #endif /* !defined(XXH_VSX_BE) */
+
+ #if XXH_VSX_BE
+ /* A wrapper for POWER9's vec_revb. */
+ #if defined(__POWER9_VECTOR__) || \
+ (defined(__clang__) && defined(__s390x__))
+ #define XXH_vec_revb vec_revb
+ #else
+XXH_FORCE_INLINE xxh_u64x2 XXH_vec_revb(xxh_u64x2 val) {
+
+ xxh_u8x16 const vByteSwap = {0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
+ 0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08};
+ return vec_perm(val, val, vByteSwap);
+
+}
+
+ #endif
+ #endif /* XXH_VSX_BE */
+
+/*
+ * Performs an unaligned load and byte swaps it on big endian.
+ */
+XXH_FORCE_INLINE xxh_u64x2 XXH_vec_loadu(const void *ptr) {
+
+ xxh_u64x2 ret;
+ memcpy(&ret, ptr, sizeof(xxh_u64x2));
+ #if XXH_VSX_BE
+ ret = XXH_vec_revb(ret);
+ #endif
+ return ret;
+
+}
+
+ /*
+ * vec_mulo and vec_mule are very problematic intrinsics on PowerPC
+ *
+ * These intrinsics weren't added until GCC 8, despite existing for a
+ * while, and they are endian dependent. Also, their meaning swap
+ * depending on version.
+ * */
+ #if defined(__s390x__)
+ /* s390x is always big endian, no issue on this platform */
+ #define XXH_vec_mulo vec_mulo
+ #define XXH_vec_mule vec_mule
+ #elif defined(__clang__) && XXH_HAS_BUILTIN(__builtin_altivec_vmuleuw)
+ /* Clang has a better way to control this, we can just use the builtin
+ * which doesn't swap. */
+ #define XXH_vec_mulo __builtin_altivec_vmulouw
+ #define XXH_vec_mule __builtin_altivec_vmuleuw
+ #else
+/* gcc needs inline assembly */
+/* Adapted from
+ * https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */
+XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mulo(xxh_u32x4 a, xxh_u32x4 b) {
+
+ xxh_u64x2 result;
+ __asm__("vmulouw %0, %1, %2" : "=v"(result) : "v"(a), "v"(b));
+ return result;
+
+}
+
+XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mule(xxh_u32x4 a, xxh_u32x4 b) {
+
+ xxh_u64x2 result;
+ __asm__("vmuleuw %0, %1, %2" : "=v"(result) : "v"(a), "v"(b));
+ return result;
+
+}
+
+ #endif /* XXH_vec_mulo, XXH_vec_mule */
+ #endif /* XXH_VECTOR == XXH_VSX */
+
+ /* prefetch
+ * can be disabled, by declaring XXH_NO_PREFETCH build macro */
+ #if defined(XXH_NO_PREFETCH)
+ #define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */
+ #else
+ #if defined(_MSC_VER) && \
+ (defined(_M_X64) || \
+ defined( \
+ _M_I86)) /* _mm_prefetch() is not defined outside of x86/x64 */
+ #include <mmintrin.h> /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */
+ #define XXH_PREFETCH(ptr) _mm_prefetch((const char *)(ptr), _MM_HINT_T0)
+ #elif defined(__GNUC__) && \
+ ((__GNUC__ >= 4) || ((__GNUC__ == 3) && (__GNUC_MINOR__ >= 1)))
+ #define XXH_PREFETCH(ptr) \
+ __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */)
+ #else
+ #define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */
+ #endif
+ #endif /* XXH_NO_PREFETCH */
+
+ /* ==========================================
+ * XXH3 default settings
+ * ========================================== */
+
+ #define XXH_SECRET_DEFAULT_SIZE 192 /* minimum XXH3_SECRET_SIZE_MIN */
+
+ #if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN)
+ #error "default keyset is not large enough"
+ #endif
+
+/* Pseudorandom secret taken directly from FARSH */
+XXH_ALIGN(64)
+static const xxh_u8 XXH3_kSecret[XXH_SECRET_DEFAULT_SIZE] = {
+
+ 0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c,
+ 0xf7, 0x21, 0xad, 0x1c, 0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb,
+ 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f, 0xcb, 0x79, 0xe6, 0x4e,
+ 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21,
+ 0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6,
+ 0x81, 0x3a, 0x26, 0x4c, 0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb,
+ 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3, 0x71, 0x64, 0x48, 0x97,
+ 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8,
+ 0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7,
+ 0xc7, 0x0b, 0x4f, 0x1d, 0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31,
+ 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64, 0xea, 0xc5, 0xac, 0x83,
+ 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb,
+ 0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26,
+ 0x29, 0xd4, 0x68, 0x9e, 0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc,
+ 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce, 0x45, 0xcb, 0x3a, 0x8f,
+ 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e,
+
+};
+
+ #ifdef XXH_OLD_NAMES
+ #define kSecret XXH3_kSecret
+ #endif
+
+ /*
+ * Calculates a 32-bit to 64-bit long multiply.
+ *
+ * Wraps __emulu on MSVC x86 because it tends to call __allmul when it
+ * doesn't need to (but it shouldn't need to anyways, it is about 7
+ * instructions to do a 64x64 multiply...). Since we know that this will
+ * _always_ emit MULL, we use that instead of the normal method.
+ *
+ * If you are compiling for platforms like Thumb-1 and don't have a better
+ * option, you may also want to write your own long multiply routine here.
+ *
+ * XXH_FORCE_INLINE xxh_u64 XXH_mult32to64(xxh_u64 x, xxh_u64 y)
+ * {
+
+ * return (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF);
+ * }
+ */
+ #if defined(_MSC_VER) && defined(_M_IX86)
+ #include <intrin.h>
+ #define XXH_mult32to64(x, y) __emulu((unsigned)(x), (unsigned)(y))
+ #else
+ /*
+ * Downcast + upcast is usually better than masking on older compilers
+ * like GCC 4.2 (especially 32-bit ones), all without affecting newer
+ * compilers.
+ *
+ * The other method, (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF), will AND both
+ * operands and perform a full 64x64 multiply -- entirely redundant on
+ * 32-bit.
+ */
+ #define XXH_mult32to64(x, y) \
+ ((xxh_u64)(xxh_u32)(x) * (xxh_u64)(xxh_u32)(y))
+ #endif
+
+/*
+ * Calculates a 64->128-bit long multiply.
+ *
+ * Uses __uint128_t and _umul128 if available, otherwise uses a scalar version.
+ */
+static XXH128_hash_t XXH_mult64to128(xxh_u64 lhs, xxh_u64 rhs) {
+
+ /*
+ * GCC/Clang __uint128_t method.
+ *
+ * On most 64-bit targets, GCC and Clang define a __uint128_t type.
+ * This is usually the best way as it usually uses a native long 64-bit
+ * multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64.
+ *
+ * Usually.
+ *
+ * Despite being a 32-bit platform, Clang (and emscripten) define this type
+ * despite not having the arithmetic for it. This results in a laggy
+ * compiler builtin call which calculates a full 128-bit multiply.
+ * In that case it is best to use the portable one.
+ * https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677
+ */
+ #if defined(__GNUC__) && !defined(__wasm__) && \
+ defined(__SIZEOF_INT128__) || \
+ (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128)
+
+ __uint128_t const product = (__uint128_t)lhs * (__uint128_t)rhs;
+ XXH128_hash_t r128;
+ r128.low64 = (xxh_u64)(product);
+ r128.high64 = (xxh_u64)(product >> 64);
+ return r128;
+
+ /*
+ * MSVC for x64's _umul128 method.
+ *
+ * xxh_u64 _umul128(xxh_u64 Multiplier, xxh_u64 Multiplicand, xxh_u64
+ * *HighProduct);
+ *
+ * This compiles to single operand MUL on x64.
+ */
+ #elif defined(_M_X64) || defined(_M_IA64)
+
+ #ifndef _MSC_VER
+ #pragma intrinsic(_umul128)
+ #endif
+ xxh_u64 product_high;
+ xxh_u64 const product_low = _umul128(lhs, rhs, &product_high);
+ XXH128_hash_t r128;
+ r128.low64 = product_low;
+ r128.high64 = product_high;
+ return r128;
+
+ #else
+ /*
+ * Portable scalar method. Optimized for 32-bit and 64-bit ALUs.
+ *
+ * This is a fast and simple grade school multiply, which is shown below
+ * with base 10 arithmetic instead of base 0x100000000.
+ *
+ * 9 3 // D2 lhs = 93
+ * x 7 5 // D2 rhs = 75
+ * ----------
+ * 1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15
+ * 4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45
+ * 2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21
+ * + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63
+ * ---------
+ * 2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27
+ * + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67
+ * ---------
+ * 6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975
+ *
+ * The reasons for adding the products like this are:
+ * 1. It avoids manual carry tracking. Just like how
+ * (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX.
+ * This avoids a lot of complexity.
+ *
+ * 2. It hints for, and on Clang, compiles to, the powerful UMAAL
+ * instruction available in ARM's Digital Signal Processing extension
+ * in 32-bit ARMv6 and later, which is shown below:
+ *
+ * void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm)
+ * {
+
+ * xxh_u64 product = (xxh_u64)*RdLo * (xxh_u64)*RdHi + Rn + Rm;
+ * *RdLo = (xxh_u32)(product & 0xFFFFFFFF);
+ * *RdHi = (xxh_u32)(product >> 32);
+ * }
+ *
+ * This instruction was designed for efficient long multiplication, and
+ * allows this to be calculated in only 4 instructions at speeds
+ * comparable to some 64-bit ALUs.
+ *
+ * 3. It isn't terrible on other platforms. Usually this will be a couple
+ * of 32-bit ADD/ADCs.
+ */
+
+ /* First calculate all of the cross products. */
+ xxh_u64 const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF);
+ xxh_u64 const hi_lo = XXH_mult32to64(lhs >> 32, rhs & 0xFFFFFFFF);
+ xxh_u64 const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32);
+ xxh_u64 const hi_hi = XXH_mult32to64(lhs >> 32, rhs >> 32);
+
+ /* Now add the products together. These will never overflow. */
+ xxh_u64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
+ xxh_u64 const upper = (hi_lo >> 32) + (cross >> 32) + hi_hi;
+ xxh_u64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
+
+ XXH128_hash_t r128;
+ r128.low64 = lower;
+ r128.high64 = upper;
+ return r128;
+ #endif
+
+}
+
+/*
+ * Does a 64-bit to 128-bit multiply, then XOR folds it.
+ *
+ * The reason for the separate function is to prevent passing too many structs
+ * around by value. This will hopefully inline the multiply, but we don't force
+ * it.
+ */
+static xxh_u64 XXH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs) {
+
+ XXH128_hash_t product = XXH_mult64to128(lhs, rhs);
+ return product.low64 ^ product.high64;
+
+}
+
+/* Seems to produce slightly better code on GCC for some reason. */
+XXH_FORCE_INLINE xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift) {
+
+ XXH_ASSERT(0 <= shift && shift < 64);
+ return v64 ^ (v64 >> shift);
+
+}
+
+/*
+ * This is a fast avalanche stage,
+ * suitable when input bits are already partially mixed
+ */
+static XXH64_hash_t XXH3_avalanche(xxh_u64 h64) {
+
+ h64 = XXH_xorshift64(h64, 37);
+ h64 *= 0x165667919E3779F9ULL;
+ h64 = XXH_xorshift64(h64, 32);
+ return h64;
+
+}
+
+/*
+ * This is a stronger avalanche,
+ * inspired by Pelle Evensen's rrmxmx
+ * preferable when input has not been previously mixed
+ */
+static XXH64_hash_t XXH3_rrmxmx(xxh_u64 h64, xxh_u64 len) {
+
+ /* this mix is inspired by Pelle Evensen's rrmxmx */
+ h64 ^= XXH_rotl64(h64, 49) ^ XXH_rotl64(h64, 24);
+ h64 *= 0x9FB21C651E98DF25ULL;
+ h64 ^= (h64 >> 35) + len;
+ h64 *= 0x9FB21C651E98DF25ULL;
+ return XXH_xorshift64(h64, 28);
+
+}
+
+/* ==========================================
+ * Short keys
+ * ==========================================
+ * One of the shortcomings of XXH32 and XXH64 was that their performance was
+ * sub-optimal on short lengths. It used an iterative algorithm which strongly
+ * favored lengths that were a multiple of 4 or 8.
+ *
+ * Instead of iterating over individual inputs, we use a set of single shot
+ * functions which piece together a range of lengths and operate in constant
+ * time.
+ *
+ * Additionally, the number of multiplies has been significantly reduced. This
+ * reduces latency, especially when emulating 64-bit multiplies on 32-bit.
+ *
+ * Depending on the platform, this may or may not be faster than XXH32, but it
+ * is almost guaranteed to be faster than XXH64.
+ */
+
+/*
+ * At very short lengths, there isn't enough input to fully hide secrets, or use
+ * the entire secret.
+ *
+ * There is also only a limited amount of mixing we can do before significantly
+ * impacting performance.
+ *
+ * Therefore, we use different sections of the secret and always mix two secret
+ * samples with an XOR. This should have no effect on performance on the
+ * seedless or withSeed variants because everything _should_ be constant folded
+ * by modern compilers.
+ *
+ * The XOR mixing hides individual parts of the secret and increases entropy.
+ *
+ * This adds an extra layer of strength for custom secrets.
