diff options
Diffstat (limited to 'src/aflrun.cpp')
-rw-r--r-- | src/aflrun.cpp | 4039 |
1 files changed, 4039 insertions, 0 deletions
diff --git a/src/aflrun.cpp b/src/aflrun.cpp new file mode 100644 index 00000000..fb94cb16 --- /dev/null +++ b/src/aflrun.cpp @@ -0,0 +1,4039 @@ +#include "aflrun.h" + +#include <boost/algorithm/string.hpp> +#include <boost/dynamic_bitset.hpp> +#include <boost/functional/hash.hpp> +#include <boost/make_shared.hpp> +namespace bo = boost; + +#include <robin_hood.h> +namespace rh = robin_hood; + +#include <algorithm> +#include <cassert> +#include <cmath> +#include <cstring> +#include <fstream> +#include <functional> +#include <iostream> +#include <memory> +#include <numeric> +#include <queue> +#include <random> +#include <stack> +#include <string> +#include <tuple> +#include <vector> + +namespace { struct Fringe; struct SeedFringes; struct ClusterPair; } +template<> struct std::hash<Fringe> +{ + std::size_t operator()(const Fringe&) const noexcept; +}; +template<> struct std::hash<SeedFringes> +{ + std::size_t operator()(const SeedFringes&) const noexcept; +}; +template<> struct std::hash<std::pair<reach_t, reach_t>> +{ + std::size_t operator()(const std::pair<reach_t, reach_t>&) const noexcept; +}; +template<> struct std::hash<ClusterPair> +{ + std::size_t operator()(const ClusterPair&) const noexcept; +}; + +using namespace std; + +/* ----- Global data structures for AFLRUN ----- */ +namespace +{ + +struct AFLRunUpdateTime +{ + /* Record the time of last update of our maintained information */ + u64 last_reachable, last_fringe, + last_pro_fringe, last_target; + u64 last_ctx_reachable, last_ctx_fringe, + last_ctx_pro_fringe, last_ctx_target; + + AFLRunUpdateTime() : + last_reachable(0), last_fringe(0), + last_pro_fringe(0), last_target(0), + last_ctx_reachable(0), last_ctx_fringe(0), + last_ctx_pro_fringe(0), last_ctx_target(0) {} +}; + +AFLRunUpdateTime update_time; + +struct AFLRunConfig +{ + bool slow_ctx_bfs; + bool check_at_begin, log_at_begin; + u64 log_check_interval; + double cycle_energy; int max_cycle_count; + bool check_fringe; + double supp_cnt_thr; double conf_thr; bool count_seed; + double trim_thr; double linear_cycle_energy; + double exp_ratio; bool favor_high_cov; + bool disable_mode[4]; u8 reset_level; bool reset_target; + bool no_diversity; bool uni_whole_cycle; bool show_all_seeds; + double init_cov_quant; double col_weight_k; + u8 div_level; u32 div_seed_thr; bool trim_col; u8 init_cov_reset; + bool seed_based_energy; bool assign_ctx; + bool unite_assign; double unite_ratio[4]; bool single_supp_thr; + double dist_k; double queue_quant_thr; u32 min_num_exec; + bool uniform_targets; bool extra_cov; bool no_critical; + /* + This callback function takes in information about seeds and fringes, + and allocate given `total_energy` to `ret` array by adding to it. + In other word, increase of sum of `ret` array should equal to `total_energy`. + */ + + explicit AFLRunConfig() : slow_ctx_bfs(false), + check_at_begin(false), log_at_begin(false), + log_check_interval(36000), + cycle_energy(60 * 10), max_cycle_count(32), check_fringe(false), + supp_cnt_thr(100), conf_thr(0.9), count_seed(true), trim_thr(1), + linear_cycle_energy(0), exp_ratio(1), favor_high_cov(false), + disable_mode{false, false, false, false}, reset_level(1), + reset_target(true), no_diversity(false), uni_whole_cycle(false), + show_all_seeds(false), init_cov_quant(10 * 60 * 10), + col_weight_k(1.0), div_level(1), div_seed_thr(100), trim_col(true), + init_cov_reset(0), seed_based_energy(true), assign_ctx(false), + unite_assign(true), unite_ratio{1, 1, 1, 3}, single_supp_thr(false), + dist_k(1), queue_quant_thr(0), min_num_exec(1), uniform_targets(false), + extra_cov(false), no_critical(false) {} + + static const rh::unordered_map<string, + function<void(AFLRunConfig*, const string&)>> loaders; + + void load(const string& cmd) + { + if (cmd.empty()) + return; + size_t idx = cmd.find('='); + if (idx == string::npos) + throw string("Format of config must be 'key=value'"); + auto key = cmd.substr(0, idx); + auto callback = loaders.find(key); + if (callback == loaders.end()) + throw string("No such option: " + key); + callback->second(this, cmd.substr(idx + 1)); + } + void check() const + { + if (!check_fringe && check_at_begin) + throw string("If you want to check at beginning, " + "please enable check_fringe."); + if (no_critical && !unite_assign) + throw string("For no critical block ablation study, " + "please enable unite_assign."); + } +private: + static void check_digit(const string& val, string name) + { + if (val.empty()) + throw string("'"+name+"' must be digit"); + for (char c : val) + { + if (!isdigit(c)) + throw string("'"+name+"' must be digit"); + } + } +}; + +const rh::unordered_map<string, function<void(AFLRunConfig*, const string&)>> +AFLRunConfig::loaders( +{ + #define BOOL_AFLRUN_ARG(name) \ + if (val == "1") \ + config->name = true; \ + else if (val == "0") \ + config->name = false; \ + else \ + throw string("Invalid value '"+val+"' for '"#name"'"); + + {"slow_ctx_bfs", [](AFLRunConfig* config, const string& val) + { + BOOL_AFLRUN_ARG(slow_ctx_bfs) + }}, + {"check_at_begin", [](AFLRunConfig* config, const string& val) + { + BOOL_AFLRUN_ARG(check_at_begin) + }}, + {"log_at_begin", [](AFLRunConfig* config, const string& val) + { + BOOL_AFLRUN_ARG(log_at_begin) + }}, + {"log_check_interval", [](AFLRunConfig* config, const string& val) + { + check_digit(val, "log_check_interval"); + config->log_check_interval = stoull(val); + }}, + {"count_seed", [](AFLRunConfig* config, const string& val) + { + BOOL_AFLRUN_ARG(count_seed); + }}, + {"cycle_energy", [](AFLRunConfig* config, const string& val) + { + config->cycle_energy = stod(val); + if (isnan(config->cycle_energy) || isinf(config->cycle_energy) || + config->cycle_energy <= 0) + throw string("Invalid 'cycle_energy'"); + }}, + {"max_cycle_count", [](AFLRunConfig* config, const string& val) + { + check_digit(val, "max_cycle_count"); + config->max_cycle_count = stoi(val); + }}, + {"check_fringe", [](AFLRunConfig* config, const string& val) + { + BOOL_AFLRUN_ARG(check_fringe) + }}, + {"supp_cnt_thr", [](AFLRunConfig* config, const string& val) + { // To disable target diversity, set "supp_cnt_thr=0:conf_thr=0" + config->supp_cnt_thr = stod(val); + if (isnan(config->supp_cnt_thr) || isinf(config->supp_cnt_thr) || + config->supp_cnt_thr < 0) + throw string("Invalid 'supp_cnt_thr'"); + }}, + {"conf_thr", [](AFLRunConfig* config, const string& val) + { + if (val == "inf") + { // For infinite threshold, we don't cluster anything + config->conf_thr = numeric_limits<double>::infinity(); + return; + } + config->conf_thr = stod(val); + if (isnan(config->conf_thr) || + config->conf_thr < 0 || config->conf_thr > 1) + throw string("Invalid 'conf_thr'"); + }}, + {"dist_k", [](AFLRunConfig* config, const string& val) + { + if (val == "inf") + { // If `k` is infinity, we distribute weight uniformly + config->dist_k = numeric_limits<double>::infinity(); + return; + } + config->dist_k = stod(val); + if (isnan(config->dist_k) || config->dist_k <= 0) + throw string("Invalid 'dist_k'"); + }}, + {"trim_thr", [](AFLRunConfig* config, const string& val) + { + if (val == "inf") + { // For infinite threshold, we don't trim any seed. + config->trim_thr = numeric_limits<double>::infinity(); + return; + } + config->trim_thr = stod(val); + // For 0 threshold, we always trim every seed. + if (isnan(config->trim_thr) || config->trim_thr < 0) + throw string("Invalid 'trim_thr'"); + }}, + {"linear_cycle_energy", [](AFLRunConfig* config, const string& val) + { + // If this value is non-zero, we will have cycle energy to be: + // max(cycle_energy, linear_cycle_energy * num_active_seeds) + config->linear_cycle_energy = stod(val); + if (isnan(config->linear_cycle_energy) || + isinf(config->linear_cycle_energy) || + config->linear_cycle_energy < 0) + throw string("Invalid 'linear_cycle_energy'"); + }}, + {"exp_ratio", [](AFLRunConfig* config, const string& val) + { + // Ratio of desired exploitation / exploration: + // if >1, more energy will be allocated to exploitation; + // if <1, more energy will be allocated to exploration; + // if =1, exploitation and exploration are equal; + // if =inf, it almost only does exploitation; + // if =0, it amlmost only does exploration. + config->exp_ratio = stod(val); + if (isnan(config->exp_ratio) || config->exp_ratio < 0) + throw string("Invalid 'exp_ratio'"); + }}, + {"favor_high_cov", [](AFLRunConfig* config, const string& val) + { + BOOL_AFLRUN_ARG(favor_high_cov) + }}, + {"disable_mode", [](AFLRunConfig* config, const string& val) + { // Same as order in enum Mode: + // 0 for cov; 1 for ctx fringe; 2 for fringe; 3 for target + unsigned long m = stoul(val); + if (m > 3) + throw string("Invalid 'disable_mode'"); + config->disable_mode[m] = true; + }}, + {"reset_level", [](AFLRunConfig* config, const string& val) + { + unsigned long l = stoul(val); + if (l > 1) // TODO: level=2, reset when new ctx fringe is reached + throw string("Invalid 'reset_level'"); + config->reset_level = static_cast<u8>(l); + }}, + {"reset_target", [](AFLRunConfig* config, const string& val) + { + BOOL_AFLRUN_ARG(reset_target) + }}, + {"no_diversity", [](AFLRunConfig* config, const string& val) + { + BOOL_AFLRUN_ARG(no_diversity) + }}, + {"uni_whole_cycle", [](AFLRunConfig* config, const string& val) + { // If set, whole_count will not increase, use cautiously because + // this will make some AFL stuff based on cycle count not work. + BOOL_AFLRUN_ARG(uni_whole_cycle) + }}, + {"show_all_seeds", [](AFLRunConfig* config, const string& val) + { + BOOL_AFLRUN_ARG(show_all_seeds) + }}, + {"init_cov_quant", [](AFLRunConfig* config, const string& val) + { + config->init_cov_quant = stod(val); + if (isnan(config->init_cov_quant) || config->init_cov_quant < 0) + throw string("Invalid 'init_cov_quant'"); + }}, + {"col_weight_k", [](AFLRunConfig* config, const string& val) + { + config->col_weight_k = stod(val); + if (isnan(config->col_weight_k) || isinf(config->col_weight_k) || + config->col_weight_k < 0) + throw string("Invalid 'col_weight_k'"); + }}, + {"div_level", [](AFLRunConfig* config, const string& val) + { // 0: only target diversity; 1: +pro fringe diversity; 2. +fringe diversity + config->div_level = stoi(val); + if (config->div_level > 1) + throw string("Invalid 'div_level'"); + /* TODO: diversity for context-sensitive fringe + Current implementation is problematic. Instead, we should use a switch + bitmap with context for these context sensitive fringe, which is leaved + as future work. + */ + }}, + {"div_seed_thr", [](AFLRunConfig* config, const string& val) + { + if (val == "inf") + { + config->div_seed_thr = numeric_limits<u32>::max(); + return; + } + config->div_seed_thr = stoi(val); + if (config->div_seed_thr < 2) + throw string("Invalid 'div_seed_thr'"); + }}, + {"trim_col", [](AFLRunConfig* config, const string& val) + { + BOOL_AFLRUN_ARG(trim_col) + }}, + {"init_cov_reset", [](AFLRunConfig* config, const string& val) + { + // 0: no reset; + // 1: reset at update on reachable; + // 2: reset at update on context reachable; + // 3: reset at new seed covering fringe. + config->init_cov_reset = stoi(val); + if (config->init_cov_reset > 2) + throw string("Invalid 'init_cov_reset'"); + }}, + {"seed_based_energy", [](AFLRunConfig* config, const string& val) + { // Use new energy assignment algorithm! + BOOL_AFLRUN_ARG(seed_based_energy) + }}, + {"assign_ctx", [](AFLRunConfig* config, const string& val) + { // If we should assign uniformly among different contexts in new allocation + BOOL_AFLRUN_ARG(assign_ctx) + }}, + {"unite_assign", [](AFLRunConfig* config, const string& val) + { // If true, we don't use state machine, instead we do everything together + BOOL_AFLRUN_ARG(unite_assign) + }}, + {"unite_ratio", [](AFLRunConfig* config, const string& val) + { // Format: "cov,ctx,pro,tgt" + vector<string> ratios; + bo::split(ratios, val, [](char c) -> bool { return c == ','; }); + if (ratios.size() != 4) + throw string("Invalid 'unite_ratio'"); + for (size_t i = 0; i < 4; ++i) + { + double r = stod(ratios[i]); + if (isnan(r) || isinf(r) || r < 0) + throw string("Invalid 'unite_ratio'"); + config->unite_ratio[i] = r; + } + }}, + {"single_supp_thr", [](AFLRunConfig* config, const string& val) + { // If true, we only use LHS as support count threshold + BOOL_AFLRUN_ARG(single_supp_thr) + }}, + {"queue_quant_thr", [](AFLRunConfig* config, const string& val) + { + config->queue_quant_thr = stod(val); + if (config->queue_quant_thr < 0 || isnan(config->queue_quant_thr) || + isinf(config->queue_quant_thr)) + throw string("Invalid 'queue_quant_thr'"); + }}, + {"min_num_exec", [](AFLRunConfig* config, const string& val) + { + config->min_num_exec = stoul(val); + if (config->min_num_exec < 1) + throw string("Invalid 'min_num_exec'"); + }}, + {"uniform_targets", [](AFLRunConfig* config, const string& val) + { + BOOL_AFLRUN_ARG(uniform_targets) + }}, + {"extra_cov", [](AFLRunConfig* config, const string& val) + { + BOOL_AFLRUN_ARG(extra_cov) + }}, + {"no_critical", [](AFLRunConfig* config, const string& val) + { + BOOL_AFLRUN_ARG(no_critical) + }}, + #undef BOOL_AFLRUN_ARG +}); + +AFLRunConfig config; + +struct AFLRunGlobals +{ + reach_t num_targets, num_reachables; + reach_t num_ftargets, num_freachables; + u8* virgin_reachables; + u8* virgin_freachables; + u8* virgin_ctx; + char** reachable_names; + reach_t** reachable_to_targets; + reach_t* reachable_to_size; + reach_t num_reached, num_freached; /* Number of non-virgin */ + reach_t num_reached_targets, num_freached_targets; + string out_dir; + const double* target_weights; + u32 map_size; + void* afl; + u64 init_time, cycle_time; + + explicit AFLRunGlobals(reach_t num_targets, reach_t num_reachables, + reach_t num_ftargets, reach_t num_freachables, + u8* virgin_reachables, u8* virgin_freachables, u8* virgin_ctx, + char** reachable_names, reach_t** reachable_to_targets, + reach_t* reachable_to_size, const char* out_dir, + const double* target_weights, u32 map_size, void* afl, + u64 init_time, u64 cycle_time) + : num_targets(num_targets), num_reachables(num_reachables), + num_ftargets(num_ftargets), num_freachables(num_freachables), + virgin_reachables(virgin_reachables), virgin_freachables(virgin_freachables), + virgin_ctx(virgin_ctx), reachable_names(reachable_names), + reachable_to_targets(reachable_to_targets), + reachable_to_size(reachable_to_size), + num_reached(0), num_freached(0), num_reached_targets(0), + num_freached_targets(0), out_dir(out_dir), + target_weights(target_weights), map_size(map_size), afl(afl), + init_time(init_time), cycle_time(cycle_time) + { + if (this->out_dir.back() != '/') + this->out_dir.push_back('/'); + } + + inline double get_tw(reach_t t) const + { + return config.uniform_targets ? 1 : target_weights[t]; + } +}; + +unique_ptr<AFLRunGlobals> g = nullptr; + +struct AFLRunGraph +{ + vector<rh::unordered_flat_set<reach_t>> src_to_dst; + vector<vector<reach_t>> dst_to_src; + rh::unordered_map<pair<reach_t, reach_t>, vector<u32>> call_hashes; + explicit AFLRunGraph(reach_t num) + : src_to_dst(num), dst_to_src(num) {} +}; + +struct BasicBlockGraph : public AFLRunGraph +{ + explicit BasicBlockGraph(const char* bb_edges, reach_t num_reachables) + : AFLRunGraph(num_reachables) + { + ifstream in(bb_edges); assert(in.is_open()); + string line; char* endptr; + while (getline(in, line)) + { + const char* l = line.c_str(); + reach_t src = strtoul(l, &endptr, 10); assert(*endptr == ','); + reach_t dst = strtoul(endptr+1, &endptr, 10); assert(*endptr == 0); + assert(src < num_reachables && dst < num_reachables); + src_to_dst[src].insert(dst); + dst_to_src[dst].push_back(src); + } + in.close(); + } +}; + +struct Fringe +{ + reach_t block; + u32 context; + explicit Fringe(reach_t block, u32 context) : + block(block), context(context) {} + bool operator==(const Fringe& rhs) const + { + return this->block == rhs.block && this->context == rhs.context; + } +}; + +class TargetGrouper; + +struct SeedFringes +{ + bo::shared_ptr<u8[]> bitmap; + size_t bitmap_size; + size_t num_ones; + explicit SeedFringes(size_t num_fringes) + : bitmap_size((num_fringes + 7) / 8), num_ones(0) + { + bitmap = bo::make_shared<u8[]>(bitmap_size); + fill(bitmap.get(), bitmap.get() + bitmap_size, 0); + } + bool operator==(const SeedFringes& rhs) const + { + size_t size = this->bitmap_size; + const u8* ptr = this->bitmap.get(); + return size == rhs.bitmap_size && + equal(ptr, ptr + size, rhs.bitmap.get()); + } + inline void set(size_t idx) + { + if (!get(idx)) ++num_ones; + bitmap[idx / 8] |= 1 << (idx % 8); + } + inline bool get(size_t idx) + { + return ((bitmap[idx / 8]) & (1 << (idx % 8))) != 0; + } +}; + +template <typename F, typename D> +struct FringeBlocks +{ + struct Info + { + rh::unordered_set<u32> seeds; // Set of all seeds that cover the fringe + rh::unordered_map<reach_t, rh::unordered_set<D>> decisives; + // decisives for each target of this fringe + double fuzzed_quant; + + // We can only access these 2 variables when `has_top_rated == true` + u64 top_rated_factor; + u32 top_rated_seed; bool has_top_rated; + Info() : fuzzed_quant(0), has_top_rated(false) {} + }; + + vector<rh::unordered_set<F>> target_to_fringes; + // maps each target to a set of fringe blocks + rh::unordered_map<reach_t, rh::unordered_set<F>> block_to_fringes; + // maps each block of fringe to fringes with that block + + rh::unordered_map<F, Info> fringes; + // Maps each fringe block to set of targets that contain such block as fringe, + // this information should be consistent with `target_to_fringes`; + // for each target a set of neighbor virgin blocks are recorded, + // which are the blocks that make this fringe block a fringe. + // Note that when set of neighbors are emptied, we need to delete target; + // similarly when set of targets are emptied, we need to delete fringe. + + rh::unordered_map<D, rh::unordered_set<F>> decisive_to_fringes; + // Map decisive blocks to corresponding fringes, + // works for both normal and progressive fringes. + + rh::unordered_map<F, size_t> freq_idx; + vector<pair<size_t, u64>> freq; // frequency for each current fringe + // first element is index to bitmap and second is frequency + rh::unordered_map<u32, rh::unordered_set<F>> seed_fringes; + // map seed to all fringes covered by it, must be consistent as above + + rh::unordered_set<u32> favored_seeds; + + explicit FringeBlocks(reach_t num_targets) : target_to_fringes(num_targets) {} + + void add_fringe( + const F& f, reach_t t, rh::unordered_set<D>&& decisives); + bool del_fringe(const F& f, const vector<reach_t>& ts); + bool del_fringe(const F& f); + bool fringe_coverage(const u8* bitmap, u32 seed, + const rh::unordered_set<Fringe>* new_criticals = nullptr, + const rh::unordered_set<reach_t>* new_bits_targets = nullptr); + void inc_freq(const u8* bitmap); + void update_fuzzed_quant(u32 seed, double fuzzed_quant); + void update_fringe_score(u32 seed); + u32 cull_queue(u32* seeds, u32 num); + rh::unordered_set<u32> select_favored_seeds() const; + void set_favored_seeds(const u32* seeds, u32 num); + + unique_ptr<TargetGrouper> grouper; + void group(); + void assign_energy(u32 num_seeds, const u32* seeds, double* ret) const; + + u8 try_add_fringe(const Fringe& cand); + vector<reach_t> try_del_fringe(const Fringe& cand); + + void remove_seed(u32 seed); + + friend void assign_energy_unite(u32 num_seeds, const u32* ss, double* ret); + +private: + struct FringeInfo + { + double quant; + rh::unordered_set<u32> seeds; + size_t idx; + FringeInfo() : quant(0), idx(0) {} + }; + + pair<rh::unordered_map<u32, double>, double> assign_seed_no_ctx( + const rh::unordered_map<reach_t, double>& block_weight, + const rh::unordered_map<u32, u32>& seed_to_idx) const; + pair<rh::unordered_map<u32, double>, double> assign_seed_ctx( + const rh::unordered_map<reach_t, double>& block_weight, + const rh::unordered_map<u32, u32>& seed_to_idx) const; + inline pair<rh::unordered_map<u32, double>, double> assign_seed( + const rh::unordered_map<reach_t, double>& block_weight, + const rh::unordered_map<u32, u32>& seed_to_idx) const; + void assign_seeds_covered( + const rh::unordered_set<u32>& seeds, double total_weight, + const rh::unordered_map<u32, u32>& seed_to_idx, + rh::unordered_map<u32, double>& seed_weight, double& all_sum) const; + void record_new_cvx_opt( + const vector<pair<reach_t, rh::unordered_set<reach_t>>>& target_fringes, + const