+ */
+XXH_FORCE_INLINE XXH64_hash_t XXH3_len_1to3_64b(const xxh_u8 *input, size_t len,
+ const xxh_u8 *secret,
+ XXH64_hash_t seed) {
+
+ XXH_ASSERT(input != NULL);
+ XXH_ASSERT(1 <= len && len <= 3);
+ XXH_ASSERT(secret != NULL);
+ /*
+ * len = 1: combined = { input[0], 0x01, input[0], input[0] }
+ * len = 2: combined = { input[1], 0x02, input[0], input[1] }
+ * len = 3: combined = { input[2], 0x03, input[0], input[1] }
+ */
+ {
+
+ xxh_u8 const c1 = input[0];
+ xxh_u8 const c2 = input[len >> 1];
+ xxh_u8 const c3 = input[len - 1];
+ xxh_u32 const combined = ((xxh_u32)c1 << 16) | ((xxh_u32)c2 << 24) |
+ ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8);
+ xxh_u64 const bitflip =
+ (XXH_readLE32(secret) ^ XXH_readLE32(secret + 4)) + seed;
+ xxh_u64 const keyed = (xxh_u64)combined ^ bitflip;
+ return XXH64_avalanche(keyed);
+
+ }
+
+}
+
+XXH_FORCE_INLINE XXH64_hash_t XXH3_len_4to8_64b(const xxh_u8 *input, size_t len,
+ const xxh_u8 *secret,
+ XXH64_hash_t seed) {
+
+ XXH_ASSERT(input != NULL);
+ XXH_ASSERT(secret != NULL);
+ XXH_ASSERT(4 <= len && len < 8);
+ seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
+ {
+
+ xxh_u32 const input1 = XXH_readLE32(input);
+ xxh_u32 const input2 = XXH_readLE32(input + len - 4);
+ xxh_u64 const bitflip =
+ (XXH_readLE64(secret + 8) ^ XXH_readLE64(secret + 16)) - seed;
+ xxh_u64 const input64 = input2 + (((xxh_u64)input1) << 32);
+ xxh_u64 const keyed = input64 ^ bitflip;
+ return XXH3_rrmxmx(keyed, len);
+
+ }
+
+}
+
+XXH_FORCE_INLINE XXH64_hash_t XXH3_len_9to16_64b(const xxh_u8 *input,
+ size_t len,
+ const xxh_u8 *secret,
+ XXH64_hash_t seed) {
+
+ XXH_ASSERT(input != NULL);
+ XXH_ASSERT(secret != NULL);
+ XXH_ASSERT(8 <= len && len <= 16);
+ {
+
+ xxh_u64 const bitflip1 =
+ (XXH_readLE64(secret + 24) ^ XXH_readLE64(secret + 32)) + seed;
+ xxh_u64 const bitflip2 =
+ (XXH_readLE64(secret + 40) ^ XXH_readLE64(secret + 48)) - seed;
+ xxh_u64 const input_lo = XXH_readLE64(input) ^ bitflip1;
+ xxh_u64 const input_hi = XXH_readLE64(input + len - 8) ^ bitflip2;
+ xxh_u64 const acc = len + XXH_swap64(input_lo) + input_hi +
+ XXH3_mul128_fold64(input_lo, input_hi);
+ return XXH3_avalanche(acc);
+
+ }
+
+}
+
+XXH_FORCE_INLINE XXH64_hash_t XXH3_len_0to16_64b(const xxh_u8 *input,
+ size_t len,
+ const xxh_u8 *secret,
+ XXH64_hash_t seed) {
+
+ XXH_ASSERT(len <= 16);
+ {
+
+ if (XXH_likely(len > 8))
+ return XXH3_len_9to16_64b(input, len, secret, seed);
+ if (XXH_likely(len >= 4))
+ return XXH3_len_4to8_64b(input, len, secret, seed);
+ if (len) return XXH3_len_1to3_64b(input, len, secret, seed);
+ return XXH64_avalanche(
+ seed ^ (XXH_readLE64(secret + 56) ^ XXH_readLE64(secret + 64)));
+
+ }
+
+}
+
+/*
+ * DISCLAIMER: There are known *seed-dependent* multicollisions here due to
+ * multiplication by zero, affecting hashes of lengths 17 to 240.
+ *
+ * However, they are very unlikely.
+ *
+ * Keep this in mind when using the unseeded XXH3_64bits() variant: As with all
+ * unseeded non-cryptographic hashes, it does not attempt to defend itself
+ * against specially crafted inputs, only random inputs.
+ *
+ * Compared to classic UMAC where a 1 in 2^31 chance of 4 consecutive bytes
+ * cancelling out the secret is taken an arbitrary number of times (addressed
+ * in XXH3_accumulate_512), this collision is very unlikely with random inputs
+ * and/or proper seeding:
+ *
+ * This only has a 1 in 2^63 chance of 8 consecutive bytes cancelling out, in a
+ * function that is only called up to 16 times per hash with up to 240 bytes of
+ * input.
+ *
+ * This is not too bad for a non-cryptographic hash function, especially with
+ * only 64 bit outputs.
+ *
+ * The 128-bit variant (which trades some speed for strength) is NOT affected
+ * by this, although it is always a good idea to use a proper seed if you care
+ * about strength.
+ */
+XXH_FORCE_INLINE xxh_u64 XXH3_mix16B(const xxh_u8 *XXH_RESTRICT input,
+ const xxh_u8 *XXH_RESTRICT secret,
+ xxh_u64 seed64) {
+
+ #if defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
+ && defined(__i386__) && defined(__SSE2__) /* x86 + SSE2 */ \
+ && \
+ !defined( \
+ XXH_ENABLE_AUTOVECTORIZE) /* Define to disable like XXH32 hack */
+ /*
+ * UGLY HACK:
+ * GCC for x86 tends to autovectorize the 128-bit multiply, resulting in
+ * slower code.
+ *
+ * By forcing seed64 into a register, we disrupt the cost model and
+ * cause it to scalarize. See `XXH32_round()`
+ *
+ * FIXME: Clang's output is still _much_ faster -- On an AMD Ryzen 3600,
+ * XXH3_64bits @ len=240 runs at 4.6 GB/s with Clang 9, but 3.3 GB/s on
+ * GCC 9.2, despite both emitting scalar code.
+ *
+ * GCC generates much better scalar code than Clang for the rest of XXH3,
+ * which is why finding a more optimal codepath is an interest.
+ */
+ __asm__("" : "+r"(seed64));
+ #endif
+ {
+
+ xxh_u64 const input_lo = XXH_readLE64(input);
+ xxh_u64 const input_hi = XXH_readLE64(input + 8);
+ return XXH3_mul128_fold64(input_lo ^ (XXH_readLE64(secret) + seed64),
+ input_hi ^ (XXH_readLE64(secret + 8) - seed64));
+
+ }
+
+}
+
+/* For mid range keys, XXH3 uses a Mum-hash variant. */
+XXH_FORCE_INLINE XXH64_hash_t XXH3_len_17to128_64b(
+ const xxh_u8 *XXH_RESTRICT input, size_t len,
+ const xxh_u8 *XXH_RESTRICT secret, size_t secretSize, XXH64_hash_t seed) {
+
+ XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
+ (void)secretSize;
+ XXH_ASSERT(16 < len && len <= 128);
+
+ {
+
+ xxh_u64 acc = len * XXH_PRIME64_1;
+ if (len > 32) {
+
+ if (len > 64) {
+
+ if (len > 96) {
+
+ acc += XXH3_mix16B(input + 48, secret + 96, seed);
+ acc += XXH3_mix16B(input + len - 64, secret + 112, seed);
+
+ }
+
+ acc += XXH3_mix16B(input + 32, secret + 64, seed);
+ acc += XXH3_mix16B(input + len - 48, secret + 80, seed);
+
+ }
+
+ acc += XXH3_mix16B(input + 16, secret + 32, seed);
+ acc += XXH3_mix16B(input + len - 32, secret + 48, seed);
+
+ }
+
+ acc += XXH3_mix16B(input + 0, secret + 0, seed);
+ acc += XXH3_mix16B(input + len - 16, secret + 16, seed);
+
+ return XXH3_avalanche(acc);
+
+ }
+
+}
+
+ #define XXH3_MIDSIZE_MAX 240
+
+XXH_NO_INLINE XXH64_hash_t XXH3_len_129to240_64b(
+ const xxh_u8 *XXH_RESTRICT input, size_t len,
+ const xxh_u8 *XXH_RESTRICT secret, size_t secretSize, XXH64_hash_t seed) {
+
+ XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
+ (void)secretSize;
+ XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
+
+ #define XXH3_MIDSIZE_STARTOFFSET 3
+ #define XXH3_MIDSIZE_LASTOFFSET 17
+
+ {
+
+ xxh_u64 acc = len * XXH_PRIME64_1;
+ int const nbRounds = (int)len / 16;
+ int i;
+ for (i = 0; i < 8; i++) {
+
+ acc += XXH3_mix16B(input + (16 * i), secret + (16 * i), seed);
+
+ }
+
+ acc = XXH3_avalanche(acc);
+ XXH_ASSERT(nbRounds >= 8);
+ #if defined(__clang__) /* Clang */ \
+ && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \
+ && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */
+ /*
+ * UGLY HACK:
+ * Clang for ARMv7-A tries to vectorize this loop, similar to GCC x86.
+ * In everywhere else, it uses scalar code.
+ *
+ * For 64->128-bit multiplies, even if the NEON was 100% optimal, it
+ * would still be slower than UMAAL (see XXH_mult64to128).
+ *
+ * Unfortunately, Clang doesn't handle the long multiplies properly and
+ * converts them to the nonexistent "vmulq_u64" intrinsic, which is then
+ * scalarized into an ugly mess of VMOV.32 instructions.
+ *
+ * This mess is difficult to avoid without turning autovectorization
+ * off completely, but they are usually relatively minor and/or not
+ * worth it to fix.
+ *
+ * This loop is the easiest to fix, as unlike XXH32, this pragma
+ * _actually works_ because it is a loop vectorization instead of an
+ * SLP vectorization.
+ */
+ #pragma clang loop vectorize(disable)
+ #endif
+ for (i = 8; i < nbRounds; i++) {
+
+ acc +=
+ XXH3_mix16B(input + (16 * i),
+ secret + (16 * (i - 8)) + XXH3_MIDSIZE_STARTOFFSET, seed);
+
+ }
+
+ /* last bytes */
+ acc += XXH3_mix16B(input + len - 16,
+ secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET,
+ seed);
+ return XXH3_avalanche(acc);
+
+ }
+
+}
+
+ /* ======= Long Keys ======= */
+
+ #define XXH_STRIPE_LEN 64
+ #define XXH_SECRET_CONSUME_RATE \
+ 8 /* nb of secret bytes consumed at each accumulation */
+ #define XXH_ACC_NB (XXH_STRIPE_LEN / sizeof(xxh_u64))
+
+ #ifdef XXH_OLD_NAMES
+ #define STRIPE_LEN XXH_STRIPE_LEN
+ #define ACC_NB XXH_ACC_NB
+ #endif
+
+XXH_FORCE_INLINE void XXH_writeLE64(void *dst, xxh_u64 v64) {
+
+ if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64);
+ memcpy(dst, &v64, sizeof(v64));
+
+}
+
+ /* Several intrinsic functions below are supposed to accept __int64 as
+ * argument, as documented in
+ * https://software.intel.com/sites/landingpage/IntrinsicsGuide/ . However,
+ * several environments do not define __int64 type, requiring a workaround.
+ */
+ #if !defined(__VMS) && \
+ (defined(__cplusplus) || (defined(__STDC_VERSION__) && \
+ (__STDC_VERSION__ >= 199901L) /* C99 */))
+typedef int64_t xxh_i64;
+ #else
+/* the following type must have a width of 64-bit */
+typedef long long xxh_i64;
+ #endif
+
+ /*
+ * XXH3_accumulate_512 is the tightest loop for long inputs, and it is the
+ * most optimized.
+ *
+ * It is a hardened version of UMAC, based off of FARSH's implementation.
+ *
+ * This was chosen because it adapts quite well to 32-bit, 64-bit, and SIMD
+ * implementations, and it is ridiculously fast.
+ *
+ * We harden it by mixing the original input to the accumulators as well as
+ * the product.
+ *
+ * This means that in the (relatively likely) case of a multiply by zero, the
+ * original input is preserved.
+ *
+ * On 128-bit inputs, we swap 64-bit pairs when we add the input to improve
+ * cross-pollination, as otherwise the upper and lower halves would be
+ * essentially independent.
+ *
+ * This doesn't matter on 64-bit hashes since they all get merged together in
+ * the end, so we skip the extra step.
+ *
+ * Both XXH3_64bits and XXH3_128bits use this subroutine.
+ */
+
+ #if (XXH_VECTOR == XXH_AVX512) || defined(XXH_X86DISPATCH)
+
+ #ifndef XXH_TARGET_AVX512
+ #define XXH_TARGET_AVX512 /* disable attribute target */
+ #endif
+
+XXH_FORCE_INLINE XXH_TARGET_AVX512 void XXH3_accumulate_512_avx512(
+ void *XXH_RESTRICT acc, const void *XXH_RESTRICT input,
+ const void *XXH_RESTRICT secret) {
+
+ XXH_ALIGN(64) __m512i *const xacc = (__m512i *)acc;
+ XXH_ASSERT((((size_t)acc) & 63) == 0);
+ XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));
+
+ {
+
+ /* data_vec = input[0]; */
+ __m512i const data_vec = _mm512_loadu_si512(input);
+ /* key_vec = secret[0]; */
+ __m512i const key_vec = _mm512_loadu_si512(secret);
+ /* data_key = data_vec ^ key_vec; */
+ __m512i const data_key = _mm512_xor_si512(data_vec, key_vec);
+ /* data_key_lo = data_key >> 32; */
+ __m512i const data_key_lo =
+ _mm512_shuffle_epi32(data_key, (_MM_PERM_ENUM)_MM_SHUFFLE(0, 3, 0, 1));
+ /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
+ __m512i const product = _mm512_mul_epu32(data_key, data_key_lo);
+ /* xacc[0] += swap(data_vec); */
+ __m512i const data_swap =
+ _mm512_shuffle_epi32(data_vec, (_MM_PERM_ENUM)_MM_SHUFFLE(1, 0, 3, 2));
+ __m512i const sum = _mm512_add_epi64(*xacc, data_swap);
+ /* xacc[0] += product; */
+ *xacc = _mm512_add_epi64(product, sum);
+
+ }
+
+}
+
+/*
+ * XXH3_scrambleAcc: Scrambles the accumulators to improve mixing.
+ *
+ * Multiplication isn't perfect, as explained by Google in HighwayHash:
+ *
+ * // Multiplication mixes/scrambles bytes 0-7 of the 64-bit result to
+ * // varying degrees. In descending order of goodness, bytes
+ * // 3 4 2 5 1 6 0 7 have quality 228 224 164 160 100 96 36 32.
+ * // As expected, the upper and lower bytes are much worse.
+ *
+ * Source:
+ * https://github.com/google/highwayhash/blob/0aaf66b/highwayhash/hh_avx2.h#L291
+ *
+ * Since our algorithm uses a pseudorandom secret to add some variance into the
+ * mix, we don't need to (or want to) mix as often or as much as HighwayHash
+ * does.
+ *
+ * This isn't as tight as XXH3_accumulate, but still written in SIMD to avoid
+ * extraction.
+ *
+ * Both XXH3_64bits and XXH3_128bits use this subroutine.
+ */
+
+XXH_FORCE_INLINE XXH_TARGET_AVX512 void XXH3_scrambleAcc_avx512(
+ void *XXH_RESTRICT acc, const void *XXH_RESTRICT secret) {
+
+ XXH_ASSERT((((size_t)acc) & 63) == 0);
+ XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));
+ {
+
+ XXH_ALIGN(64) __m512i *const xacc = (__m512i *)acc;
+ const __m512i prime32 = _mm512_set1_epi32((int)XXH_PRIME32_1);
+
+ /* xacc[0] ^= (xacc[0] >> 47) */
+ __m512i const acc_vec = *xacc;
+ __m512i const shifted = _mm512_srli_epi64(acc_vec, 47);
+ __m512i const data_vec = _mm512_xor_si512(acc_vec, shifted);
+ /* xacc[0] ^= secret; */
+ __m512i const key_vec = _mm512_loadu_si512(secret);
+ __m512i const data_key = _mm512_xor_si512(data_vec, key_vec);
+
+ /* xacc[0] *= XXH_PRIME32_1; */
+ __m512i const data_key_hi =
+ _mm512_shuffle_epi32(data_key, (_MM_PERM_ENUM)_MM_SHUFFLE(0, 3, 0, 1));
+ __m512i const prod_lo = _mm512_mul_epu32(data_key, prime32);
+ __m512i const prod_hi = _mm512_mul_epu32(data_key_hi, prime32);
+ *xacc = _mm512_add_epi64(prod_lo, _mm512_slli_epi64(prod_hi, 32));
+
+ }
+
+}
+
+XXH_FORCE_INLINE XXH_TARGET_AVX512 void XXH3_initCustomSecret_avx512(
+ void *XXH_RESTRICT customSecret, xxh_u64 seed64) {
+
+ XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 63) == 0);
+ XXH_STATIC_ASSERT(XXH_SEC_ALIGN == 64);
+ XXH_ASSERT(((size_t)customSecret & 63) == 0);
+ (void)(&XXH_writeLE64);
+ {
+
+ int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m512i);
+ __m512i const seed = _mm512_mask_set1_epi64(
+ _mm512_set1_epi64((xxh_i64)seed64), 0xAA, -(xxh_i64)seed64);
+
+ XXH_ALIGN(64) const __m512i *const src = (const __m512i *)XXH3_kSecret;
+ XXH_ALIGN(64) __m512i *const dest = (__m512i *)customSecret;
+ int i;
+ for (i = 0; i < nbRounds; ++i) {
+
+ /* GCC has a bug, _mm512_stream_load_si512 accepts 'void*', not 'void
+ * const*', this will warn "discards ‘const’ qualifier". */
+ union {
+
+ XXH_ALIGN(64) const __m512i *cp;
+ XXH_ALIGN(64) void *p;
+
+ } remote_const_void;
+
+ remote_const_void.cp = src + i;
+ dest[i] =
+ _mm512_add_epi64(_mm512_stream_load_si512(remote_const_void.p), seed);
+
+ }
+
+ }
+
+}
+
+ #endif
+
+ #if (XXH_VECTOR == XXH_AVX2) || defined(XXH_X86DISPATCH)
+
+ #ifndef XXH_TARGET_AVX2
+ #define XXH_TARGET_AVX2 /* disable attribute target */
+ #endif
+
+XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_accumulate_512_avx2(
+ void *XXH_RESTRICT acc, const void *XXH_RESTRICT input,
+ const void *XXH_RESTRICT secret) {
+
+ XXH_ASSERT((((size_t)acc) & 31) == 0);
+ {
+
+ XXH_ALIGN(32) __m256i *const xacc = (__m256i *)acc;
+ /* Unaligned. This is mainly for pointer arithmetic, and because
+ * _mm256_loadu_si256 requires a const __m256i * pointer for some reason.
+ */
+ const __m256i *const xinput = (const __m256i *)input;
+ /* Unaligned. This is mainly for pointer arithmetic, and because
+ * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
+ const __m256i *const xsecret = (const __m256i *)secret;
+
+ size_t i;
+ for (i = 0; i < XXH_STRIPE_LEN / sizeof(__m256i); i++) {
+
+ /* data_vec = xinput[i]; */
+ __m256i const data_vec = _mm256_loadu_si256(xinput + i);
+ /* key_vec = xsecret[i]; */
+ __m256i const key_vec = _mm256_loadu_si256(xsecret + i);
+ /* data_key = data_vec ^ key_vec; */
+ __m256i const data_key = _mm256_xor_si256(data_vec, key_vec);
+ /* data_key_lo = data_key >> 32; */
+ __m256i const data_key_lo =
+ _mm256_shuffle_epi32(data_key, _MM_SHUFFLE(0, 3, 0, 1));
+ /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
+ __m256i const product = _mm256_mul_epu32(data_key, data_key_lo);
+ /* xacc[i] += swap(data_vec); */
+ __m256i const data_swap =
+ _mm256_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2));
+ __m256i const sum = _mm256_add_epi64(xacc[i], data_swap);
+ /* xacc[i] += product; */
+ xacc[i] = _mm256_add_epi64(product, sum);
+
+ }
+
+ }
+
+}
+
+XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_scrambleAcc_avx2(
+ void *XXH_RESTRICT acc, const void *XXH_RESTRICT secret) {
+
+ XXH_ASSERT((((size_t)acc) & 31) == 0);
+ {
+
+ XXH_ALIGN(32) __m256i *const xacc = (__m256i *)acc;
+ /* Unaligned. This is mainly for pointer arithmetic, and because
+ * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
+ const __m256i *const xsecret = (const __m256i *)secret;
+ const __m256i prime32 = _mm256_set1_epi32((int)XXH_PRIME32_1);
+
+ size_t i;
+ for (i = 0; i < XXH_STRIPE_LEN / sizeof(__m256i); i++) {
+
+ /* xacc[i] ^= (xacc[i] >> 47) */
+ __m256i const acc_vec = xacc[i];
+ __m256i const shifted = _mm256_srli_epi64(acc_vec, 47);
+ __m256i const data_vec = _mm256_xor_si256(acc_vec, shifted);
+ /* xacc[i] ^= xsecret; */
+ __m256i const key_vec = _mm256_loadu_si256(xsecret + i);
+ __m256i const data_key = _mm256_xor_si256(data_vec, key_vec);
+
+ /* xacc[i] *= XXH_PRIME32_1; */
+ __m256i const data_key_hi =
+ _mm256_shuffle_epi32(data_key, _MM_SHUFFLE(0, 3, 0, 1));
+ __m256i const prod_lo = _mm256_mul_epu32(data_key, prime32);
+ __m256i const prod_hi = _mm256_mul_epu32(data_key_hi, prime32);
+ xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32));
+
+ }
+
+ }
+
+}
+
+XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_initCustomSecret_avx2(
+ void *XXH_RESTRICT customSecret, xxh_u64 seed64) {
+
+ XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 31) == 0);
+ XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE / sizeof(__m256i)) == 6);
+ XXH_STATIC_ASSERT(XXH_SEC_ALIGN <= 64);
+ (void)(&XXH_writeLE64);
+ XXH_PREFETCH(customSecret);
+ {
+
+ __m256i const seed = _mm256_set_epi64x(-(xxh_i64)seed64, (xxh_i64)seed64,
+ -(xxh_i64)seed64, (xxh_i64)seed64);
+
+ XXH_ALIGN(64) const __m256i *const src = (const __m256i *)XXH3_kSecret;
+ XXH_ALIGN(64) __m256i * dest = (__m256i *)customSecret;
+
+ #if defined(__GNUC__) || defined(__clang__)
+ /*
+ * On GCC & Clang, marking 'dest' as modified will cause the compiler:
+ * - do not extract the secret from sse registers in the internal loop
+ * - use less common registers, and avoid pushing these reg into stack
+ * The asm hack causes Clang to assume that XXH3_kSecretPtr aliases with
+ * customSecret, and on aarch64, this prevented LDP from merging two
+ * loads together for free. Putting the loads together before the stores
+ * properly generates LDP.
+ */
+ __asm__("" : "+r"(dest));
+ #endif
+
+ /* GCC -O2 need unroll loop manually */
+ dest[0] = _mm256_add_epi64(_mm256_stream_load_si256(src + 0), seed);
+ dest[1] = _mm256_add_epi64(_mm256_stream_load_si256(src + 1), seed);
+ dest[2] = _mm256_add_epi64(_mm256_stream_load_si256(src + 2), seed);
+ dest[3] = _mm256_add_epi64(_mm256_stream_load_si256(src + 3), seed);
+ dest[4] = _mm256_add_epi64(_mm256_stream_load_si256(src + 4), seed);
+ dest[5] = _mm256_add_epi64(_mm256_stream_load_si256(src + 5), seed);
+
+ }
+
+}
+
+ #endif
+
+ #if (XXH_VECTOR == XXH_SSE2) || defined(XXH_X86DISPATCH)
+
+ #ifndef XXH_TARGET_SSE2
+ #define XXH_TARGET_SSE2 /* disable attribute target */
+ #endif
+
+XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_accumulate_512_sse2(
+ void *XXH_RESTRICT acc, const void *XXH_RESTRICT input,
+ const void *XXH_RESTRICT secret) {
+
+ /* SSE2 is just a half-scale version of the AVX2 version. */
+ XXH_ASSERT((((size_t)acc) & 15) == 0);
+ {
+
+ XXH_ALIGN(16) __m128i *const xacc = (__m128i *)acc;
+ /* Unaligned. This is mainly for pointer arithmetic, and because
+ * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
+ const __m128i *const xinput = (const __m128i *)input;
+ /* Unaligned. This is mainly for pointer arithmetic, and because
+ * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
+ const __m128i *const xsecret = (const __m128i *)secret;
+
+ size_t i;
+ for (i = 0; i < XXH_STRIPE_LEN / sizeof(__m128i); i++) {
+
+ /* data_vec = xinput[i]; */
+ __m128i const data_vec = _mm_loadu_si128(xinput + i);
+ /* key_vec = xsecret[i]; */
+ __m128i const key_vec = _mm_loadu_si128(xsecret + i);
+ /* data_key = data_vec ^ key_vec; */
+ __m128i const data_key = _mm_xor_si128(data_vec, key_vec);
+ /* data_key_lo = data_key >> 32; */
+ __m128i const data_key_lo =
+ _mm_shuffle_epi32(data_key, _MM_SHUFFLE(0, 3, 0, 1));
+ /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
+ __m128i const product = _mm_mul_epu32(data_key, data_key_lo);
+ /* xacc[i] += swap(data_vec); */
+ __m128i const data_swap =
+ _mm_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2));
+ __m128i const sum = _mm_add_epi64(xacc[i], data_swap);
+ /* xacc[i] += product; */
+ xacc[i] = _mm_add_epi64(product, sum);
+
+ }
+
+ }
+
+}
+
+XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_scrambleAcc_sse2(
+ void *XXH_RESTRICT acc, const void *XXH_RESTRICT secret) {
+
+ XXH_ASSERT((((size_t)acc) & 15) == 0);
+ {
+
+ XXH_ALIGN(16) __m128i *const xacc = (__m128i *)acc;
+ /* Unaligned. This is mainly for pointer arithmetic, and because
+ * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
+ const __m128i *const xsecret = (const __m128i *)secret;
+ const __m128i prime32 = _mm_set1_epi32((int)XXH_PRIME32_1);
+
+ size_t i;
+ for (i = 0; i < XXH_STRIPE_LEN / sizeof(__m128i); i++) {
+
+ /* xacc[i] ^= (xacc[i] >> 47) */
+ __m128i const acc_vec = xacc[i];
+ __m128i const shifted = _mm_srli_epi64(acc_vec, 47);
+ __m128i const data_vec = _mm_xor_si128(acc_vec, shifted);
+ /* xacc[i] ^= xsecret[i]; */
+ __m128i const key_vec = _mm_loadu_si128(xsecret + i);
+ __m128i const data_key = _mm_xor_si128(data_vec, key_vec);
+
+ /* xacc[i] *= XXH_PRIME32_1; */
+ __m128i const data_key_hi =
+ _mm_shuffle_epi32(data_key, _MM_SHUFFLE(0, 3, 0, 1));
+ __m128i const prod_lo = _mm_mul_epu32(data_key, prime32);
+ __m128i const prod_hi = _mm_mul_epu32(data_key_hi, prime32);
+ xacc[i] = _mm_add_epi64(prod_lo, _mm_slli_epi64(prod_hi, 32));
+
+ }
+
+ }
+
+}
+
+XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_initCustomSecret_sse2(
+ void *XXH_RESTRICT customSecret, xxh_u64 seed64) {
+
+ XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
+ (void)(&XXH_writeLE64);
+ {
+
+ int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m128i);
+
+ #if defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER < 1900
+ // MSVC 32bit mode does not support _mm_set_epi64x before 2015
+ XXH_ALIGN(16)
+ const xxh_i64 seed64x2[2] = {(xxh_i64)seed64, -(xxh_i64)seed64};
+ __m128i const seed = _mm_load_si128((__m128i const *)seed64x2);
+ #else
+ __m128i const seed = _mm_set_epi64x(-(xxh_i64)seed64, (xxh_i64)seed64);
+ #endif
+ int i;
+
+ XXH_ALIGN(64) const float *const src = (float const *)XXH3_kSecret;
+ XXH_ALIGN(XXH_SEC_ALIGN) __m128i *dest = (__m128i *)customSecret;
+ #if defined(__GNUC__) || defined(__clang__)
+ /*
+ * On GCC & Clang, marking 'dest' as modified will cause the compiler:
+ * - do not extract the secret from sse registers in the internal loop
+ * - use less common registers, and avoid pushing these reg into stack
+ */
+ __asm__("" : "+r"(dest));
+ #endif
+
+ for (i = 0; i < nbRounds; ++i) {
+
+ dest[i] = _mm_add_epi64(_mm_castps_si128(_mm_load_ps(src + i * 4)), seed);
+
+ }
+
+ }
+
+}
+
+ #endif
+
+ #if (XXH_VECTOR == XXH_NEON)
+
+XXH_FORCE_INLINE void XXH3_accumulate_512_neon(
+ void *XXH_RESTRICT acc, const void *XXH_RESTRICT input,
+ const void *XXH_RESTRICT secret) {
+
+ XXH_ASSERT((((size_t)acc) & 15) == 0);
+ {
+
+ XXH_ALIGN(16) uint64x2_t *const xacc = (uint64x2_t *)acc;
+ /* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7.