rh::unordered_map<reach_t, double>& block_weight, + const rh::unordered_map<u32, double>& seed_ratio, + const vector<pair<u32, double>>& sol) const; + + void remove_freq(const F& f); + bool remove_block(const F& f); + pair<unique_ptr<double[]>, unique_ptr<double[]>> allocate_ratio( + const rh::unordered_map<reach_t, FringeInfo>& fringe_info, + const vector<reach_t>& vec_fringes) const; +}; + +unique_ptr<FringeBlocks<Fringe, Fringe>> path_fringes = nullptr; +unique_ptr<FringeBlocks<Fringe, reach_t>> path_pro_fringes = nullptr; +unique_ptr<FringeBlocks<Fringe, u8/*not used*/>> reached_targets = nullptr; + +// Convert block index into distance for each target +vector<rh::unordered_map<reach_t, double>> bb_to_dists; + +// Given set of blocks, we distribute target weight `total` to basic blocks, +// using distance to target `t`, returned by adding each weight value to `dst`. +void dist_block_ratio( + const rh::unordered_set<reach_t>& blocks, reach_t t, double total, + rh::unordered_map<reach_t, double>& dst) +{ + if (isinf(config.dist_k)) + { // If `k` is infinity, we just uniformly distribute. + for (reach_t b : blocks) + { + dst[b] += total / blocks.size(); + } + return; + } + vector<pair<reach_t, double>> block_ratios; double sum = 0; + for (reach_t b : blocks) + { + double w = 1.0 / (bb_to_dists[b].find(t)->second + config.dist_k); + sum += w; + block_ratios.emplace_back(b, w); + } + for (const auto& p : block_ratios) + { + dst[p.first] += total * p.second / sum; + } +} + +class AFLRunState +{ +public: + enum Mode : u8 + { + kCoverage = 0, kFringe, kProFringe, kTarget, kUnite + }; +private: + Mode mode; + bool reset_exploit, init_cov; + int cycle_count; + u64 whole_count; + double cov_quant, exploration_quant, exploitation_quant; + void reset(Mode new_mode) + { + if (mode == kUnite) + { // Unite mode always resets to it self when there is any fringe update + cycle_count = -1; + assert(cov_quant == 0); + return; + } + // we don't want to reset to a more explorative state; + // we also don't want to reset to exploration mode in exploitation mode, + // exploitation goes back to exploration only if certain amount of energy + // is totally executed. e.i. see `cycle_end` when `mode == kTarget`. + if (new_mode < mode) + return; + mode = new_mode; + // set to -1 because we don't want to count current cycle + cycle_count = -1; + cov_quant = 0; + } + // 4. Solve favor high column(e.i. linear to number of seeds) + // 5. Better Splice + // 6. Better design for fringe? Keep some deleted fringe. (Might take time) + +public: + AFLRunState() : mode(kCoverage), reset_exploit(false), init_cov(true), + cycle_count(-1), whole_count(0), cov_quant(0), + exploration_quant(0), exploitation_quant(0) {} + // Initialize cycle_count to -1 since cycle_end is called at start of cycle + + inline u64 get_whole_count() const + { + return whole_count; + } + + bool cycle_end() // Return true if whole_count has increased + { + // For coverage mode, + // we look quantum being executed instead of number of cycles + if (init_cov) + { + assert(mode == kCoverage); + ++cycle_count; + if (cov_quant >= config.init_cov_quant) + { + // After initial coverage fuzzing, + // we switch to either state machine or unite assignment. + if (config.unite_assign) + mode = kUnite; // Start unite energy assignment mode + else + mode = kProFringe; // Start directed fuzzing + cov_quant = 0; cycle_count = 0; + init_cov = false; + } + return false; + } + if (mode == kUnite) + { + ++cycle_count; // We never switch as long as we enter unite state + return false; // TODO: whole_count for unite mode? + } + if (mode == kCoverage) + { + // we still need to count cycle to precent cycle to be always -1 + ++cycle_count; + if (cov_quant >= config.max_cycle_count * config.cycle_energy || + config.disable_mode[kCoverage]) + { // When we cannot find anything new, start exploitation + mode = kTarget; + cov_quant = 0; + cycle_count = 0; + } + return false; + } + assert(cov_quant == 0); // We should not have cov_quant in non-cov mode + if (mode == kTarget) + { + bool ret = false; + ++cycle_count; + // If we have already done more exploitation than exploration, + // switch back to exploration again. + if (exploitation_quant >= exploration_quant * config.exp_ratio || + reached_targets->fringes.empty() || // If no reached target, skip + config.disable_mode[kTarget]) + { + mode = kProFringe; + cycle_count = 0; + if (reset_exploit || config.uni_whole_cycle) + { + reset_exploit = false; + } + else + { + ++whole_count; // Only inc when exploitation is not resetted + ret = true; + } + } + return ret; + } + assert(cycle_count < config.max_cycle_count); + if (mode == kProFringe) + { + if (++cycle_count == config.max_cycle_count || + path_pro_fringes->fringes.empty() || // If no pro fringe, skip + config.disable_mode[kProFringe]) + { + mode = kFringe; + cycle_count = 0; + } + } + else + { + assert(mode == kFringe); + if (++cycle_count == config.max_cycle_count || + path_fringes->fringes.empty() || // If no fringe, skip + config.disable_mode[kFringe]) + { + mode = kCoverage; + cycle_count = 0; + } + } + return false; + } + + void reset(u8 r) + { + if (init_cov) + return; // Don't reset at initial coverage based stage + switch (r) + { + case 2: + return reset(kProFringe); + case 1: + return reset(kFringe); + case 0: + return reset(kCoverage); + default: abort(); + } + } + + // Reset to exploitation state directly + void exploit() + { + if (mode == kUnite) + { // Unite mode always resets to it self when there is any target update + cycle_count = -1; + assert(cov_quant == 0); + return; + } + // If already in exploitation, we don't reset itself, + // this is different from situation in explorative mode. + if (init_cov || mode == kTarget) + return; + reset_exploit = true; + mode = kTarget; + cycle_count = -1; + cov_quant = 0; + } + + void add_quant(double quant) + { + Mode m = get_mode(); + // We don't need to use quant in unite mode + if (m == kUnite) + return; + + if (m == kTarget) + { + exploitation_quant += quant; + } + else + { + exploration_quant += quant; + if (m == kCoverage) + cov_quant += quant; + } + } + + inline Mode get_mode() const { return mode; } + inline bool is_reset() const { return cycle_count == -1; } + inline bool is_init_cov() const { return init_cov; } + inline void reset_cov_quant() { cov_quant = 0; } + inline bool is_end_cov() const + { + if (init_cov) + return cov_quant >= config.init_cov_quant; + if (mode == kCoverage) + return config.disable_mode[kCoverage] || + cov_quant >= config.max_cycle_count * config.cycle_energy; + return false; + } + inline void get_counts(int& cycle, u32& cov) const + { + cycle = cycle_count; + cov = cov_quant; + } +}; + +AFLRunState state; + +template <typename F> +inline size_t to_bitmap_idx(const F& f); + +template <> +inline size_t to_bitmap_idx<Fringe>(const Fringe& f) +{ + return CTX_IDX(f.block, f.context); +} + +template <typename F> +inline F from_bitmap_idx(size_t idx); + +template <> +inline Fringe from_bitmap_idx<Fringe>(size_t idx) +{ + return Fringe(idx / CTX_SIZE, idx % CTX_SIZE); +} + +template <typename F> +inline reach_t to_fringe_block(const F& f); + +template <> +inline reach_t to_fringe_block<Fringe>(const Fringe& f) +{ + return f.block; +} + +template <> +inline reach_t to_fringe_block<reach_t>(const reach_t& f) +{ + return f; +} + +// Add new fringe to the given target +template <typename F, typename D> +void FringeBlocks<F, D>::add_fringe( + const F& f, reach_t t, rh::unordered_set<D>&& decisives) +{ + target_to_fringes[t].insert(f); + block_to_fringes[to_fringe_block<F>(f)].insert(f); + for (const D& dec : decisives) + decisive_to_fringes[dec].insert(f); + auto p = fringes.emplace(f, Info()); + p.first->second.decisives.emplace(t, std::move(decisives)); + if (p.second) + { + freq_idx.emplace(f, freq.size()); + freq.emplace_back(to_bitmap_idx<F>(f), 0); + } +} + +// Return true if the block is removed +template <typename F, typename D> +bool FringeBlocks<F, D>::remove_block(const F& f) +{ + // Remove fringe from `block_to_fringes` + auto it2 = block_to_fringes.find(to_fringe_block<F>(f)); + it2->second.erase(f); + if (it2->second.empty()) + { + block_to_fringes.erase(it2); + return true; + } + return false; +} + +// Remove the element in frequency array +template <typename F, typename D> +void FringeBlocks<F, D>::remove_freq(const F& f) +{ + auto i = freq_idx.find(f); + if (i != freq_idx.end()) + { + assert(freq[i->second].first == to_bitmap_idx<F>(f)); + assert(i->second < freq.size()); + if (i->second + 1 != freq.size()) + { + // Remove the fringe from `freq` array + freq[i->second] = freq.back(); + freq.pop_back(); + + // Update index value in `freq_idx` map + size_t idx = freq[i->second].first; + freq_idx.find(from_bitmap_idx<F>(idx))->second = i->second; + freq_idx.erase(i); + } + else + { // Special case: remove last element in `freq` array + freq.pop_back(); + freq_idx.erase(i); + } + } +} + +void try_disable_seed(u32 s) +{ + if (reached_targets->seed_fringes.count(s) == 0 && + path_pro_fringes->seed_fringes.count(s) == 0 && + path_fringes->seed_fringes.count(s) == 0) + { // If the seed is not used by aflrun now, try to disable it + disable_aflrun_extra(g->afl, s); + } +} + +// Remove the fringe in given set of targets, return true if `f.block` is removed +template <typename F, typename D> +bool FringeBlocks<F, D>::del_fringe(const F& f, const vector<reach_t>& ts) +{ + auto it = fringes.find(f); + assert(it != fringes.end()); + + // Remove the fringe in given set of targets + for (reach_t t : ts) + { + it->second.decisives.erase(t); + target_to_fringes[t].erase(f); + } + + // If given fringe in all targets is removed, remove the fringe itself + if (it->second.decisives.empty()) + { + auto seeds = std::move(it->second.seeds); + fringes.erase(it); + // Remove the all seeds reaching the deleted fringe + for (u32 seed : seeds) + { + auto it3 = seed_fringes.find(seed); + it3->second.erase(f); + if (it3->second.empty()) + { + seed_fringes.erase(it3); + try_disable_seed(seed); + } + } + remove_freq(f); + return remove_block(f); + } + return false; +} + +// Remove the fringe in all targets, return true if `f.block` is removed +template <typename F, typename D> +bool FringeBlocks<F, D>::del_fringe(const