+ */
+ uint8_t const *const xinput = (const uint8_t *)input;
+ uint8_t const *const xsecret = (const uint8_t *)secret;
+
+ size_t i;
+ for (i = 0; i < XXH_STRIPE_LEN / sizeof(uint64x2_t); i++) {
+
+ /* data_vec = xinput[i]; */
+ uint8x16_t data_vec = vld1q_u8(xinput + (i * 16));
+ /* key_vec = xsecret[i]; */
+ uint8x16_t key_vec = vld1q_u8(xsecret + (i * 16));
+ uint64x2_t data_key;
+ uint32x2_t data_key_lo, data_key_hi;
+ /* xacc[i] += swap(data_vec); */
+ uint64x2_t const data64 = vreinterpretq_u64_u8(data_vec);
+ uint64x2_t const swapped = vextq_u64(data64, data64, 1);
+ xacc[i] = vaddq_u64(xacc[i], swapped);
+ /* data_key = data_vec ^ key_vec; */
+ data_key = vreinterpretq_u64_u8(veorq_u8(data_vec, key_vec));
+ /* data_key_lo = (uint32x2_t) (data_key & 0xFFFFFFFF);
+ * data_key_hi = (uint32x2_t) (data_key >> 32);
+ * data_key = UNDEFINED; */
+ XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi);
+ /* xacc[i] += (uint64x2_t) data_key_lo * (uint64x2_t) data_key_hi; */
+ xacc[i] = vmlal_u32(xacc[i], data_key_lo, data_key_hi);
+
+ }
+
+ }
+
+}
+
+XXH_FORCE_INLINE void XXH3_scrambleAcc_neon(void *XXH_RESTRICT acc,
+ const void *XXH_RESTRICT secret) {
+
+ XXH_ASSERT((((size_t)acc) & 15) == 0);
+
+ {
+
+ uint64x2_t * xacc = (uint64x2_t *)acc;
+ uint8_t const *xsecret = (uint8_t const *)secret;
+ uint32x2_t prime = vdup_n_u32(XXH_PRIME32_1);
+
+ size_t i;
+ for (i = 0; i < XXH_STRIPE_LEN / sizeof(uint64x2_t); i++) {
+
+ /* xacc[i] ^= (xacc[i] >> 47); */
+ uint64x2_t acc_vec = xacc[i];
+ uint64x2_t shifted = vshrq_n_u64(acc_vec, 47);
+ uint64x2_t data_vec = veorq_u64(acc_vec, shifted);
+
+ /* xacc[i] ^= xsecret[i]; */
+ uint8x16_t key_vec = vld1q_u8(xsecret + (i * 16));
+ uint64x2_t data_key = veorq_u64(data_vec, vreinterpretq_u64_u8(key_vec));
+
+ /* xacc[i] *= XXH_PRIME32_1 */
+ uint32x2_t data_key_lo, data_key_hi;
+ /* data_key_lo = (uint32x2_t) (xacc[i] & 0xFFFFFFFF);
+ * data_key_hi = (uint32x2_t) (xacc[i] >> 32);
+ * xacc[i] = UNDEFINED; */
+ XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi);
+ { /*
+ * prod_hi = (data_key >> 32) * XXH_PRIME32_1;
+ *
+ * Avoid vmul_u32 + vshll_n_u32 since Clang 6 and 7 will
+ * incorrectly "optimize" this:
+ * tmp = vmul_u32(vmovn_u64(a), vmovn_u64(b));
+ * shifted = vshll_n_u32(tmp, 32);
+ * to this:
+ * tmp = "vmulq_u64"(a, b); // no such thing!
+ * shifted = vshlq_n_u64(tmp, 32);
+ *
+ * However, unlike SSE, Clang lacks a 64-bit multiply routine
+ * for NEON, and it scalarizes two 64-bit multiplies instead.
+ *
+ * vmull_u32 has the same timing as vmul_u32, and it avoids
+ * this bug completely.
+ * See https://bugs.llvm.org/show_bug.cgi?id=39967
+ */
+ uint64x2_t prod_hi = vmull_u32(data_key_hi, prime);
+ /* xacc[i] = prod_hi << 32; */
+ xacc[i] = vshlq_n_u64(prod_hi, 32);
+ /* xacc[i] += (prod_hi & 0xFFFFFFFF) * XXH_PRIME32_1; */
+ xacc[i] = vmlal_u32(xacc[i], data_key_lo, prime);
+
+ }
+
+ }
+
+ }
+
+}
+
+ #endif
+
+ #if (XXH_VECTOR == XXH_VSX)
+
+XXH_FORCE_INLINE void XXH3_accumulate_512_vsx(void *XXH_RESTRICT acc,
+ const void *XXH_RESTRICT input,
+ const void *XXH_RESTRICT secret) {
+
+ xxh_u64x2 *const xacc = (xxh_u64x2 *)acc; /* presumed aligned */
+ xxh_u64x2 const *const xinput =
+ (xxh_u64x2 const *)input; /* no alignment restriction */
+ xxh_u64x2 const *const xsecret =
+ (xxh_u64x2 const *)secret; /* no alignment restriction */
+ xxh_u64x2 const v32 = {32, 32};
+ size_t i;
+ for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
+
+ /* data_vec = xinput[i]; */
+ xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + i);
+ /* key_vec = xsecret[i]; */
+ xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i);
+ xxh_u64x2 const data_key = data_vec ^ key_vec;
+ /* shuffled = (data_key << 32) | (data_key >> 32); */
+ xxh_u32x4 const shuffled = (xxh_u32x4)vec_rl(data_key, v32);
+ /* product = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)shuffled &
+ * 0xFFFFFFFF); */
+ xxh_u64x2 const product = XXH_vec_mulo((xxh_u32x4)data_key, shuffled);
+ xacc[i] += product;
+
+ /* swap high and low halves */
+ #ifdef __s390x__
+ xacc[i] += vec_permi(data_vec, data_vec, 2);
+ #else
+ xacc[i] += vec_xxpermdi(data_vec, data_vec, 2);
+ #endif
+
+ }
+
+}
+
+XXH_FORCE_INLINE void XXH3_scrambleAcc_vsx(void *XXH_RESTRICT acc,
+ const void *XXH_RESTRICT secret) {
+
+ XXH_ASSERT((((size_t)acc) & 15) == 0);
+
+ {
+
+ xxh_u64x2 *const xacc = (xxh_u64x2 *)acc;
+ const xxh_u64x2 *const xsecret = (const xxh_u64x2 *)secret;
+ /* constants */
+ xxh_u64x2 const v32 = {32, 32};
+ xxh_u64x2 const v47 = {47, 47};
+ xxh_u32x4 const prime = {XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1,
+ XXH_PRIME32_1};
+ size_t i;
+ for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
+
+ /* xacc[i] ^= (xacc[i] >> 47); */
+ xxh_u64x2 const acc_vec = xacc[i];
+ xxh_u64x2 const data_vec = acc_vec ^ (acc_vec >> v47);
+
+ /* xacc[i] ^= xsecret[i]; */
+ xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i);
+ xxh_u64x2 const data_key = data_vec ^ key_vec;
+
+ /* xacc[i] *= XXH_PRIME32_1 */
+ /* prod_lo = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)prime &
+ * 0xFFFFFFFF); */
+ xxh_u64x2 const prod_even = XXH_vec_mule((xxh_u32x4)data_key, prime);
+ /* prod_hi = ((xxh_u64x2)data_key >> 32) * ((xxh_u64x2)prime >> 32); */
+ xxh_u64x2 const prod_odd = XXH_vec_mulo((xxh_u32x4)data_key, prime);
+ xacc[i] = prod_odd + (prod_even << v32);
+
+ }
+
+ }
+
+}
+
+ #endif
+
+/* scalar variants - universal */
+
+XXH_FORCE_INLINE void XXH3_accumulate_512_scalar(
+ void *XXH_RESTRICT acc, const void *XXH_RESTRICT input,
+ const void *XXH_RESTRICT secret) {
+
+ XXH_ALIGN(XXH_ACC_ALIGN)
+ xxh_u64 *const xacc = (xxh_u64 *)acc; /* presumed aligned */
+ const xxh_u8 *const xinput =
+ (const xxh_u8 *)input; /* no alignment restriction */
+ const xxh_u8 *const xsecret =
+ (const xxh_u8 *)secret; /* no alignment restriction */
+ size_t i;
+ XXH_ASSERT(((size_t)acc & (XXH_ACC_ALIGN - 1)) == 0);
+ for (i = 0; i < XXH_ACC_NB; i++) {
+
+ xxh_u64 const data_val = XXH_readLE64(xinput + 8 * i);
+ xxh_u64 const data_key = data_val ^ XXH_readLE64(xsecret + i * 8);
+ xacc[i ^ 1] += data_val; /* swap adjacent lanes */
+ xacc[i] += XXH_mult32to64(data_key & 0xFFFFFFFF, data_key >> 32);
+
+ }
+
+}
+
+XXH_FORCE_INLINE void XXH3_scrambleAcc_scalar(void *XXH_RESTRICT acc,
+ const void *XXH_RESTRICT secret) {
+
+ XXH_ALIGN(XXH_ACC_ALIGN)
+ xxh_u64 *const xacc = (xxh_u64 *)acc; /* presumed aligned */
+ const xxh_u8 *const xsecret =
+ (const xxh_u8 *)secret; /* no alignment restriction */
+ size_t i;
+ XXH_ASSERT((((size_t)acc) & (XXH_ACC_ALIGN - 1)) == 0);
+ for (i = 0; i < XXH_ACC_NB; i++) {
+
+ xxh_u64 const key64 = XXH_readLE64(xsecret + 8 * i);
+ xxh_u64 acc64 = xacc[i];
+ acc64 = XXH_xorshift64(acc64, 47);
+ acc64 ^= key64;
+ acc64 *= XXH_PRIME32_1;
+ xacc[i] = acc64;
+
+ }
+
+}
+
+XXH_FORCE_INLINE void XXH3_initCustomSecret_scalar(
+ void *XXH_RESTRICT customSecret, xxh_u64 seed64) {
+
+ /*
+ * We need a separate pointer for the hack below,
+ * which requires a non-const pointer.
+ * Any decent compiler will optimize this out otherwise.
+ */
+ const xxh_u8 *kSecretPtr = XXH3_kSecret;
+ XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
+
+ #if defined(__clang__) && defined(__aarch64__)
+ /*
+ * UGLY HACK:
+ * Clang generates a bunch of MOV/MOVK pairs for aarch64, and they are
+ * placed sequentially, in order, at the top of the unrolled loop.
+ *
+ * While MOVK is great for generating constants (2 cycles for a 64-bit
+ * constant compared to 4 cycles for LDR), long MOVK chains stall the
+ * integer pipelines:
+ * I L S
+ * MOVK
+ * MOVK
+ * MOVK
+ * MOVK
+ * ADD
+ * SUB STR
+ * STR
+ * By forcing loads from memory (as the asm line causes Clang to assume
+ * that XXH3_kSecretPtr has been changed), the pipelines are used more
+ * efficiently:
+ * I L S
+ * LDR
+ * ADD LDR
+ * SUB STR
+ * STR
+ * XXH3_64bits_withSeed, len == 256, Snapdragon 835
+ * without hack: 2654.4 MB/s
+ * with hack: 3202.9 MB/s
+ */
+ __asm__("" : "+r"(kSecretPtr));
+ #endif
+ /*
+ * Note: in debug mode, this overrides the asm optimization
+ * and Clang will emit MOVK chains again.
+ */
+ XXH_ASSERT(kSecretPtr == XXH3_kSecret);
+
+ {
+
+ int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16;
+ int i;
+ for (i = 0; i < nbRounds; i++) {
+
+ /*
+ * The asm hack causes Clang to assume that kSecretPtr aliases with
+ * customSecret, and on aarch64, this prevented LDP from merging two
+ * loads together for free. Putting the loads together before the stores
+ * properly generates LDP.
+ */
+ xxh_u64 lo = XXH_readLE64(kSecretPtr + 16 * i) + seed64;
+ xxh_u64 hi = XXH_readLE64(kSecretPtr + 16 * i + 8) - seed64;
+ XXH_writeLE64((xxh_u8 *)customSecret + 16 * i, lo);
+ XXH_writeLE64((xxh_u8 *)customSecret + 16 * i + 8, hi);
+
+ }
+
+ }
+
+}
+
+typedef void (*XXH3_f_accumulate_512)(void *XXH_RESTRICT, const void *,
+ const void *);
+typedef void (*XXH3_f_scrambleAcc)(void *XXH_RESTRICT, const void *);
+typedef void (*XXH3_f_initCustomSecret)(void *XXH_RESTRICT, xxh_u64);
+
+ #if (XXH_VECTOR == XXH_AVX512)
+
+ #define XXH3_accumulate_512 XXH3_accumulate_512_avx512
+ #define XXH3_scrambleAcc XXH3_scrambleAcc_avx512
+ #define XXH3_initCustomSecret XXH3_initCustomSecret_avx512
+
+ #elif (XXH_VECTOR == XXH_AVX2)
+
+ #define XXH3_accumulate_512 XXH3_accumulate_512_avx2
+ #define XXH3_scrambleAcc XXH3_scrambleAcc_avx2
+ #define XXH3_initCustomSecret XXH3_initCustomSecret_avx2
+
+ #elif (XXH_VECTOR == XXH_SSE2)
+
+ #define XXH3_accumulate_512 XXH3_accumulate_512_sse2
+ #define XXH3_scrambleAcc XXH3_scrambleAcc_sse2
+ #define XXH3_initCustomSecret XXH3_initCustomSecret_sse2
+
+ #elif (XXH_VECTOR == XXH_NEON)
+
+ #define XXH3_accumulate_512 XXH3_accumulate_512_neon
+ #define XXH3_scrambleAcc XXH3_scrambleAcc_neon
+ #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
+
+ #elif (XXH_VECTOR == XXH_VSX)
+
+ #define XXH3_accumulate_512 XXH3_accumulate_512_vsx
+ #define XXH3_scrambleAcc XXH3_scrambleAcc_vsx
+ #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
+
+ #else /* scalar */
+
+ #define XXH3_accumulate_512 XXH3_accumulate_512_scalar
+ #define XXH3_scrambleAcc XXH3_scrambleAcc_scalar
+ #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
+
+ #endif
+
+ #ifndef XXH_PREFETCH_DIST
+ #ifdef __clang__
+ #define XXH_PREFETCH_DIST 320
+ #else
+ #if (XXH_VECTOR == XXH_AVX512)
+ #define XXH_PREFETCH_DIST 512
+ #else
+ #define XXH_PREFETCH_DIST 384
+ #endif
+ #endif /* __clang__ */
+ #endif /* XXH_PREFETCH_DIST */
+
+/*
+ * XXH3_accumulate()
+ * Loops over XXH3_accumulate_512().
+ * Assumption: nbStripes will not overflow the secret size
+ */
+XXH_FORCE_INLINE void XXH3_accumulate(xxh_u64 *XXH_RESTRICT acc,
+ const xxh_u8 *XXH_RESTRICT input,
+ const xxh_u8 *XXH_RESTRICT secret,
+ size_t nbStripes,
+ XXH3_f_accumulate_512 f_acc512) {
+
+ size_t n;
+ for (n = 0; n < nbStripes; n++) {
+
+ const xxh_u8 *const in = input + n * XXH_STRIPE_LEN;
+ XXH_PREFETCH(in + XXH_PREFETCH_DIST);
+ f_acc512(acc, in, secret + n * XXH_SECRET_CONSUME_RATE);
+
+ }
+
+}
+
+XXH_FORCE_INLINE void XXH3_hashLong_internal_loop(
+ xxh_u64 *XXH_RESTRICT acc, const xxh_u8 *XXH_RESTRICT input, size_t len,
+ const xxh_u8 *XXH_RESTRICT secret, size_t secretSize,
+ XXH3_f_accumulate_512 f_acc512, XXH3_f_scrambleAcc f_scramble) {
+
+ size_t const nbStripesPerBlock =
+ (secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE;
+ size_t const block_len = XXH_STRIPE_LEN * nbStripesPerBlock;
+ size_t const nb_blocks = (len - 1) / block_len;
+
+ size_t n;
+
+ XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
+
+ for (n = 0; n < nb_blocks; n++) {
+
+ XXH3_accumulate(acc, input + n * block_len, secret, nbStripesPerBlock,
+ f_acc512);
+ f_scramble(acc, secret + secretSize - XXH_STRIPE_LEN);
+
+ }
+
+ /* last partial block */
+ XXH_ASSERT(len > XXH_STRIPE_LEN);
+ {
+
+ size_t const nbStripes =
+ ((len - 1) - (block_len * nb_blocks)) / XXH_STRIPE_LEN;
+ XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE));
+ XXH3_accumulate(acc, input + nb_blocks * block_len, secret, nbStripes,
+ f_acc512);
+
+ /* last stripe */
+ {
+
+ const xxh_u8 *const p = input + len - XXH_STRIPE_LEN;
+ #define XXH_SECRET_LASTACC_START \
+ 7 /* not aligned on 8, last secret is different from acc & scrambler */
+ f_acc512(acc, p,
+ secret + secretSize - XXH_STRIPE_LEN - XXH_SECRET_LASTACC_START);
+
+ }
+
+ }
+
+}
+
+XXH_FORCE_INLINE xxh_u64 XXH3_mix2Accs(const xxh_u64 *XXH_RESTRICT acc,
+ const xxh_u8 *XXH_RESTRICT secret) {
+
+ return XXH3_mul128_fold64(acc[0] ^ XXH_readLE64(secret),
+ acc[1] ^ XXH_readLE64(secret + 8));
+
+}
+
+static XXH64_hash_t XXH3_mergeAccs(const xxh_u64 *XXH_RESTRICT acc,
+ const xxh_u8 *XXH_RESTRICT secret,
+ xxh_u64 start) {
+
+ xxh_u64 result64 = start;
+ size_t i = 0;
+
+ for (i = 0; i < 4; i++) {
+
+ result64 += XXH3_mix2Accs(acc + 2 * i, secret + 16 * i);
+ #if defined(__clang__) /* Clang */ \
+ && (defined(__arm__) || defined(__thumb__)) /* ARMv7 */ \
+ && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \
+ && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */
+ /*
+ * UGLY HACK:
+ * Prevent autovectorization on Clang ARMv7-a. Exact same problem as
+ * the one in XXH3_len_129to240_64b. Speeds up shorter keys > 240b.
+ * XXH3_64bits, len == 256, Snapdragon 835:
+ * without hack: 2063.7 MB/s
+ * with hack: 2560.7 MB/s
+ */
+ __asm__("" : "+r"(result64));
+ #endif
+
+ }
+
+ return XXH3_avalanche(result64);
+
+}
+
+ #define XXH3_INIT_ACC \
+ { \
+ \
+ XXH_PRIME32_3, XXH_PRIME64_1, XXH_PRIME64_2, XXH_PRIME64_3, \
+ XXH_PRIME64_4, XXH_PRIME32_2, XXH_PRIME64_5, XXH_PRIME32_1 \
+ \
+ }
+
+XXH_FORCE_INLINE XXH64_hash_t XXH3_hashLong_64b_internal(
+ const void *XXH_RESTRICT input, size_t len, const void *XXH_RESTRICT secret,
+ size_t secretSize, XXH3_f_accumulate_512 f_acc512,
+ XXH3_f_scrambleAcc f_scramble) {
+
+ XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
+
+ XXH3_hashLong_internal_loop(acc, (const xxh_u8 *)input, len,
+ (const xxh_u8 *)secret, secretSize, f_acc512,
+ f_scramble);
+
+ /* converge into final hash */
+ XXH_STATIC_ASSERT(sizeof(acc) == 64);
+ /* do not align on 8, so that the secret is different from the accumulator
+ */
+ #define XXH_SECRET_MERGEACCS_START 11
+ XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
+ return XXH3_mergeAccs(acc,
+ (const xxh_u8 *)secret + XXH_SECRET_MERGEACCS_START,
+ (xxh_u64)len * XXH_PRIME64_1);
+
+}
+
+/*
+ * It's important for performance that XXH3_hashLong is not inlined.
+ */
+XXH_NO_INLINE XXH64_hash_t XXH3_hashLong_64b_withSecret(
+ const void *XXH_RESTRICT input, size_t len, XXH64_hash_t seed64,
+ const xxh_u8 *XXH_RESTRICT secret, size_t secretLen) {
+
+ (void)seed64;
+ return XXH3_hashLong_64b_internal(input, len, secret, secretLen,
+ XXH3_accumulate_512, XXH3_scrambleAcc);
+
+}
+
+/*
+ * It's important for performance that XXH3_hashLong is not inlined.
+ * Since the function is not inlined, the compiler may not be able to understand
+ * that, in some scenarios, its `secret` argument is actually a compile time
+ * constant. This variant enforces that the compiler can detect that, and uses
+ * this opportunity to streamline the generated code for better performance.
+ */
+XXH_NO_INLINE XXH64_hash_t XXH3_hashLong_64b_default(
+ const void *XXH_RESTRICT input, size_t len, XXH64_hash_t seed64,
+ const xxh_u8 *XXH_RESTRICT secret, size_t secretLen) {
+
+ (void)seed64;
+ (void)secret;
+ (void)secretLen;
+ return XXH3_hashLong_64b_internal(input, len, XXH3_kSecret,
+ sizeof(XXH3_kSecret), XXH3_accumulate_512,
+ XXH3_scrambleAcc);
+
+}
+
+/*
+ * XXH3_hashLong_64b_withSeed():
+ * Generate a custom key based on alteration of default XXH3_kSecret with the
+ * seed, and then use this key for long mode hashing.
+ *
+ * This operation is decently fast but nonetheless costs a little bit of time.
+ * Try to avoid it whenever possible (typically when seed==0).
+ *
+ * It's important for performance that XXH3_hashLong is not inlined. Not sure
+ * why (uop cache maybe?), but the difference is large and easily measurable.
+ */
+XXH_FORCE_INLINE XXH64_hash_t XXH3_hashLong_64b_withSeed_internal(
+ const void *input, size_t len, XXH64_hash_t seed,
+ XXH3_f_accumulate_512 f_acc512, XXH3_f_scrambleAcc f_scramble,
+ XXH3_f_initCustomSecret f_initSec) {
+
+ if (seed == 0)
+ return XXH3_hashLong_64b_internal(
+ input, len, XXH3_kSecret, sizeof(XXH3_kSecret), f_acc512, f_scramble);
+ {
+
+ XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
+ f_initSec(secret, seed);
+ return XXH3_hashLong_64b_internal(input, len, secret, sizeof(secret),
+ f_acc512, f_scramble);
+
+ }
+
+}
+
+/*
+ * It's important for performance that XXH3_hashLong is not inlined.
+ */
+XXH_NO_INLINE XXH64_hash_t XXH3_hashLong_64b_withSeed(const void * input,
+ size_t len,
+ XXH64_hash_t seed,
+ const xxh_u8 *secret,
+ size_t secretLen) {
+
+ (void)secret;
+ (void)secretLen;
+ return XXH3_hashLong_64b_withSeed_internal(
+ input, len, seed, XXH3_accumulate_512, XXH3_scrambleAcc,
+ XXH3_initCustomSecret);
+
+}
+
+typedef XXH64_hash_t (*XXH3_hashLong64_f)(const void *XXH_RESTRICT, size_t,
+ XXH64_hash_t,
+ const xxh_u8 *XXH_RESTRICT, size_t);
+
+XXH_FORCE_INLINE XXH64_hash_t
+XXH3_64bits_internal(const void *XXH_RESTRICT input, size_t len,
+ XXH64_hash_t seed64, const void *XXH_RESTRICT secret,
+ size_t secretLen, XXH3_hashLong64_f f_hashLong) {
+
+ XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
+ /*
+ * If an action is to be taken if `secretLen` condition is not respected,
+ * it should be done here.
+ * For now, it's a contract pre-condition.
+ * Adding a check and a branch here would cost performance at every hash.
+ * Also, note that function signature doesn't offer room to return an error.
+ */
+ if (len <= 16)
+ return XXH3_len_0to16_64b((const xxh_u8 *)input, len,
+ (const xxh_u8 *)secret, seed64);
+ if (len <= 128)
+ return XXH3_len_17to128_64b((const xxh_u8 *)input, len,
+ (const xxh_u8 *)secret, secretLen, seed64);
+ if (len <= XXH3_MIDSIZE_MAX)
+ return XXH3_len_129to240_64b((const xxh_u8 *)input, len,
+ (const xxh_u8 *)secret, secretLen, seed64);
+ return f_hashLong(input, len, seed64, (const xxh_u8 *)secret, secretLen);
+
+}
+
+/* === Public entry point === */
+
+XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void *input, size_t len) {
+
+ return XXH3_64bits_internal(input, len, 0, XXH3_kSecret, sizeof(XXH3_kSecret),
+ XXH3_hashLong_64b_default);
+
+}
+
+XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSecret(const void *input,
+ size_t len,
+ const void *secret,
+ size_t secretSize) {
+
+ return XXH3_64bits_internal(input, len, 0, secret, secretSize,
+ XXH3_hashLong_64b_withSecret);
+
+}
+
+XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSeed(const void *input, size_t len,
+ XXH64_hash_t seed) {
+
+ return XXH3_64bits_internal(input, len, seed, XXH3_kSecret,
+ sizeof(XXH3_kSecret), XXH3_hashLong_64b_withSeed);
+
+}
+
+/* === XXH3 streaming === */
+
+/*
+ * Malloc's a pointer that is always aligned to align.