F& f) +{ + auto it = fringes.find(f); + + for (const auto& td : it->second.decisives) + { + target_to_fringes[td.first].erase(f); + } + it->second.decisives.clear(); + + auto seeds = std::move(it->second.seeds); + fringes.erase(it); + + for (u32 seed : seeds) + { + auto it3 = seed_fringes.find(seed); + it3->second.erase(f); + if (it3->second.empty()) + { + seed_fringes.erase(it3); + try_disable_seed(seed); + } + } + remove_freq(f); + return remove_block(f); +} + +template <typename F> +inline void log_fringe(ostream& out, const F& f); + +// Given `trace_ctx` of a `seed`, check its coverage of fringe and add if necessary +template <typename F, typename D> +bool FringeBlocks<F, D>::fringe_coverage(const u8* bitmap, u32 seed, + const rh::unordered_set<Fringe>* new_criticals, + const rh::unordered_set<reach_t>* new_bits_targets) +{ + // fringe_coverage for each seed should only be called once + assert(seed_fringes.find(seed) == seed_fringes.end()); + rh::unordered_set<F> sf; + for (auto& p : fringes) + { + const F& f = p.first; + + // If new_criticals is NULL, we think no new critical is found; + // otherwise, we consider coverage only if `f` is new critical. + bool is_new_critical = new_criticals ? + (new_criticals->count(f) != 0) : false; + // If new_bits_targets is NULL, we consider coverage of every critical, + // so in other word, there is no seed isolation, used for non-extra seeds; + // otherwise, we consider coverage only if `f` is target with new bits. + bool is_new_bits_targets = new_bits_targets ? + (new_bits_targets->count(f.block) != 0) : true; + + // We try coverage if at least one of them is true. + if ((is_new_critical || is_new_bits_targets) && + IS_SET(bitmap, to_bitmap_idx<F>(f))) + { // If covered, add the seed + p.second.seeds.insert(seed); + sf.insert(f); + } + } + if (!sf.empty()) + { + ofstream out(g->out_dir + "seeds.txt", ios::app); + out << seed << " | "; + for (const auto& f : sf) + { + log_fringe<F>(out, f); out << ' '; + } + out << endl; + seed_fringes.emplace(seed, std::move(sf)); + return true; + } + else + { + return false; + } +} + +// Increase frequency of fringe according to given trace exerted by mutated input +template <typename F, typename D> +void FringeBlocks<F, D>::inc_freq(const u8* bitmap) +{ + for (auto& p : freq) + { + if (IS_SET(bitmap, p.first)) + { + p.second++; + } + } +} + +template <typename F, typename D> +void FringeBlocks<F, D>::update_fuzzed_quant(u32 seed, double fuzzed_quant) +{ + // When fuzzing norm fringe, seed fuzzed can have no fringe in pro fringe. + auto it = seed_fringes.find(seed); + if (it == seed_fringes.end()) + return; + const auto& fs = it->second; + for (const F& f : fs) + { // For each of its fringe, add `fuzzed_quant` + fringes.find(f)->second.fuzzed_quant += fuzzed_quant; + } +} + +template <typename F, typename D> +void FringeBlocks<F, D>::update_fringe_score(u32 seed) +{ + // If seed does not touch any fringe, skip + auto it = seed_fringes.find(seed); + if (it == seed_fringes.end()) + return; + u64 fav_factor = get_seed_fav_factor(g->afl, seed); + for (const F& f : it->second) + { + Info& info = fringes.find(f)->second; + if (info.has_top_rated && fav_factor > info.top_rated_factor) + continue; + + // Update top-rated seed and factor when possible + assert(info.seeds.find(seed) != info.seeds.end()); + info.top_rated_seed = seed; + info.top_rated_factor = fav_factor; + info.has_top_rated = true; + } +} + +vector<double> seed_quant; + +random_device rd; +mt19937 gen(rd()); +uniform_int_distribution<> distrib(0, 99); + +template <typename F, typename D> +rh::unordered_set<u32> FringeBlocks<F, D>::select_favored_seeds() const +{ + // Seeds that are considered favored + rh::unordered_set<u32> favored; + + // Record all visited fringes + rh::unordered_set<F> temp_v; + + for (const auto& p : fringes) + { // For each unvisited fringe, we get top rated seed, if any + if (p.second.has_top_rated && temp_v.find(p.first) == temp_v.end()) + { + // The seed must be contained in initial seed set, + // because disabled seeds cannot be considered top-rated. + u32 seed = p.second.top_rated_seed; + + // We insert all fringes the seed cover into visited set + const auto& fs = seed_fringes.find(seed)->second; + temp_v.insert(fs.begin(), fs.end()); + assert(temp_v.find(p.first) != temp_v.end()); + + // Add seed to favored set + favored.insert(seed); + } + } + + return favored; +} + +template <typename F, typename D> +void FringeBlocks<F, D>::set_favored_seeds(const u32* seeds, u32 num) +{ + auto favored = select_favored_seeds(); + favored_seeds.clear(); + for (u32 i = 0; i < num; ++i) + { + if (favored.count(seeds[i]) > 0 || get_seed_div_favored(g->afl, seeds[i])) + favored_seeds.insert(seeds[i]); + } +} + +template <typename F, typename D> +u32 FringeBlocks<F, D>::cull_queue(u32* seeds, u32 num) +{ + // Set containing original seeds + const rh::unordered_set<u32> seed_set(seeds, seeds + num); + + auto favored = select_favored_seeds(); + for (u32 seed : favored) + assert(seed_set.find(seed) != seed_set.end()); + + // Select seeds to fuzz in this cycle + u32 idx = 0; + favored_seeds.clear(); + for (u32 seed : seed_set) + { + if (favored.find(seed) != favored.end() || + get_seed_div_favored(g->afl, seed)) + // `cull_queue_div` should be called first + { + seeds[idx++] = seed; + favored_seeds.insert(seed); + } + else if (aflrun_get_seed_quant(seed) > 0) + { // If the unfavored seed is fuzzed before + if (distrib(gen) >= SKIP_NFAV_OLD_PROB) + seeds[idx++] = seed; + } + else + { + if (distrib(gen) >= SKIP_NFAV_NEW_PROB) + seeds[idx++] = seed; + } + } + return idx; +} + +u32 cull_queue_unite(u32* seeds, u32 num) +{ + // Set containing original seeds + const rh::unordered_set<u32> seed_set(seeds, seeds + num); + + u32 idx = 0; + for (u32 seed : seed_set) + { // Similar to `cull_queue` above + if (path_fringes->favored_seeds.count(seed) > 0 || + path_pro_fringes->favored_seeds.count(seed) > 0 || + reached_targets->favored_seeds.count(seed) > 0 || + get_seed_cov_favored(g->afl, seed) == 2) + { + seeds[idx++] = seed; + } + else if (aflrun_get_seed_quant(seed) > 0) + { + if (distrib(gen) >= SKIP_NFAV_OLD_PROB) + seeds[idx++] = seed; + } + else + { + if (distrib(gen) >= SKIP_NFAV_NEW_PROB) + seeds[idx++] = seed; + } + } + + return idx; +} + +template <typename T> +void write_vec(ostream& o, const vector<T>& v) +{ + o << '['; + for (T e : v) + { + o << e << ", "; + } + o << "]"; +} + +template <typename T> +void write_arr(ostream& o, const T* arr, size_t size) +{ + o << '['; + for (size_t i = 0; i < size; ++i) + { + o << arr[i] << ", "; + } + o << "]"; +} + +template <typename F, typename D> +pair<unique_ptr<double[]>, unique_ptr<double[]>> + FringeBlocks<F, D>::allocate_ratio( + const rh::unordered_map<reach_t, FringeInfo>& fringe_info, + const vector<reach_t>& vec_fringes) const +{ + assert(fringe_info.size() == vec_fringes.size()); + size_t num_fringes = vec_fringes.size(); + struct Elem + { + reach_t target; + rh::unordered_set<reach_t> fringes; + Elem(reach_t target, rh::unordered_set<reach_t>&& fringes) : + target(target), fringes(std::move(fringes)) {} + }; + + // We firstly get fringes of each active target + vector<Elem> targets_info; + for (reach_t t = 0; t < target_to_fringes.size(); ++t) + { + const auto& tf = target_to_fringes[t]; + + // Skip targets without fringe + if (tf.empty()) + continue; + + rh::unordered_set<reach_t> fringes; + for (const F& f : tf) + { + fringes.insert(f.block); + } + targets_info.emplace_back(t, std::move(fringes)); + } + + // Allocate weight of each target to its fringes + auto static_weights = make_unique<double[]>(num_fringes); + auto ret = make_unique<double[]>(num_fringes); + for (const Elem& e : targets_info) + { + rh::unordered_map<reach_t, double> res; + dist_block_ratio(e.fringes, e.target, g->get_tw(e.target), res); + for (const auto& fw : res) + { + static_weights[fringe_info.find(fw.first)->second.idx] += fw.second; + } + } + + double sum = 0; + for (size_t i = 0; i < num_fringes; ++i) + { + double w = static_weights[i]; + ret[i] = w; + sum += w; + } + for (size_t i = 0; i < num_fringes; ++i) + { + ret[i] /= sum; + } + return make_pair<>(std::move(ret), std::move(static_weights)); +} + +u32 num_active_seeds = 0; +void trim_new_cvx( + rh::unordered_map<u32, double>& seed_weight, double& all_sum, double total) +{ + bool trimed; + do + { + double total_after = total; + vector<tuple<u32, double, double>> seed_weight_prev; + seed_weight_prev.reserve(seed_weight.size()); + + // Flatten the unordered map, also add `prev`, + // and calculate total energy after the allocation. + for (const auto& sw : seed_weight) + { + double prev = aflrun_get_seed_quant(sw.first); + total_after += prev; + seed_weight_prev.emplace_back(sw.first, sw.second, prev); + } + + double sum = all_sum; + trimed = false; + for (const auto& swp : seed_weight_prev) + { + // If previous energy is already >= than desired energy calculated + // from desired ratio, we will not allocate energy to it, so it can + // be removed for optimization. + if (get<2>(swp) >= total_after * get<1>(swp) / sum) + { + seed_weight.erase(get<0>(swp)); + all_sum -= get<1>(swp); + trimed = true; + } + } + + // We recursively trim, until there is no trimming happens + } while (trimed); +} + +vector<pair<u32, double>> solve_new_cvx( + const rh::unordered_map<u32, double>& seed_weight, double sum, double total) +{ + // Same as above + double total_after = total; + vector<tuple<u32, double, double>> seed_weight_prev; + seed_weight_prev.reserve(seed_weight.size()); + for (const auto& sw : seed_weight) + { + double prev = aflrun_get_seed_quant(sw.first); + total_after += prev; + seed_weight_prev.emplace_back(sw.first, sw.second, prev); + } + + vector<pair<u32, double>> ret; + for (const auto& swp : seed_weight_prev) + { // After trimming, desired energy must be larger than previous energy + double seed_energy = total_after * get<1>(swp) / sum - get<2>(swp); + assert(seed_energy > 0); + + // TODO: potential precision problem? + ret.emplace_back(get<0>(swp), seed_energy); + } + + return ret; +} + +template <typename F, typename D> +void FringeBlocks<F, D>::record_new_cvx_opt( + const vector<pair<reach_t, rh::unordered_set<reach_t>>>& target_fringes, + const