+ *
+ * This must be freed with `XXH_alignedFree()`.
+ *
+ * malloc typically guarantees 16 byte alignment on 64-bit systems and 8 byte
+ * alignment on 32-bit. This isn't enough for the 32 byte aligned loads in AVX2
+ * or on 32-bit, the 16 byte aligned loads in SSE2 and NEON.
+ *
+ * This underalignment previously caused a rather obvious crash which went
+ * completely unnoticed due to XXH3_createState() not actually being tested.
+ * Credit to RedSpah for noticing this bug.
+ *
+ * The alignment is done manually: Functions like posix_memalign or _mm_malloc
+ * are avoided: To maintain portability, we would have to write a fallback
+ * like this anyways, and besides, testing for the existence of library
+ * functions without relying on external build tools is impossible.
+ *
+ * The method is simple: Overallocate, manually align, and store the offset
+ * to the original behind the returned pointer.
+ *
+ * Align must be a power of 2 and 8 <= align <= 128.
+ */
+static void *XXH_alignedMalloc(size_t s, size_t align) {
+
+ XXH_ASSERT(align <= 128 && align >= 8); /* range check */
+ XXH_ASSERT((align & (align - 1)) == 0); /* power of 2 */
+ XXH_ASSERT(s != 0 && s < (s + align)); /* empty/overflow */
+ { /* Overallocate to make room for manual realignment and an offset byte */
+ xxh_u8 *base = (xxh_u8 *)XXH_malloc(s + align);
+ if (base != NULL) {
+
+ /*
+ * Get the offset needed to align this pointer.
+ *
+ * Even if the returned pointer is aligned, there will always be
+ * at least one byte to store the offset to the original pointer.
+ */
+ size_t offset = align - ((size_t)base & (align - 1)); /* base % align */
+ /* Add the offset for the now-aligned pointer */
+ xxh_u8 *ptr = base + offset;
+
+ XXH_ASSERT((size_t)ptr % align == 0);
+
+ /* Store the offset immediately before the returned pointer. */
+ ptr[-1] = (xxh_u8)offset;
+ return ptr;
+
+ }
+
+ return NULL;
+
+ }
+
+}
+
+/*
+ * Frees an aligned pointer allocated by XXH_alignedMalloc(). Don't pass
+ * normal malloc'd pointers, XXH_alignedMalloc has a specific data layout.
+ */
+static void XXH_alignedFree(void *p) {
+
+ if (p != NULL) {
+
+ xxh_u8 *ptr = (xxh_u8 *)p;
+ /* Get the offset byte we added in XXH_malloc. */
+ xxh_u8 offset = ptr[-1];
+ /* Free the original malloc'd pointer */
+ xxh_u8 *base = ptr - offset;
+ XXH_free(base);
+
+ }
+
+}
+
+XXH_PUBLIC_API XXH3_state_t *XXH3_createState(void) {
+
+ XXH3_state_t *const state =
+ (XXH3_state_t *)XXH_alignedMalloc(sizeof(XXH3_state_t), 64);
+ if (state == NULL) return NULL;
+ XXH3_INITSTATE(state);
+ return state;
+
+}
+
+XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t *statePtr) {
+
+ XXH_alignedFree(statePtr);
+ return XXH_OK;
+
+}
+
+XXH_PUBLIC_API void XXH3_copyState(XXH3_state_t * dst_state,
+ const XXH3_state_t *src_state) {
+
+ memcpy(dst_state, src_state, sizeof(*dst_state));
+
+}
+
+static void XXH3_64bits_reset_internal(XXH3_state_t *statePtr,
+ XXH64_hash_t seed, const void *secret,
+ size_t secretSize) {
+
+ size_t const initStart = offsetof(XXH3_state_t, bufferedSize);
+ size_t const initLength =
+ offsetof(XXH3_state_t, nbStripesPerBlock) - initStart;
+ XXH_ASSERT(offsetof(XXH3_state_t, nbStripesPerBlock) > initStart);
+ XXH_ASSERT(statePtr != NULL);
+ /* set members from bufferedSize to nbStripesPerBlock (excluded) to 0 */
+ memset((char *)statePtr + initStart, 0, initLength);
+ statePtr->acc[0] = XXH_PRIME32_3;
+ statePtr->acc[1] = XXH_PRIME64_1;
+ statePtr->acc[2] = XXH_PRIME64_2;
+ statePtr->acc[3] = XXH_PRIME64_3;
+ statePtr->acc[4] = XXH_PRIME64_4;
+ statePtr->acc[5] = XXH_PRIME32_2;
+ statePtr->acc[6] = XXH_PRIME64_5;
+ statePtr->acc[7] = XXH_PRIME32_1;
+ statePtr->seed = seed;
+ statePtr->extSecret = (const unsigned char *)secret;
+ XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
+ statePtr->secretLimit = secretSize - XXH_STRIPE_LEN;
+ statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE;
+
+}
+
+XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH3_state_t *statePtr) {
+
+ if (statePtr == NULL) return XXH_ERROR;
+ XXH3_64bits_reset_internal(statePtr, 0, XXH3_kSecret,
+ XXH_SECRET_DEFAULT_SIZE);
+ return XXH_OK;
+
+}
+
+XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(
+ XXH3_state_t *statePtr, const void *secret, size_t secretSize) {
+
+ if (statePtr == NULL) return XXH_ERROR;
+ XXH3_64bits_reset_internal(statePtr, 0, secret, secretSize);
+ if (secret == NULL) return XXH_ERROR;
+ if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
+ return XXH_OK;
+
+}
+
+XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH3_state_t *statePtr,
+ XXH64_hash_t seed) {
+
+ if (statePtr == NULL) return XXH_ERROR;
+ if (seed == 0) return XXH3_64bits_reset(statePtr);
+ if (seed != statePtr->seed)
+ XXH3_initCustomSecret(statePtr->customSecret, seed);
+ XXH3_64bits_reset_internal(statePtr, seed, NULL, XXH_SECRET_DEFAULT_SIZE);
+ return XXH_OK;
+
+}
+
+/* Note : when XXH3_consumeStripes() is invoked,
+ * there must be a guarantee that at least one more byte must be consumed from
+ * input
+ * so that the function can blindly consume all stripes using the "normal"
+ * secret segment */
+XXH_FORCE_INLINE void XXH3_consumeStripes(
+ xxh_u64 *XXH_RESTRICT acc, size_t *XXH_RESTRICT nbStripesSoFarPtr,
+ size_t nbStripesPerBlock, const xxh_u8 *XXH_RESTRICT input,
+ size_t nbStripes, const xxh_u8 *XXH_RESTRICT secret, size_t secretLimit,
+ XXH3_f_accumulate_512 f_acc512, XXH3_f_scrambleAcc f_scramble) {
+
+ XXH_ASSERT(nbStripes <=
+ nbStripesPerBlock); /* can handle max 1 scramble per invocation */
+ XXH_ASSERT(*nbStripesSoFarPtr < nbStripesPerBlock);
+ if (nbStripesPerBlock - *nbStripesSoFarPtr <= nbStripes) {
+
+ /* need a scrambling operation */
+ size_t const nbStripesToEndofBlock = nbStripesPerBlock - *nbStripesSoFarPtr;
+ size_t const nbStripesAfterBlock = nbStripes - nbStripesToEndofBlock;
+ XXH3_accumulate(acc, input,
+ secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE,
+ nbStripesToEndofBlock, f_acc512);
+ f_scramble(acc, secret + secretLimit);
+ XXH3_accumulate(acc, input + nbStripesToEndofBlock * XXH_STRIPE_LEN, secret,
+ nbStripesAfterBlock, f_acc512);
+ *nbStripesSoFarPtr = nbStripesAfterBlock;
+
+ } else {
+
+ XXH3_accumulate(acc, input,
+ secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE,
+ nbStripes, f_acc512);
+ *nbStripesSoFarPtr += nbStripes;
+
+ }
+
+}
+
+/*
+ * Both XXH3_64bits_update and XXH3_128bits_update use this routine.
+ */
+XXH_FORCE_INLINE XXH_errorcode XXH3_update(XXH3_state_t *state,
+ const xxh_u8 *input, size_t len,
+ XXH3_f_accumulate_512 f_acc512,
+ XXH3_f_scrambleAcc f_scramble) {
+
+ if (input == NULL)
+ #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && \
+ (XXH_ACCEPT_NULL_INPUT_POINTER >= 1)
+ return XXH_OK;
+ #else
+ return XXH_ERROR;
+ #endif
+
+ {
+
+ const xxh_u8 *const bEnd = input + len;
+ const unsigned char *const secret =
+ (state->extSecret == NULL) ? state->customSecret : state->extSecret;
+
+ state->totalLen += len;
+
+ if (state->bufferedSize + len <=
+ XXH3_INTERNALBUFFER_SIZE) { /* fill in tmp buffer */
+ XXH_memcpy(state->buffer + state->bufferedSize, input, len);
+ state->bufferedSize += (XXH32_hash_t)len;
+ return XXH_OK;
+
+ }
+
+ /* total input is now > XXH3_INTERNALBUFFER_SIZE */
+
+ #define XXH3_INTERNALBUFFER_STRIPES \
+ (XXH3_INTERNALBUFFER_SIZE / XXH_STRIPE_LEN)
+ XXH_STATIC_ASSERT(XXH3_INTERNALBUFFER_SIZE % XXH_STRIPE_LEN ==
+ 0); /* clean multiple */
+
+ /*
+ * Internal buffer is partially filled (always, except at beginning)
+ * Complete it, then consume it.
+ */
+ if (state->bufferedSize) {
+
+ size_t const loadSize = XXH3_INTERNALBUFFER_SIZE - state->bufferedSize;
+ XXH_memcpy(state->buffer + state->bufferedSize, input, loadSize);
+ input += loadSize;
+ XXH3_consumeStripes(state->acc, &state->nbStripesSoFar,
+ state->nbStripesPerBlock, state->buffer,
+ XXH3_INTERNALBUFFER_STRIPES, secret,
+ state->secretLimit, f_acc512, f_scramble);
+ state->bufferedSize = 0;
+
+ }
+
+ XXH_ASSERT(input < bEnd);
+
+ /* Consume input by a multiple of internal buffer size */
+ if (input + XXH3_INTERNALBUFFER_SIZE < bEnd) {
+
+ const xxh_u8 *const limit = bEnd - XXH3_INTERNALBUFFER_SIZE;
+ do {
+
+ XXH3_consumeStripes(state->acc, &state->nbStripesSoFar,
+ state->nbStripesPerBlock, input,
+ XXH3_INTERNALBUFFER_STRIPES, secret,
+ state->secretLimit, f_acc512, f_scramble);
+ input += XXH3_INTERNALBUFFER_SIZE;
+
+ } while (input < limit);
+
+ /* for last partial stripe */
+ memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN,
+ input - XXH_STRIPE_LEN, XXH_STRIPE_LEN);
+
+ }
+
+ XXH_ASSERT(input < bEnd);
+
+ /* Some remaining input (always) : buffer it */
+ XXH_memcpy(state->buffer, input, (size_t)(bEnd - input));
+ state->bufferedSize = (XXH32_hash_t)(bEnd - input);
+
+ }
+
+ return XXH_OK;
+
+}
+
+XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update(XXH3_state_t *state,
+ const void *input, size_t len) {
+
+ return XXH3_update(state, (const xxh_u8 *)input, len, XXH3_accumulate_512,
+ XXH3_scrambleAcc);
+
+}
+
+XXH_FORCE_INLINE void XXH3_digest_long(XXH64_hash_t * acc,
+ const XXH3_state_t * state,
+ const unsigned char *secret) {
+
+ /*
+ * Digest on a local copy. This way, the state remains unaltered, and it can
+ * continue ingesting more input afterwards.
+ */
+ memcpy(acc, state->acc, sizeof(state->acc));
+ if (state->bufferedSize >= XXH_STRIPE_LEN) {
+
+ size_t const nbStripes = (state->bufferedSize - 1) / XXH_STRIPE_LEN;
+ size_t nbStripesSoFar = state->nbStripesSoFar;
+ XXH3_consumeStripes(acc, &nbStripesSoFar, state->nbStripesPerBlock,
+ state->buffer, nbStripes, secret, state->secretLimit,
+ XXH3_accumulate_512, XXH3_scrambleAcc);
+ /* last stripe */
+ XXH3_accumulate_512(acc,
+ state->buffer + state->bufferedSize - XXH_STRIPE_LEN,
+ secret + state->secretLimit - XXH_SECRET_LASTACC_START);
+
+ } else { /* bufferedSize < XXH_STRIPE_LEN */
+
+ xxh_u8 lastStripe[XXH_STRIPE_LEN];
+ size_t const catchupSize = XXH_STRIPE_LEN - state->bufferedSize;
+ XXH_ASSERT(state->bufferedSize >
+ 0); /* there is always some input buffered */
+ memcpy(lastStripe, state->buffer + sizeof(state->buffer) - catchupSize,
+ catchupSize);
+ memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize);
+ XXH3_accumulate_512(acc, lastStripe,
+ secret + state->secretLimit - XXH_SECRET_LASTACC_START);
+
+ }
+
+}
+
+XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest(const XXH3_state_t *state) {
+
+ const unsigned char *const secret =
+ (state->extSecret == NULL) ? state->customSecret : state->extSecret;
+ if (state->totalLen > XXH3_MIDSIZE_MAX) {
+
+ XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
+ XXH3_digest_long(acc, state, secret);
+ return XXH3_mergeAccs(acc, secret + XXH_SECRET_MERGEACCS_START,
+ (xxh_u64)state->totalLen * XXH_PRIME64_1);
+
+ }
+
+ /* totalLen <= XXH3_MIDSIZE_MAX: digesting a short input */
+ if (state->seed)
+ return XXH3_64bits_withSeed(state->buffer, (size_t)state->totalLen,
+ state->seed);
+ return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen),
+ secret, state->secretLimit + XXH_STRIPE_LEN);
+
+}
+
+ #define XXH_MIN(x, y) (((x) > (y)) ? (y) : (x))
+
+XXH_PUBLIC_API void XXH3_generateSecret(void * secretBuffer,
+ const void *customSeed,
+ size_t customSeedSize) {
+
+ XXH_ASSERT(secretBuffer != NULL);
+ if (customSeedSize == 0) {
+
+ memcpy(secretBuffer, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE);
+ return;
+
+ }
+
+ XXH_ASSERT(customSeed != NULL);
+
+ {
+
+ size_t const segmentSize = sizeof(XXH128_hash_t);
+ size_t const nbSegments = XXH_SECRET_DEFAULT_SIZE / segmentSize;
+ XXH128_canonical_t scrambler;
+ XXH64_hash_t seeds[12];
+ size_t segnb;
+ XXH_ASSERT(nbSegments == 12);
+ XXH_ASSERT(segmentSize * nbSegments ==
+ XXH_SECRET_DEFAULT_SIZE); /* exact multiple */
+ XXH128_canonicalFromHash(&scrambler, XXH128(customSeed, customSeedSize, 0));
+
+ /*
+ * Copy customSeed to seeds[], truncating or repeating as necessary.
+ */
+ {
+
+ size_t toFill = XXH_MIN(customSeedSize, sizeof(seeds));
+ size_t filled = toFill;
+ memcpy(seeds, customSeed, toFill);
+ while (filled < sizeof(seeds)) {
+
+ toFill = XXH_MIN(filled, sizeof(seeds) - filled);
+ memcpy((char *)seeds + filled, seeds, toFill);
+ filled += toFill;
+
+ }
+
+ }
+
+ /* generate secret */
+ memcpy(secretBuffer, &scrambler, sizeof(scrambler));
+ for (segnb = 1; segnb < nbSegments; segnb++) {
+
+ size_t const segmentStart = segnb * segmentSize;
+ XXH128_canonical_t segment;
+ XXH128_canonicalFromHash(&segment,
+ XXH128(&scrambler, sizeof(scrambler),
+ XXH_readLE64(seeds + segnb) + segnb));
+ memcpy((char *)secretBuffer + segmentStart, &segment, sizeof(segment));
+
+ }
+
+ }
+
+}
+
+/* ==========================================
+ * XXH3 128 bits (a.k.a XXH128)
+ * ==========================================
+ * XXH3's 128-bit variant has better mixing and strength than the 64-bit
+ * variant, even without counting the significantly larger output size.
+ *
+ * For example, extra steps are taken to avoid the seed-dependent collisions
+ * in 17-240 byte inputs (See XXH3_mix16B and XXH128_mix32B).
+ *
+ * This strength naturally comes at the cost of some speed, especially on short
+ * lengths. Note that longer hashes are about as fast as the 64-bit version
+ * due to it using only a slight modification of the 64-bit loop.
+ *
+ * XXH128 is also more oriented towards 64-bit machines. It is still extremely
+ * fast for a _128-bit_ hash on 32-bit (it usually clears XXH64).
+ */
+
+XXH_FORCE_INLINE XXH128_hash_t XXH3_len_1to3_128b(const xxh_u8 *input,
+ size_t len,
+ const xxh_u8 *secret,
+ XXH64_hash_t seed) {
+
+ /* A doubled version of 1to3_64b with different constants. */
+ XXH_ASSERT(input != NULL);
+ XXH_ASSERT(1 <= len && len <= 3);
+ XXH_ASSERT(secret != NULL);
+ /*
+ * len = 1: combinedl = { input[0], 0x01, input[0], input[0] }
+ * len = 2: combinedl = { input[1], 0x02, input[0], input[1] }
+ * len = 3: combinedl = { input[2], 0x03, input[0], input[1] }
+ */
+ {
+
+ xxh_u8 const c1 = input[0];
+ xxh_u8 const c2 = input[len >> 1];
+ xxh_u8 const c3 = input[len - 1];
+ xxh_u32 const combinedl = ((xxh_u32)c1 << 16) | ((xxh_u32)c2 << 24) |
+ ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8);
+ xxh_u32 const combinedh = XXH_rotl32(XXH_swap32(combinedl), 13);
+ xxh_u64 const bitflipl =
+ (XXH_readLE32(secret) ^ XXH_readLE32(secret + 4)) + seed;
+ xxh_u64 const bitfliph =
+ (XXH_readLE32(secret + 8) ^ XXH_readLE32(secret + 12)) - seed;
+ xxh_u64 const keyed_lo = (xxh_u64)combinedl ^ bitflipl;
+ xxh_u64 const keyed_hi = (xxh_u64)combinedh ^ bitfliph;
+ XXH128_hash_t h128;
+ h128.low64 = XXH64_avalanche(keyed_lo);
+ h128.high64 = XXH64_avalanche(keyed_hi);
+ return h128;
+
+ }
+
+}
+
+XXH_FORCE_INLINE XXH128_hash_t XXH3_len_4to8_128b(const xxh_u8 *input,
+ size_t len,
+ const xxh_u8 *secret,
+ XXH64_hash_t seed) {
+
+ XXH_ASSERT(input != NULL);
+ XXH_ASSERT(secret != NULL);
+ XXH_ASSERT(4 <= len && len <= 8);
+ seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
+ {
+
+ xxh_u32 const input_lo = XXH_readLE32(input);
+ xxh_u32 const input_hi = XXH_readLE32(input + len - 4);
+ xxh_u64 const input_64 = input_lo + ((xxh_u64)input_hi << 32);
+ xxh_u64 const bitflip =
+ (XXH_readLE64(secret + 16) ^ XXH_readLE64(secret + 24)) + seed;
+ xxh_u64 const keyed = input_64 ^ bitflip;
+
+ /* Shift len to the left to ensure it is even, this avoids even multiplies.
+ */
+ XXH128_hash_t m128 = XXH_mult64to128(keyed, XXH_PRIME64_1 + (len << 2));
+
+ m128.high64 += (m128.low64 << 1);
+ m128.low64 ^= (m128.high64 >> 3);
+
+ m128.low64 = XXH_xorshift64(m128.low64, 35);
+ m128.low64 *= 0x9FB21C651E98DF25ULL;
+ m128.low64 = XXH_xorshift64(m128.low64, 28);
+ m128.high64 = XXH3_avalanche(m128.high64);
+ return m128;
+
+ }
+
+}
+
+XXH_FORCE_INLINE XXH128_hash_t XXH3_len_9to16_128b(const xxh_u8 *input,
+ size_t len,
+ const xxh_u8 *secret,
+ XXH64_hash_t seed) {
+
+ XXH_ASSERT(input != NULL);
+ XXH_ASSERT(secret != NULL);
+ XXH_ASSERT(9 <= len && len <= 16);
+ {
+
+ xxh_u64 const bitflipl =
+ (XXH_readLE64(secret + 32) ^ XXH_readLE64(secret + 40)) - seed;
+ xxh_u64 const bitfliph =
+ (XXH_readLE64(secret + 48) ^ XXH_readLE64(secret + 56)) + seed;
+ xxh_u64 const input_lo = XXH_readLE64(input);
+ xxh_u64 input_hi = XXH_readLE64(input + len - 8);
+ XXH128_hash_t m128 =
+ XXH_mult64to128(input_lo ^ input_hi ^ bitflipl, XXH_PRIME64_1);
+ /*
+ * Put len in the middle of m128 to ensure that the length gets mixed to
+ * both the low and high bits in the 128x64 multiply below.
+ */
+ m128.low64 += (xxh_u64)(len - 1) << 54;
+ input_hi ^= bitfliph;
+ /*
+ * Add the high 32 bits of input_hi to the high 32 bits of m128, then
+ * add the long product of the low 32 bits of input_hi and XXH_PRIME32_2 to
+ * the high 64 bits of m128.
+ *
+ * The best approach to this operation is different on 32-bit and 64-bit.
+ */
+ if (sizeof(void *) < sizeof(xxh_u64)) { /* 32-bit */
+ /*
+ * 32-bit optimized version, which is more readable.
+ *
+ * On 32-bit, it removes an ADC and delays a dependency between the two
+ * halves of m128.high64, but it generates an extra mask on 64-bit.
+ */
+ m128.high64 += (input_hi & 0xFFFFFFFF00000000ULL) +
+ XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2);
+
+ } else {
+
+ /*
+ * 64-bit optimized (albeit more confusing) version.
+ *
+ * Uses some properties of addition and multiplication to remove the mask:
+ *
+ * Let:
+ * a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF)
+ * b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000)
+ * c = XXH_PRIME32_2
+ *
+ * a + (b * c)
+ * Inverse Property: x + y - x == y
+ * a + (b * (1 + c - 1))
+ * Distributive Property: x * (y + z) == (x * y) + (x * z)
+ * a + (b * 1) + (b * (c - 1))
+ * Identity Property: x * 1 == x
+ * a + b + (b * (c - 1))
+ *
+ * Substitute a, b, and c:
+ * input_hi.hi + input_hi.lo + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 -
+ * 1))
+ *
+ * Since input_hi.hi + input_hi.lo == input_hi, we get this:
+ * input_hi + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1))
+ */
+ m128.high64 +=
+ input_hi + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2 - 1);
+
+ }
+
+ /* m128 ^= XXH_swap64(m128 >> 64); */
+ m128.low64 ^= XXH_swap64(m128.high64);
+
+ { /* 128x64 multiply: h128 = m128 * XXH_PRIME64_2; */
+ XXH128_hash_t h128 = XXH_mult64to128(m128.low64, XXH_PRIME64_2);
+ h128.high64 += m128.high64 * XXH_PRIME64_2;
+
+ h128.low64 = XXH3_avalanche(h128.low64);
+ h128.high64 = XXH3_avalanche(h128.high64);
+ return h128;
+
+ }
+
+ }
+
+}
+
+/*
+ * Assumption: `secret` size is >= XXH3_SECRET_SIZE_MIN
+ */
+XXH_FORCE_INLINE XXH128_hash_t XXH3_len_0to16_128b(const xxh_u8 *input,
+ size_t len,
+ const xxh_u8 *secret,
+ XXH64_hash_t seed) {
+
+ XXH_ASSERT(len <= 16);
+ {
+
+ if (len > 8) return XXH3_len_9to16_128b(input, len, secret, seed);
+ if (len >= 4) return XXH3_len_4to8_128b(input, len, secret, seed);
+ if (len) return XXH3_len_1to3_128b(input, len, secret, seed);
+ {
+
+ XXH128_hash_t h128;
+ xxh_u64 const bitflipl =
+ XXH_readLE64(secret + 64) ^ XXH_readLE64(secret + 72);
+ xxh_u64 const bitfliph =
+ XXH_readLE64(secret + 80) ^ XXH_readLE64(secret + 88);
+ h128.low64 = XXH64_avalanche(seed ^ bitflipl);
+ h128.high64 = XXH64_avalanche(seed ^ bitfliph);
+ return h128;
+
+ }
+
+ }
+
+}
+
+/*
+ * A bit slower than XXH3_mix16B, but handles multiply by zero better.