rh::unordered_map<reach_t, double>& block_weight, + const rh::unordered_map<u32, double>& seed_ratio, + const vector<pair<u32, double>>& sol) const +{ + ofstream out(g->out_dir + "cvx/opt.py"); + if (!out.is_open()) + return; + + out << "import numpy as np" << endl; + + // Output normalized weights of targets + double sum = 0; + for (const auto& t : target_fringes) + sum += g->get_tw(t.first); + out << "target_weight = np.array([" << endl; + out << "# target, ratio" << endl; + for (const auto& t : target_fringes) + out << "[\"" << g->reachable_names[t.first] << + "\", " << g->get_tw(t.first) / sum << "]," << endl; + out << "])" << endl; + + // Output normalized weights of blocks + sum = 0; + for (const auto& bw : block_weight) + sum += bw.second; + out << "block_weight = np.array([" << endl; + out << "# block, ctx_count, ratio" << endl; + for (const auto& bw : block_weight) + out << "[\"" << g->reachable_names[bw.first] << + "\", " << block_to_fringes.find(bw.first)->second.size() << + ", " << bw.second / sum << "]," << endl; + out << "])" << endl; + + out << "opt = np.array([" << endl; + out << "# seed, prev, ratio, solution" << endl; + + rh::unordered_set<u32> non_zero_seeds; + for (const auto& se : sol) + { + out << '[' << se.first << ", " << aflrun_get_seed_quant(se.first) << + ", " << seed_ratio.find(se.first)->second << ", " << + se.second << "]," << endl; + non_zero_seeds.insert(se.first); + } + for (const auto& sr : seed_ratio) + { + if (non_zero_seeds.count(sr.first) > 0) + continue; + out << '[' << sr.first << ", " << aflrun_get_seed_quant(sr.first) << + ", " << sr.second << ", " << 0.0 << "]," << endl; + } + out << "])" << endl; +} + +void record_new_cvx_opt_uni( + const vector<pair<reach_t, array<double, 3>>>& target_type_weights, + const array<rh::unordered_map<reach_t, double>, 3>& block_weights, + const array<rh::unordered_map<u32, double>, 4>& seed_weights, + const double* seed_sums, const rh::unordered_map<u32, double>& seed_ratio, + const vector<pair<u32, double>>& sol) +{ + ofstream out(g->out_dir + "cvx/opt.py"); + if (!out.is_open()) + return; + out << "import numpy as np" << endl; + + // Output normalized weights of targets for each type + double sum = 0; + for (const auto& ttw : target_type_weights) + for (size_t i = 0; i < 3; ++i) + sum += ttw.second[i]; + out << "target_weights = np.array([" << endl; + out << "# target, N ratio, P ratio, T ratio" << endl; + for (const auto& ttw : target_type_weights) + { + out << "[\"" << g->reachable_names[ttw.first] << "\""; + for (size_t i = 0; i < 3; ++i) + out << ", " << ttw.second[i] / sum; + out << "]," << endl; + } + out << "])" << endl; + + // Output normalized weights of blocks for each mode + function<size_t(u32)> ctx_count[3] = { + [](u32 s) -> size_t + { + return path_fringes->block_to_fringes.find(s)->second.size(); + }, + [](u32 s) -> size_t + { + return path_pro_fringes->block_to_fringes.find(s)->second.size(); + }, + [](u32 s) -> size_t + { + return reached_targets->block_to_fringes.find(s)->second.size(); + }, + }; + const char* names = "NPT"; + for (size_t i = 0; i < 3; ++i) + { + sum = 0; + for (const auto& btw : block_weights[i]) + sum += btw.second; + out << "block_weight_" << names[i] << " = np.array([" << endl; + out << "# block, ctx_count, ratio" << endl; + for (const auto& btw : block_weights[i]) + out << "[\"" << g->reachable_names[btw.first] << + "\", " << ctx_count[i](btw.first) << + ", " << btw.second / sum << "]," << endl; + out << "])" << endl; + } + + out << "opt = np.array([" << endl; + out << "# seed, prev, ratio, solution, N, P, T, C" << endl; + rh::unordered_set<u32> non_zero_seeds; + double weight_sums[4] = {0,0,0,0}; double ratio_sum = 0; + auto log_seed_weights = + [&seed_weights, &out, &weight_sums](u32 seed) + { + for (size_t i = 0; i < 4; ++i) + { + auto it = seed_weights[i].find(seed); + double val = it == seed_weights[i].end() ? 0.0 : it->second; + out << ", " << val; + weight_sums[i] += val; + } + }; + for (const auto& se : sol) + { + double ratio = seed_ratio.find(se.first)->second; + ratio_sum += ratio; + out << '[' << se.first << ", " << aflrun_get_seed_quant(se.first) << + ", " << ratio << ", " << se.second; + log_seed_weights(se.first); + out << "]," << endl; + non_zero_seeds.insert(se.first); + } + for (const auto& sr : seed_ratio) + { + if (non_zero_seeds.count(sr.first) > 0) + continue; + ratio_sum += sr.second; + out << '[' << sr.first << ", " << aflrun_get_seed_quant(sr.first) << + ", " << sr.second << ", " << 0.0; + log_seed_weights(sr.first); + out << "]," << endl; + } + out << "])" << endl; + out << "# " << ratio_sum; + for (size_t i = 0; i < 4; ++i) + { + out << ' ' << seed_sums[i] << "==" << weight_sums[i]; + } + out << endl; +} + +template <typename F, typename D> +void FringeBlocks<F, D>::assign_seeds_covered( + const rh::unordered_set<u32>& seeds, double total_weight, + const rh::unordered_map<u32, u32>& seed_to_idx, + rh::unordered_map<u32, double>& seed_weight, double& all_sum) const +{ + // For all seeds that cover this context block, + // we get their expected performance scores, and calculate their sum. + vector<pair<u32, double>> seed_perf_score; + double sum = 0; + for (u32 s : seeds) + { + // Skip seeds not selected for fuzzing + if (seed_to_idx.count(s) == 0) + continue; + double e_perf_score = get_seed_perf_score(g->afl, s) * + (favored_seeds.find(s) == favored_seeds.end() ? + (100 - SKIP_NFAV_OLD_PROB) / 100.0 : 1.0); + // Skip non-positive seeds, + // which is not quite possible but we do it anyway + if (e_perf_score <= 0) + continue; + seed_perf_score.emplace_back(s, e_perf_score); + sum += e_perf_score; + } + + for (const auto& sps : seed_perf_score) + { // Allocate weight of seeds according to ratio of performance scores + double w = total_weight * sps.second / sum; + seed_weight[sps.first] += w; + all_sum += w; + } +} + +rh::unordered_map<u32, double> assign_seeds_coverage( + const u32* seeds, u32 num, double cov_sum) +{ + vector<pair<u32, double>> seed_perf_score; + double sum = 0; + for (u32 i = 0; i < num; ++i) + { + u8 level = get_seed_cov_favored(g->afl, seeds[i]); + if (!config.extra_cov && level == 0) // Skip aflrun extra seeds + continue; + double e_perf_score = get_seed_perf_score(g->afl, seeds[i]) * + (level == 2 ? 1.0 : (100 - SKIP_NFAV_OLD_PROB) / 100.0); + if (e_perf_score <= 0) + continue; + seed_perf_score.emplace_back(seeds[i], e_perf_score); + sum += e_perf_score; + } + + rh::unordered_map<u32, double> ret; + for (const auto& sps : seed_perf_score) + ret.emplace(sps.first, cov_sum * sps.second / sum); + return ret; +} + +template <typename F, typename D> +pair<rh::unordered_map<u32, double>, double> + FringeBlocks<F, D>::assign_seed_no_ctx( + const rh::unordered_map<reach_t, double>& block_weight, + const rh::unordered_map<u32, u32>& seed_to_idx) const +{ + // Here we assign energy from fringe to seed directly, without context pass. + rh::unordered_map<u32, double> seed_weight; + double all_sum = 0; + for (const auto& bw : block_weight) + { + const auto& ctx_blocks = block_to_fringes.find(bw.first)->second; + assert(!ctx_blocks.empty()); + rh::unordered_set<u32> seeds; + for (const F& cb : ctx_blocks) + { // Collect all seeds that cover this fringe + assert(cb.block == bw.first); + const Info& info = fringes.find(cb)->second; + seeds.insert(info.seeds.begin(), info.seeds.end()); + } + + assign_seeds_covered( + seeds, bw.second, seed_to_idx, seed_weight, all_sum); + } + + return make_pair(seed_weight, all_sum); +} + +template <typename F, typename D> +pair<rh::unordered_map<u32, double>, double> FringeBlocks<F, D>::assign_seed_ctx( + const rh::unordered_map<reach_t, double>& block_weight, + const rh::unordered_map<u32, u32>& seed_to_idx) const +{ + // Map context block to weight being allocated from parent block + rh::unordered_map<Fringe, double> ctx_block_weight; + for (const auto& bw : block_weight) + { + const auto& ctx_blocks = block_to_fringes.find(bw.first)->second; + assert(!ctx_blocks.empty()); + for (const F& cb : ctx_blocks) + { // Allocate weight of each block uniformly to its context blocks + assert(cb.block == bw.first && ctx_block_weight.count(cb) == 0); + ctx_block_weight.emplace(cb, bw.second / ctx_blocks.size()); + } + } + + // Map seed to weight being allocated from context blocks it covers + rh::unordered_map<u32, double> seed_weight; + double all_sum = 0; + for (const auto& cbw : ctx_block_weight) + { + const Info& info = fringes.find(cbw.first)->second; + assign_seeds_covered( + info.seeds, cbw.second, seed_to_idx, seed_weight, all_sum); + } + + return make_pair(seed_weight, all_sum); +} + +template <typename F, typename D> +pair<rh::unordered_map<u32, double>, double> FringeBlocks<F, D>::assign_seed( + const rh::unordered_map<reach_t, double>& block_weight, + const rh::unordered_map<u32, u32>& seed_to_idx) const +{ + if (config.assign_ctx) + return assign_seed_ctx(block_weight, seed_to_idx); + else + return assign_seed_no_ctx(block_weight, seed_to_idx); +} + +template <typename F, typename D> +void FringeBlocks<F, D>::assign_energy( + u32 num_seeds, const u32* ss, double* ret) const +{ + // Map seed to index to the return array + rh::unordered_map<u32, u32> seed_to_idx; + for (u32 i = 0; i < num_seeds; ++i) + seed_to_idx.emplace(ss[i], i); + assert(seed_to_idx.size() == num_seeds); + + vector<pair<reach_t, rh::unordered_set<reach_t>>> target_fringes; + + for (reach_t t = 0; t < target_to_fringes.size(); ++t) + { // Iterate all targets with any fringes + const auto& tf = target_to_fringes[t]; + if (tf.empty()) + continue; + + // Record all fringes a target has + rh::unordered_set<reach_t> fringes; + for (const F& f : tf) + fringes.insert(f.block); + target_fringes.emplace_back(t, std::move(fringes)); + } + + // Map fringe block to weight being allocated from targets + rh::unordered_map<reach_t, double> block_weight; + for (const auto& e : target_fringes) + { + dist_block_ratio( + e.second, e.first, g->get_tw(e.first), block_weight); + } + + rh::unordered_map<u32, double> seed_weight; double all_sum; + tie(seed_weight, all_sum) = assign_seed(block_weight, seed_to_idx); + + // Original seed ratio, used for output only + rh::unordered_map<u32, double> seed_ratio; + for (const auto& sw : seed_weight) + seed_ratio.emplace(sw.first, sw.second / all_sum); + + const double total = max<double>( + num_active_seeds * config.linear_cycle_energy, config.cycle_energy); + trim_new_cvx(seed_weight, all_sum, total); + auto sol = solve_new_cvx(seed_weight, all_sum, total); + + fill(ret, ret + num_seeds, 0.0); + for (const auto& se : sol) + ret[seed_to_idx.find(se.first)->second] = se.second; + + record_new_cvx_opt(target_fringes, block_weight, seed_ratio, sol); +} + +rh::unordered_set<reach_t> strip_ctx(const rh::unordered_set<Fringe>& from) +{ + // Record all blocks a target has + rh::unordered_set<reach_t> blocks; + for (const Fringe& f : from) + blocks.insert(f.block); + return blocks; +} + +void sum_seed_weight( + rh::unordered_map<u32, double>& seed_weight, double& all_sum, + const rh::unordered_map<u32, double>& tmp_weight, double tmp_sum) +{ + all_sum += tmp_sum; + for (const auto& sw : tmp_weight) + seed_weight[sw.first] += sw.second; +} + +void assign_energy_unite(u32 num_seeds, const u32* ss, double* ret) +{ + // Map seed to index to the return array + rh::unordered_map<u32, u32> seed_to_idx; + for (u32 i = 0; i < num_seeds; ++i) + seed_to_idx.emplace(ss[i], i); + assert(seed_to_idx.size() == num_seeds); + + constexpr size_t kNumTypes = 3; + // [0]: ctx_fringes; [1]: pro_fringes; [2]: targets + using FringeEach = array<rh::unordered_set<reach_t>, kNumTypes>; + vector<pair<reach_t, FringeEach>> target_fringes; + for (reach_t t = 0; t < g->num_targets; ++t) + { // For each target, we get its fringes from all 3 types, if any + FringeEach tf; + if (config.unite_ratio[1] > 0) + tf[0] = strip_ctx(path_fringes->target_to_fringes[t]); + if (config.unite_ratio[2] > 0) + tf[1] = strip_ctx(path_pro_fringes->target_to_fringes[t]); + if (config.unite_ratio[3] > 0) + tf[2] = strip_ctx(reached_targets->target_to_fringes[t]); + + // If the target has no block in any of these, skip it + if (tf[0].empty() && tf[1].empty() && tf[2].empty()) + continue; + + target_fringes.emplace_back(t, std::move(tf)); + } + + // Map target to weights of 3 types, whose sum should be target weight + vector<pair<reach_t, array<double, kNumTypes>>> target_type_weights; + for (const auto& e : target_fringes) + { + array<double, kNumTypes> type_weights; double sum = 0; + for (size_t i = 0; i < kNumTypes; ++i) + { + double ratio = config.unite_ratio[i + 1]; + if (e.second[i].empty() || ratio == 0) + { // For each non-active type, we skip it by setting weight to zero. + type_weights[i] = 0; + } + else + { // For each active type, we sum and record the ratio. + sum += ratio; + type_weights[i] = ratio; + } + } + assert(sum > 0); + + // Assign `type_weights` from `tw` according to the ratio + double tw = g->get_tw(e.first); + for (size_t i = 0; i < kNumTypes; ++i) + { + type_weights[i] = tw * type_weights[i] / sum; + } + + target_type_weights.emplace_back(e.first, std::move(type_weights)); + } + assert(target_fringes.size() == target_type_weights.size()); + + // Now we can allocate weight for each block + array<rh::unordered_map<reach_t, double>, kNumTypes> block_weights; + for (size_t i = 0; i < kNumTypes; ++i) + { + // For each type, we iterate its active targets, + // each of which has a weight and a set of blocks; + // we can imagine this to be allocation of + // `target_weights` -> `block_weight` in non-unite modes. + auto tf_it = target_fringes.begin(); + auto ttw_it = target_type_weights.begin(); + for (; tf_it != target_fringes.end(); ++tf_it, ++ttw_it) + { + assert(tf_it->first == ttw_it->first); + double ttw = ttw_it->second[i]; + if (ttw == 0) // Skip non-active targets + continue; + dist_block_ratio( + tf_it->second[i], tf_it->first, ttw, block_weights[i]); + } + } + + // Assign seed for each block_weights[i], and sum them together + rh::unordered_map<u32, double> seed_weight; double all_sum = 0; + array<rh::unordered_map<u32, double>, kNumTypes + 1> type_seed_weight; + double type_sum[kNumTypes + 1]; + tie(type_seed_weight[0], type_sum[0]) = + path_fringes->assign_seed(block_weights[0], seed_to_idx); + sum_seed_weight(seed_weight, all_sum, type_seed_weight[0], type_sum[0]); + tie(type_seed_weight[1], type_sum[1]) = + path_pro_fringes->assign_seed(block_weights[1], seed_to_idx); + sum_seed_weight(seed_weight, all_sum, type_seed_weight[1], type_sum[1]); + tie(type_seed_weight[2], type_sum[2]) = + reached_targets->assign_seed(block_weights[2], seed_to_idx); + sum_seed_weight(seed_weight, all_sum, type_seed_weight[2], type_sum[2]); + + // Calculate total weight for coverage background according to ratios + type_sum[3] = 0; size_t count = 0; + for (size_t i = 0; i < kNumTypes; ++i) + { + if (type_sum[i] > 0) + { + double ratio = config.unite_ratio[i + 1]; assert(ratio > 0); + type_sum[3] += type_sum[i] * config.unite_ratio[0] / ratio; + ++count; + } + } + + if (count == 0) + { // If no reachable block is covered, do coverage mode + assert(all_sum == 0 && seed_weight.empty()); + all_sum = 1; + seed_weight = assign_seeds_coverage(ss, num_seeds, all_sum); + } + else + { + type_sum[3] /= count; // Take the average + + if (type_sum[3] > 0) + { + type_seed_weight[3] = + assign_seeds_coverage(ss, num_seeds, type_sum[3]); + sum_seed_weight( + seed_weight, all_sum, type_seed_weight[3], type_sum[3]); + } + } + + // Original seed ratio, used for output only + rh::unordered_map<u32, double> seed_ratio; + for (const auto& sw : seed_weight) + seed_ratio.emplace(sw.first, sw.second / all_sum); + + // Finally we get the correct `seed_weight` just like before, + // we solve it as the final energy assignment. + const double total = max<double>( + num_active_seeds * config.linear_cycle_energy, config.cycle_energy); + trim_new_cvx(seed_weight, all_sum, total); + auto sol = solve_new_cvx(seed_weight, all_sum, total); + + fill(ret, ret + num_seeds, 0.0); + for (const auto& se : sol) + ret[seed_to_idx.find(se.first)->second] = se.second; + + record_new_cvx_opt_uni(target_type_weights, block_weights, + type_seed_weight, type_sum, seed_ratio, sol); +} + +unique_ptr<AFLRunGraph> graph = nullptr; + +rh::unordered_map<reach_t, double> bb_to_avg_dists; + +rh::unordered_map<string, reach_t> name_to_id, fname_to_id; +vector<string> id_to_fname; + +// Array of traces for each target +// e.g. (*all_exec_paths[id])[target].data() +vector<unique_ptr<reach_t[]>> all_exec_paths; + +template <> +inline void log_fringe<Fringe>(ostream& out, const Fringe& f) +{ + if (f.block == g->num_reachables) + { // For printing cluster only + assert(f.context == 0); + out << "primary"; + } + else + { + char hex_buf[4]; + snprintf(hex_buf, sizeof(hex_buf), "%.2X", f.context); + out << g->reachable_names[f.block] << ',' << hex_buf; + } +} + +template <> +inline void log_fringe<reach_t>(ostream& out, const reach_t& f) +{ + out << g->reachable_names[f]; +} + +// template<typename F> +// F target_trace_to_fringe(const T* targets, size_t idx); + +// template<> +// Fringe target_trace_to_fringe<Fringe, ctx_t>( +// const ctx_t* targets, size_t idx) +// { +// // Pseudo fringe representing primary map +// if (idx == 0) +// return Fringe(g->num_reachables, 0); +// else +// { +// const ctx_t* t = targets + (idx - 1); +// return Fringe(t->block, t->call_ctx); +// } +// } + +// template<> +// reach_t target_trace_to_fringe<reach_t, reach_t>( +// const reach_t* targets, size_t idx) +// { +// return idx == 0 ? g->num_reachables : targets[idx - 1]; +// } + +struct ClusterPair +{ +private: + size_t fst; size_t snd; +public: + inline size_t get_fst() const noexcept + { + return fst; + } + inline size_t get_snd() const noexcept + { + return snd; + } + bool operator==(const ClusterPair& rhs) const + { + return this->fst == rhs.fst && this->snd == rhs.snd; + } + explicit ClusterPair(size_t c1, size_t c2) + { // Make the pair order insensitive such that `fst <= snd` always holds + assert(c1 != c2); + if (c1 < c2) + { + fst = c1; + snd = c2; + } + else + { + fst = c2; + snd = c1; + } + } +}; + +template<typename F> +class Clusters +{ +private: + rh::unordered_map<F, size_t> target_to_idx; + vector<rh::unordered_set<F>> clusters; // Reverse of `target_to_idx` + vector<unique_ptr<u8[]>> cluster_maps; + vector<unique_ptr<void*[]>> cluster_tops; + + // Each pair of the vector stores 64 `and` bit sequences corresponding to + // each virgin map including the primary map, and first `u64` is a `or` + // value of all values in the `vector`, so we don't need to consider 0 seqs. + vector<pair<u64, unique_ptr<vector<u64>>>> and_bit_seqs; + + // Support count for single target or a pair of targets + rh::unordered_map<ClusterPair, double> pair_supp_cnt; + vector<double> supp_cnt; + + bool cluster_valid(size_t cluster) const + { + return cluster == 0 || cluster_maps[cluster] != nullptr; + } + + // Merge cluster `src` to cluster `dst`; + // after this function, `src` cluster is invalid. + void merge_cluster(size_t src, size_t dst) + { + // `src` cannot be primary cluster, and cannot be invalid cluster + assert(src != dst && cluster_maps[src] != nullptr && cluster_valid(dst)); + rh::unordered_set<F> src_cluster(std::move(clusters[src])); + for (F t : src_cluster) + target_to_idx.find(t)->second = dst; + clusters[dst].insert(src_cluster.begin(), src_cluster.end()); + cluster_maps[src] = nullptr; cluster_tops[src] = nullptr; + // We don't clean support counts with `src` here, + // because they cannot be used again. + } + + inline static bool supp_cnt_enough(double lhs, double both) + { + return config.single_supp_thr ? + lhs >= config.supp_cnt_thr : both >= config.supp_cnt_thr; + } + + // Try to merge clusters, if any; return true iff merge happens + bool try_merge() + { + // Store each LHS->RHS to be merged and corresponding confidence value + rh::unordered_map<size_t, pair<size_t, double>> to_merge; + + for (const auto& p : pair_supp_cnt) + { // Iterate each pair support count + size_t fst = p.first.get_fst(); + size_t snd = p.first.get_snd(); + + // Check if snd->fst reach merge threshold + double snd_supp_cnt = supp_cnt[snd]; + if (supp_cnt_enough(snd_supp_cnt, p.second)) + { + double conf = p.second / snd_supp_cnt; + if (conf >= config.conf_thr) + { // If snd->fst reach merge threshold, merge snd into fst + auto p2 = make_pair(fst, conf); + auto p3 = to_merge.emplace(snd, p2); + // If