+ */
+XXH_FORCE_INLINE XXH128_hash_t XXH128_mix32B(XXH128_hash_t acc,
+ const xxh_u8 *input_1,
+ const xxh_u8 *input_2,
+ const xxh_u8 *secret,
+ XXH64_hash_t seed) {
+
+ acc.low64 += XXH3_mix16B(input_1, secret + 0, seed);
+ acc.low64 ^= XXH_readLE64(input_2) + XXH_readLE64(input_2 + 8);
+ acc.high64 += XXH3_mix16B(input_2, secret + 16, seed);
+ acc.high64 ^= XXH_readLE64(input_1) + XXH_readLE64(input_1 + 8);
+ return acc;
+
+}
+
+XXH_FORCE_INLINE XXH128_hash_t XXH3_len_17to128_128b(
+ const xxh_u8 *XXH_RESTRICT input, size_t len,
+ const xxh_u8 *XXH_RESTRICT secret, size_t secretSize, XXH64_hash_t seed) {
+
+ XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
+ (void)secretSize;
+ XXH_ASSERT(16 < len && len <= 128);
+
+ {
+
+ XXH128_hash_t acc;
+ acc.low64 = len * XXH_PRIME64_1;
+ acc.high64 = 0;
+ if (len > 32) {
+
+ if (len > 64) {
+
+ if (len > 96) {
+
+ acc = XXH128_mix32B(acc, input + 48, input + len - 64, secret + 96,
+ seed);
+
+ }
+
+ acc =
+ XXH128_mix32B(acc, input + 32, input + len - 48, secret + 64, seed);
+
+ }
+
+ acc = XXH128_mix32B(acc, input + 16, input + len - 32, secret + 32, seed);
+
+ }
+
+ acc = XXH128_mix32B(acc, input, input + len - 16, secret, seed);
+ {
+
+ XXH128_hash_t h128;
+ h128.low64 = acc.low64 + acc.high64;
+ h128.high64 = (acc.low64 * XXH_PRIME64_1) + (acc.high64 * XXH_PRIME64_4) +
+ ((len - seed) * XXH_PRIME64_2);
+ h128.low64 = XXH3_avalanche(h128.low64);
+ h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
+ return h128;
+
+ }
+
+ }
+
+}
+
+XXH_NO_INLINE XXH128_hash_t XXH3_len_129to240_128b(
+ const xxh_u8 *XXH_RESTRICT input, size_t len,
+ const xxh_u8 *XXH_RESTRICT secret, size_t secretSize, XXH64_hash_t seed) {
+
+ XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
+ (void)secretSize;
+ XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
+
+ {
+
+ XXH128_hash_t acc;
+ int const nbRounds = (int)len / 32;
+ int i;
+ acc.low64 = len * XXH_PRIME64_1;
+ acc.high64 = 0;
+ for (i = 0; i < 4; i++) {
+
+ acc = XXH128_mix32B(acc, input + (32 * i), input + (32 * i) + 16,
+ secret + (32 * i), seed);
+
+ }
+
+ acc.low64 = XXH3_avalanche(acc.low64);
+ acc.high64 = XXH3_avalanche(acc.high64);
+ XXH_ASSERT(nbRounds >= 4);
+ for (i = 4; i < nbRounds; i++) {
+
+ acc = XXH128_mix32B(acc, input + (32 * i), input + (32 * i) + 16,
+ secret + XXH3_MIDSIZE_STARTOFFSET + (32 * (i - 4)),
+ seed);
+
+ }
+
+ /* last bytes */
+ acc = XXH128_mix32B(
+ acc, input + len - 16, input + len - 32,
+ secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16,
+ 0ULL - seed);
+
+ {
+
+ XXH128_hash_t h128;
+ h128.low64 = acc.low64 + acc.high64;
+ h128.high64 = (acc.low64 * XXH_PRIME64_1) + (acc.high64 * XXH_PRIME64_4) +
+ ((len - seed) * XXH_PRIME64_2);
+ h128.low64 = XXH3_avalanche(h128.low64);
+ h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
+ return h128;
+
+ }
+
+ }
+
+}
+
+XXH_FORCE_INLINE XXH128_hash_t XXH3_hashLong_128b_internal(
+ const void *XXH_RESTRICT input, size_t len,
+ const xxh_u8 *XXH_RESTRICT secret, size_t secretSize,
+ XXH3_f_accumulate_512 f_acc512, XXH3_f_scrambleAcc f_scramble) {
+
+ XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
+
+ XXH3_hashLong_internal_loop(acc, (const xxh_u8 *)input, len, secret,
+ secretSize, f_acc512, f_scramble);
+
+ /* converge into final hash */
+ XXH_STATIC_ASSERT(sizeof(acc) == 64);
+ XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
+ {
+
+ XXH128_hash_t h128;
+ h128.low64 = XXH3_mergeAccs(acc, secret + XXH_SECRET_MERGEACCS_START,
+ (xxh_u64)len * XXH_PRIME64_1);
+ h128.high64 = XXH3_mergeAccs(
+ acc, secret + secretSize - sizeof(acc) - XXH_SECRET_MERGEACCS_START,
+ ~((xxh_u64)len * XXH_PRIME64_2));
+ return h128;
+
+ }
+
+}
+
+/*
+ * It's important for performance that XXH3_hashLong is not inlined.
+ */
+XXH_NO_INLINE XXH128_hash_t XXH3_hashLong_128b_default(
+ const void *XXH_RESTRICT input, size_t len, XXH64_hash_t seed64,
+ const void *XXH_RESTRICT secret, size_t secretLen) {
+
+ (void)seed64;
+ (void)secret;
+ (void)secretLen;
+ return XXH3_hashLong_128b_internal(input, len, XXH3_kSecret,
+ sizeof(XXH3_kSecret), XXH3_accumulate_512,
+ XXH3_scrambleAcc);
+
+}
+
+/*
+ * It's important for performance that XXH3_hashLong is not inlined.
+ */
+XXH_NO_INLINE XXH128_hash_t XXH3_hashLong_128b_withSecret(
+ const void *XXH_RESTRICT input, size_t len, XXH64_hash_t seed64,
+ const void *XXH_RESTRICT secret, size_t secretLen) {
+
+ (void)seed64;
+ return XXH3_hashLong_128b_internal(input, len, (const xxh_u8 *)secret,
+ secretLen, XXH3_accumulate_512,
+ XXH3_scrambleAcc);
+
+}
+
+XXH_FORCE_INLINE XXH128_hash_t XXH3_hashLong_128b_withSeed_internal(
+ const void *XXH_RESTRICT input, size_t len, XXH64_hash_t seed64,
+ XXH3_f_accumulate_512 f_acc512, XXH3_f_scrambleAcc f_scramble,
+ XXH3_f_initCustomSecret f_initSec) {
+
+ if (seed64 == 0)
+ return XXH3_hashLong_128b_internal(
+ input, len, XXH3_kSecret, sizeof(XXH3_kSecret), f_acc512, f_scramble);
+ {
+
+ XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
+ f_initSec(secret, seed64);
+ return XXH3_hashLong_128b_internal(input, len, (const xxh_u8 *)secret,
+ sizeof(secret), f_acc512, f_scramble);
+
+ }
+
+}
+
+/*
+ * It's important for performance that XXH3_hashLong is not inlined.
+ */
+XXH_NO_INLINE XXH128_hash_t
+XXH3_hashLong_128b_withSeed(const void *input, size_t len, XXH64_hash_t seed64,
+ const void *XXH_RESTRICT secret, size_t secretLen) {
+
+ (void)secret;
+ (void)secretLen;
+ return XXH3_hashLong_128b_withSeed_internal(
+ input, len, seed64, XXH3_accumulate_512, XXH3_scrambleAcc,
+ XXH3_initCustomSecret);
+
+}
+
+typedef XXH128_hash_t (*XXH3_hashLong128_f)(const void *XXH_RESTRICT, size_t,
+ XXH64_hash_t,
+ const void *XXH_RESTRICT, size_t);
+
+XXH_FORCE_INLINE XXH128_hash_t
+XXH3_128bits_internal(const void *input, size_t len, XXH64_hash_t seed64,
+ const void *XXH_RESTRICT secret, size_t secretLen,
+ XXH3_hashLong128_f f_hl128) {
+
+ XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
+ /*
+ * If an action is to be taken if `secret` conditions are not respected,
+ * it should be done here.
+ * For now, it's a contract pre-condition.
+ * Adding a check and a branch here would cost performance at every hash.
+ */
+ if (len <= 16)
+ return XXH3_len_0to16_128b((const xxh_u8 *)input, len,
+ (const xxh_u8 *)secret, seed64);
+ if (len <= 128)
+ return XXH3_len_17to128_128b((const xxh_u8 *)input, len,
+ (const xxh_u8 *)secret, secretLen, seed64);
+ if (len <= XXH3_MIDSIZE_MAX)
+ return XXH3_len_129to240_128b((const xxh_u8 *)input, len,
+ (const xxh_u8 *)secret, secretLen, seed64);
+ return f_hl128(input, len, seed64, secret, secretLen);
+
+}
+
+/* === Public XXH128 API === */
+
+XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void *input, size_t len) {
+
+ return XXH3_128bits_internal(input, len, 0, XXH3_kSecret,
+ sizeof(XXH3_kSecret),
+ XXH3_hashLong_128b_default);
+
+}
+
+XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSecret(const void *input,
+ size_t len,
+ const void *secret,
+ size_t secretSize) {
+
+ return XXH3_128bits_internal(input, len, 0, (const xxh_u8 *)secret,
+ secretSize, XXH3_hashLong_128b_withSecret);
+
+}
+
+XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSeed(const void * input,
+ size_t len,
+ XXH64_hash_t seed) {
+
+ return XXH3_128bits_internal(input, len, seed, XXH3_kSecret,
+ sizeof(XXH3_kSecret),
+ XXH3_hashLong_128b_withSeed);
+
+}
+
+XXH_PUBLIC_API XXH128_hash_t XXH128(const void *input, size_t len,
+ XXH64_hash_t seed) {
+
+ return XXH3_128bits_withSeed(input, len, seed);
+
+}
+
+/* === XXH3 128-bit streaming === */
+
+/*
+ * All the functions are actually the same as for 64-bit streaming variant.
+ * The only difference is the finalizatiom routine.
+ */
+
+static void XXH3_128bits_reset_internal(XXH3_state_t *statePtr,
+ XXH64_hash_t seed, const void *secret,
+ size_t secretSize) {
+
+ XXH3_64bits_reset_internal(statePtr, seed, secret, secretSize);
+
+}
+
+XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH3_state_t *statePtr) {
+
+ if (statePtr == NULL) return XXH_ERROR;
+ XXH3_128bits_reset_internal(statePtr, 0, XXH3_kSecret,
+ XXH_SECRET_DEFAULT_SIZE);
+ return XXH_OK;
+
+}
+
+XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(
+ XXH3_state_t *statePtr, const void *secret, size_t secretSize) {
+
+ if (statePtr == NULL) return XXH_ERROR;
+ XXH3_128bits_reset_internal(statePtr, 0, secret, secretSize);
+ if (secret == NULL) return XXH_ERROR;
+ if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
+ return XXH_OK;
+
+}
+
+XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH3_state_t *statePtr,
+ XXH64_hash_t seed) {
+
+ if (statePtr == NULL) return XXH_ERROR;
+ if (seed == 0) return XXH3_128bits_reset(statePtr);
+ if (seed != statePtr->seed)
+ XXH3_initCustomSecret(statePtr->customSecret, seed);
+ XXH3_128bits_reset_internal(statePtr, seed, NULL, XXH_SECRET_DEFAULT_SIZE);
+ return XXH_OK;
+
+}
+
+XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update(XXH3_state_t *state,
+ const void * input,
+ size_t len) {
+
+ return XXH3_update(state, (const xxh_u8 *)input, len, XXH3_accumulate_512,
+ XXH3_scrambleAcc);
+
+}
+
+XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest(const XXH3_state_t *state) {
+
+ const unsigned char *const secret =
+ (state->extSecret == NULL) ? state->customSecret : state->extSecret;
+ if (state->totalLen > XXH3_MIDSIZE_MAX) {
+
+ XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
+ XXH3_digest_long(acc, state, secret);
+ XXH_ASSERT(state->secretLimit + XXH_STRIPE_LEN >=
+ sizeof(acc) + XXH_SECRET_MERGEACCS_START);
+ {
+
+ XXH128_hash_t h128;
+ h128.low64 = XXH3_mergeAccs(acc, secret + XXH_SECRET_MERGEACCS_START,
+ (xxh_u64)state->totalLen * XXH_PRIME64_1);
+ h128.high64 =
+ XXH3_mergeAccs(acc,
+ secret + state->secretLimit + XXH_STRIPE_LEN -
+ sizeof(acc) - XXH_SECRET_MERGEACCS_START,
+ ~((xxh_u64)state->totalLen * XXH_PRIME64_2));
+ return h128;
+
+ }
+
+ }
+
+ /* len <= XXH3_MIDSIZE_MAX : short code */
+ if (state->seed)
+ return XXH3_128bits_withSeed(state->buffer, (size_t)state->totalLen,
+ state->seed);
+ return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen),
+ secret, state->secretLimit + XXH_STRIPE_LEN);
+
+}
+
+ /* 128-bit utility functions */
+
+ #include <string.h> /* memcmp, memcpy */
+
+/* return : 1 is equal, 0 if different */
+XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2) {
+
+ /* note : XXH128_hash_t is compact, it has no padding byte */
+ return !(memcmp(&h1, &h2, sizeof(h1)));
+
+}
+
+/* This prototype is compatible with stdlib's qsort().
+ * return : >0 if *h128_1 > *h128_2
+ * <0 if *h128_1 < *h128_2
+ * =0 if *h128_1 == *h128_2 */
+XXH_PUBLIC_API int XXH128_cmp(const void *h128_1, const void *h128_2) {
+
+ XXH128_hash_t const h1 = *(const XXH128_hash_t *)h128_1;
+ XXH128_hash_t const h2 = *(const XXH128_hash_t *)h128_2;
+ int const hcmp = (h1.high64 > h2.high64) - (h2.high64 > h1.high64);
+ /* note : bets that, in most cases, hash values are different */
+ if (hcmp) return hcmp;
+ return (h1.low64 > h2.low64) - (h2.low64 > h1.low64);
+
+}
+
+/*====== Canonical representation ======*/
+XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH128_canonical_t *dst,
+ XXH128_hash_t hash) {
+
+ XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t));
+ if (XXH_CPU_LITTLE_ENDIAN) {
+
+ hash.high64 = XXH_swap64(hash.high64);
+ hash.low64 = XXH_swap64(hash.low64);
+
+ }
+
+ memcpy(dst, &hash.high64, sizeof(hash.high64));
+ memcpy((char *)dst + sizeof(hash.high64), &hash.low64, sizeof(hash.low64));
+
+}
+
+XXH_PUBLIC_API XXH128_hash_t
+XXH128_hashFromCanonical(const XXH128_canonical_t *src) {
+
+ XXH128_hash_t h;
+ h.high64 = XXH_readBE64(src);
+ h.low64 = XXH_readBE64(src->digest + 8);
+ return h;
+
+}
+
+ /* Pop our optimization override from above */
+ #if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
+ && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
+ && defined(__OPTIMIZE__) && \
+ !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */
+ #pragma GCC pop_options
+ #endif
#endif /* XXH_NO_LONG_LONG */