existing element has less confidence, replace + if (!p3.second && p3.first->second.second < conf) + p3.first->second = p2; + } + } + + // Note that we should not merge primary map to anything + if (fst == 0) continue; + + // Check fst->snd, same as above + double fst_supp_cnt = supp_cnt[fst]; + if (supp_cnt_enough(fst_supp_cnt, p.second)) + { + double conf = p.second / fst_supp_cnt; + if (conf >= config.conf_thr) + { + auto p2 = make_pair(snd, conf); + auto p3 = to_merge.emplace(fst, p2); + if (!p3.second && p3.first->second.second < conf) + p3.first->second = p2; + } + } + } + + if (to_merge.empty()) return false; + + // Todo: Merge may be optimized using Kosaraju's algorithm. + for (const auto& p : to_merge) + { + size_t src = p.first; + size_t dst = p.second.first; + // We are going to merge src to dst, but dst can already be invalid, + // so we need to walk to find a valid cluster to merge + while (!cluster_valid(dst)) + { // Walk through the graph until `dst` is valid + dst = to_merge.find(dst)->second.first; + } + // If they finally become same cluster, we don't merge + if (src != dst) + merge_cluster(src, dst); + } + + clean_supp_cnts(); + + return true; + } + +public: + + // Index 0 prepresent primary map, which is not stored here. + Clusters() : clusters(1), cluster_maps(1), cluster_tops(1), supp_cnt(1) {} + + void clean_supp_cnts() + { + vector<ClusterPair> to_remove; + for (const auto& p : pair_supp_cnt) + { + if (!cluster_valid(p.first.get_fst()) || + !cluster_valid(p.first.get_snd())) + to_remove.push_back(p.first); + } + for (const auto& p : to_remove) + { + pair_supp_cnt.erase(p); + } + } + + // Given a context-sensitive target, return corresponding cluster index; + // this may also create a new cluster, for example, when target is new. + size_t get_cluster(F target) + { + /* + Currently `get_cluster` allocate each different target with a new cluster, + but this is going to be changed when clustering algorithm is implemented. + */ + size_t num_clusters = cluster_maps.size(); + auto res = target_to_idx.emplace(target, num_clusters); + if (res.second) + { + auto v = make_unique<u8[]>(g->map_size); + fill(v.get(), v.get() + g->map_size, 255); + cluster_maps.push_back(std::move(v)); + cluster_tops.push_back(make_unique<void*[]>(g->map_size)); + clusters.emplace_back(initializer_list<F>{target}); + supp_cnt.push_back(0); + return num_clusters; + } + else + { + return res.first->second; + } + } + // Return virgin map of given cluster, cluster id must < num of clusters + u8* get_virgin_map(size_t cluster) const + { + return cluster_maps[cluster].get(); + } + void** get_top_rated(size_t cluster) const + { + return cluster_tops[cluster].get(); + } + const rh::unordered_set<F>& get_targets(size_t cluster) const + { + return clusters[cluster]; + } + size_t size(void) const + { + return clusters.size(); + } + size_t get_all_tops(void*** ret_tops, u8 mode) const + { + // Instead of get all top_rated maps, + // we only get ones corresponding to fringe blocks of current state. + const rh::unordered_map<reach_t, rh::unordered_set<Fringe>>* blocks; + switch (mode) + { + case AFLRunState::kFringe: + blocks = &path_fringes->block_to_fringes; + break; + case AFLRunState::kProFringe: + blocks = &path_pro_fringes->block_to_fringes; + break; + case AFLRunState::kTarget: + blocks = &reached_targets->block_to_fringes; + break; + default: + abort(); + } + size_t idx = 0; + bo::dynamic_bitset<> visited_clusters(size()); + for (const auto& b : *blocks) + { + auto it = target_to_idx.find(b.first); + if (it == target_to_idx.end() || visited_clusters[it->second] || + cluster_tops[it->second] == nullptr) + continue; + + visited_clusters[it->second] = true; + ret_tops[idx++] = cluster_tops[it->second].get(); + } + return idx; + } + void add_bit_seq(u64 or_all, unique_ptr<vector<u64>>&& seq) + { + and_bit_seqs.emplace_back(or_all, std::move(seq)); + } + void commit_bit_seqs(const size_t* clusters, size_t num) + { + if (and_bit_seqs.empty()) return; + + // Sequences representing all ones in bit arrays + vector<vector<size_t>> sequences; + + for (const auto& seq : and_bit_seqs) + { + u64 or_all = seq.first; + assert(seq.second->size() == num); + for (size_t i = 0; or_all != 0; ++i, or_all >>= 1) + { // Iterate each bit of `or_all`, and process these `1` bits + if ((or_all & 1) == 0) + continue; + + vector<size_t> sequence; + size_t j = 0; auto it = seq.second->begin(); + for (; it != seq.second->end(); ++it, ++j) + { // Iterate bit sequence `i` + if (((*it) & (1uLL << i)) != 0uLL) + { + sequence.push_back(clusters[j]); + } + } + assert(!sequence.empty()); // Sequence must have at least one `1` + sequences.push_back(std::move(sequence)); + } + } + and_bit_seqs.clear(); + // If count using seed, we should deem each sequence as a factor count. + double w_each = config.count_seed ? 1.0 / sequences.size() : 1.0; + + bool if_try = false; + for (const auto& seq : sequences) + { + for (auto i = seq.begin(); i != seq.end(); ++i) + { // For each cluster, increment support count + double cnt_after = (supp_cnt[*i] += w_each); + if_try = if_try || cnt_after >= config.supp_cnt_thr; + for (auto j = i + 1; j != seq.end(); ++j) + { // For each cluster pair, increment pair support count + pair_supp_cnt[ClusterPair(*i, *j)] += w_each; + } + } + } + + if (if_try) + { // Only try to merge if there is any support count >= threshold + while (try_merge()) {} + } + + } + // Move `b` from its cluster to primary cluster, + // if original cluster becomes empty, remove the cluster. + void invalidate_div_block(F b) + { + // Find corresponding cluster + auto it = target_to_idx.find(b); + auto& cluster = clusters[it->second]; + assert(cluster.find(b) != cluster.end()); + + // Move `b` to primary map + cluster.erase(b); + clusters.front().insert(b); + + if (cluster.empty()) + { // If it is the last seed in the corpus, we remove the cluster + cluster_maps[it->second] = nullptr; + cluster_tops[it->second] = nullptr; + } + it->second = 0; + } + void remove_div_block(F b) + { // To remove a div block, we need delete corresponding `target_to_idx`. + // If final cluster is also empty, we delete the cluster. + + // Find corresponding cluster + auto it = target_to_idx.find(b); + auto& cluster = clusters[it->second]; + assert(cluster.find(b) != cluster.end()); + + cluster.erase(b); + if (cluster.empty()) + { + cluster_maps[it->second] = nullptr; + cluster_tops[it->second] = nullptr; + } + target_to_idx.erase(it); + } + void print(ostream& out) const + { + out << "Clusters" << endl; + size_t c = 0; auto it = clusters.begin(); + for (; it != clusters.end(); ++it, ++c) + { + const auto& cluster = *it; + if (cluster.empty()) + continue; + out << c << " | "; + for (const F& t : cluster) + { + log_fringe<F>(out, t); out << ' '; + } + out << endl; + } + out << "Confidence Values" << endl; + + vector<ClusterPair> to_erase; + for (const auto& p : pair_supp_cnt) + { + size_t fst = p.first.get_fst(); + size_t snd = p.first.get_snd(); + assert(cluster_valid(fst) && cluster_valid(snd)); + double fst_cnt = supp_cnt[fst]; + double snd_cnt = supp_cnt[snd]; + + out << fst << "->" << snd << " | " << p.second << " / " << + fst_cnt << " = " << p.second / fst_cnt << endl; + out << snd << "->" << fst << " | " << p.second << " / " << + snd_cnt << " = " << p.second / snd_cnt << endl; + } + } +}; + +#ifdef AFLRUN_CTX_DIV +Clusters<Fringe> clusters; +inline Fringe to_cluster_target(const ctx_t* t) +{ + return Fringe(t->block, t->call_ctx); +} +inline Fringe to_cluster_target(const Fringe& t) +{ + return t; +} +#else +Clusters<reach_t> clusters; +inline reach_t to_cluster_target(const ctx_t* t) +{ + return t->block; +} +inline reach_t to_cluster_target(const Fringe& t) +{ + return t.block; +} +#endif + +// TODO: context sensitive diversity blocks +template <typename F> +struct DiversityBlocks +{ + // Map seed to currently active diversity blocks + rh::unordered_map<u32, rh::unordered_set<F>> seed_blocks; + + // Map diversity block to seeds that cover it + rh::unordered_map<F, rh::unordered_set<u32>> block_seeds; + + // Both unordered maps above must not contain any empty value + + u8* div_switch; // Shared Memory + + // Number of diversity block that reach threshold, targets not included; + // Number of fringe diversity currently has, + // including invalid ones, excluding targets. + size_t num_invalid, num_fringes; + + explicit DiversityBlocks(u8* div_switch) + : div_switch(div_switch), num_invalid(0), num_fringes(0) {} + + // For each new seed, update its coverage of active diversity blocks + void div_coverage(const u8* bitmap, u32 seed, + const rh::unordered_set<reach_t>* new_criticals = nullptr, + const rh::unordered_set<reach_t>* new_bits_targets = nullptr); + + // TODO: add and delete diversity blocks when new fringe is added or deleted + void switch_on(F f); + void switch_off(F f); + void remove_seed(u32 seed); + + void print(ostream& out) const; +}; + +template <> +void DiversityBlocks<reach_t>::div_coverage(const u8 *bitmap, u32 seed, + const rh::unordered_set<reach_t>* new_criticals, + const rh::unordered_set<reach_t>* new_bits_targets) +{ // Similar to `fringe_coverage` + if (config.no_diversity) + return; + assert(seed_blocks.find(seed) == seed_blocks.end()); + rh::unordered_set<reach_t> blocks; + vector<reach_t> to_invalidate; + for (auto& b : block_seeds) + { + bool is_new_critical = new_criticals ? + (new_criticals->count(b.first) != 0) : false; + bool is_new_bits_targets = new_bits_targets ? + (new_bits_targets->count(b.first) != 0) : true; + + assert(IS_SET(div_switch, b.first)); + if ((is_new_critical || is_new_bits_targets) && IS_SET(bitmap, b.first)) + { + b.second.insert(seed); + // We don't use `>=` to not invalidate already invalid blocks + if (b.second.size() == config.div_seed_thr && + b.first >= g->num_targets) + { // If number of seeds reach threshold for fringe, invalidate it + to_invalidate.push_back(b.first); + ++num_invalid; + } + blocks.insert(b.first); + } + } + if (!blocks.empty()) + seed_blocks.emplace(seed, std::move(blocks)); + + // For invalid diversity blocks, we only merge it to primary cluster, + // so that it will not contribute to any new extra seeds. + // We don't turn it off because we don't want to lose all previous seeds. + if (!to_invalidate.empty()) + { + for (reach_t b : to_invalidate) + clusters.invalidate_div_block(b); + clusters.clean_supp_cnts(); + } +} + +template <> +void DiversityBlocks<reach_t>::switch_on(reach_t f) +{ + // If already switched on, this function does nothing + if (!block_seeds.emplace(f, rh::unordered_set<u32>()).second) + return; + div_switch[f / 8] |= 1 << (f % 8); + + // This will be added very soon, so empty value does not matter + if (f >= g->num_targets) + ++num_fringes; +} + +template <> +void DiversityBlocks<reach_t>::switch_off(reach_t f) +{ + auto it = block_seeds.find(f); + assert(f >= g->num_targets && IS_SET(div_switch, f)); + div_switch[f / 8] &= ~(1 << (f % 8)); + + for (u32 s : it->second) + { // Delete the block in all seeds + auto it2 = seed_blocks.find(s); + it2->second.erase(f); + if (it2->second.empty()) + seed_blocks.erase(it2); + } + if (it->second.size() >= config.div_seed_thr) + --num_invalid; + --num_fringes; + block_seeds.erase(it); + clusters.remove_div_block(f); +} + +template <> +void DiversityBlocks<reach_t>::remove_seed(u32 seed) +{ + auto it = seed_blocks.find(seed); + if (it == seed_blocks.end()) + return; + assert(!it->second.empty()); + for (reach_t b : it->second) + { + auto& seeds = block_seeds.find(b)->second; + seeds.erase(seed); assert(!seeds.empty()); + } + seed_blocks.erase(it); +} + +template<> +void DiversityBlocks<reach_t>::print(ostream& out) const +{ + out << "Diversity" << endl; + size_t num_reached = 0, num_non_targets = 0; + for (const auto& b : block_seeds) + { + bool target = b.first < g->num_targets; + size_t s = b.second.size(); + bool reached = s >= config.div_seed_thr; + if (!target) + { + ++num_non_targets; + if (reached) ++num_reached; + } + out << g->reachable_names[b.first] << " | " << s << + (target ? " T" : (reached ? " R" : "")) << endl; + } + assert(num_reached == num_invalid && num_fringes == num_non_targets); +} + +unique_ptr<DiversityBlocks<reach_t>> div_blocks = nullptr; + +using group_t = reach_t; +class TargetGrouper +{ +public: + friend void ::aflrun_init_groups(reach_t num_targets); +private: + static rh::unordered_set<reach_t> all_targets; + + unique_ptr<group_t[]> target_to_group; + vector<rh::unordered_set<reach_t>> groups; + + // some memory pool to save allocation time + vector<reach_t> subgroups_; + vector<reach_t> sizes_; + vector<u8> covered_groups_; + vector<group_t> covered_groups_arr_; +public: + explicit TargetGrouper() + { + target_to_group = make_unique<group_t[]>(g->num_targets); + fill(target_to_group.get(), target_to_group.get() + g->num_targets, 0); + groups.emplace_back(all_targets); + subgroups_.resize(g->num_targets); + sizes_.resize(1); + covered_groups_.resize(1); + covered_groups_arr_.resize(1); + } + + // Pre: targets must be unique + template<typename D> + void add_reachable( + const rh::unordered_map<reach_t, rh::unordered_set<D>>& decs) + { + reach_t* subgroups = subgroups_.data(); + reach_t* sizes = sizes_.data(); + u8* covered_groups = covered_groups_.data(); + group_t* covered_groups_arr = covered_groups_arr_.data(); + const reach_t num_targets = g->num_targets; + + size_t group_size = groups.size(); + // Map each group index into all elements in `targets` belonging to it + fill(sizes, sizes + group_size, 0); + fill(covered_groups, covered_groups + group_size, 0); + size_t num_covered_groups = 0; + for (const auto& t : decs) + { + // Get group idx that the target belongs to + group_t g = target_to_group[t.first]; + // Append the target to the corresponding subgroup + subgroups[g * num_targets + sizes[g]++] = t.first; + if (!covered_groups[g]) + { + covered_groups[g] = 1; + covered_groups_arr[num_covered_groups++] = g; + } + } + + // For subgroup that can cut any of existing group, we need to cut + for (size_t i = 0; i < num_covered_groups; ++i) + { + group_t g = covered_groups_arr[i]; + size_t size = sizes[g]; + assert(0 < size); + if (size < groups[g].size()) + { + const reach_t* subgroup = subgroups + g * num_targets; + group_t new_idx = groups.size(); + groups.emplace_back(subgroup, subgroup + size); + for (size_t j = 0; j < size; ++j) + { + groups[g].erase(subgroup[j]); + target_to_group[subgroup[j]] = new_idx; + } + } + } + + group_size = groups.size(); + subgroups_.resize(group_size * num_targets); + sizes_.resize(group_size); + covered_groups_.resize(group_size); + covered_groups_arr_.resize(group_size); + } + + inline group_t to_group(reach_t target) const + { + return target_to_group[target]; + } + + inline const rh::unordered_set<reach_t>& to_targets(group_t group) const + { + return groups[group]; + } + + inline size_t size() const + { + return groups.size(); + } + + // Separate given set of targets according to current group + template<typename D> + vector<rh::unordered_set<reach_t>> separate( + const rh::unordered_map<reach_t, rh::unordered_set<D>>& decs) const + { + rh::unordered_set<reach_t> targets; + for (const auto& td : decs) + { + targets.insert(td.first); + } + vector<rh::unordered_set<reach_t>> ret; + while (!targets.empty()) + { + reach_t t = *targets.begin(); + rh::unordered_set<reach_t> group = to_targets(to_group(t)); +#ifndef NDEBUG + size_t prev_size = targets.size(); +#endif + for (reach_t e : group) + targets.erase(e); + // Check that all group elements removed are indeed in `targets` + assert(targets.size() + group.size() == prev_size); + + ret.push_back(std::move(group)); + } + return ret; + } + + void slow_check() const + { + for (reach_t t = 0; t < g->num_targets; ++t) + { + group_t g = target_to_group[t]; + assert(groups.at(g).find(t) != groups.at(g).end()); + for (size_t i = 0; i < groups.size(); ++i) + { + if (i == g) + continue; + assert(groups[i].find(t) == groups[i].end()); + } + } + } +}; + +template <typename F, typename D> +void FringeBlocks<F, D>::group() +{ + grouper = make_unique<TargetGrouper>(); + // For each of fringe, we add associated targets to grouper + for (const auto& f : fringes) + { + grouper->add_reachable<D>(f.second.decisives); + } +} + +rh::unordered_set<reach_t> TargetGrouper::all_targets; + +} // namespace + +size_t hash<Fringe>::operator()(const Fringe& p) const noexcept +{ + size_t seed = 0; + bo::hash_combine(seed, p.block); + bo::hash_combine(seed, p.context); + return seed; +} + +size_t hash<SeedFringes>::operator()(const SeedFringes& p) const noexcept +{ + const u8* ptr = p.bitmap.get(); + return bo::hash_range(ptr, ptr + p.bitmap_size); +} + +size_t hash<pair<reach_t, reach_t>>::operator()( + const pair<reach_t, reach_t>& p) const noexcept +{ + size_t seed = 0; + bo::hash_combine(seed, p.first); + bo::hash_combine(seed, p.second); + return seed; +} + +size_t hash<ClusterPair>::operator()( + const ClusterPair& p) const noexcept +{ + size_t seed = 0; + bo::hash_combine(seed, p.get_fst()); + bo::hash_combine(seed, p.get_snd()); + return seed; +} + +/* ----- Functions called at initialization ----- */ + +void aflrun_init_groups(reach_t num_targets) +{ + for (reach_t t = 0; t < num_targets; ++t) + { + TargetGrouper::all_targets.insert(t); + } +} + +void aflrun_init_fringes(reach_t num_reachables, reach_t num_targets) +{ + path_fringes = make_unique<FringeBlocks<Fringe, Fringe>>(num_targets); + path_pro_fringes = make_unique<FringeBlocks<Fringe, reach_t>>(num_targets); + reached_targets = make_unique<FringeBlocks<Fringe, u8>>(num_targets); +} + +void aflrun_init_globals(void* afl, reach_t num_targets, reach_t num_reachables, + reach_t num_ftargets, reach_t num_freachables, + u8* virgin_reachables, u8* virgin_freachables, u8* virgin_ctx, + char** reachable_names, reach_t** reachable_to_targets, + reach_t* reachable_to_size, const char* out_dir, + const double* target_weights, u32 map_size, u8* div_switch, + const char* cycle_time) +{ + assert(g == nullptr); + g = make_unique<AFLRunGlobals>(num_targets, num_reachables, + num_ftargets, num_freachables, virgin_reachables, + virgin_freachables, virgin_ctx, reachable_names, + reachable_to_targets, reachable_to_size, out_dir, + target_weights, map_size, afl, get_cur_time(), + cycle_time == NULL ? 0 : strtoull(cycle_time, NULL, 10)); + div_blocks = make_unique<DiversityBlocks<reach_t>>(div_switch); +} + +void aflrun_load_freachables(const char* temp_path, + reach_t* num_ftargets, reach_t* num_freachables) +{ + string temp(temp_path); + if (temp.back() != '/') + temp.push_back('/'); + ifstream fd(temp + "Freachable.txt"); assert(fd.is_open()); + string line; + getline(fd, line); + size_t idx = line.find(','); assert(idx != string::npos); + *num_ftargets = strtoul(line.c_str(), NULL, 10); + *num_freachables = strtoul(line.c_str() + idx + 1, NULL, 10); + + reach_t i = 0; + while (getline(fd, line)) + { + fname_to_id.emplace(line, i++); + id_to_fname.push_back(std::move(line)); + } + + assert(i == *num_freachables && i == fname_to_id.size()); +} + +void aflrun_load_edges(const char* temp_path, reach_t num_reachables) +{ + string temp(temp_path); + if (temp.back() != '/') + temp.push_back('/'); + graph = make_unique<BasicBlockGraph>( + (temp + "BBedges.txt").c_str(), num_reachables); + + ifstream fd(temp + "Chash.txt"); assert(fd.is_open()); + string line; + while (getline(fd, line)) + { + size_t idx1 = line.find(','); assert(idx1 != string::npos); + size_t idx2 = line.find('|'); assert(idx2 != string::npos); + auto call_edge = make_pair<reach_t, reach_t>( + strtoul(line.c_str(), NULL, 10), + strtoul(line.c_str() + idx1 + 1, NULL, 10)); + graph->call_hashes[call_edge].push_back( + strtoul(line.c_str() + idx2 + 1, NULL, 10)); + } +} + +void aflrun_load_dists(const char* dir, reach_t num_targets, + reach_t num_reachables, char** reachable_names) +{ + bb_to_dists.resize(num_reachables); + + // Convert reachable name to id in O(1) + for (reach_t i = 0; i < num_reachables; i++) + { + name_to_id.emplace(reachable_names[i], i); + } + + string path(dir); + if (path.back() != '/') + path.push_back('/'); + path += "distance.cfg/"; + for (reach_t t = 0; t < num_targets; ++t) + { + ifstream cf(path + to_string(t) + ".txt"); assert(cf.is_open()); + string line; + while (getline(cf, line)) + { + // get name and dist + size_t pos = line.find(","); assert(pos != string::npos); + string bb_name = line.substr(0, pos); + double bb_dis = atof(line.substr(pos + 1, line.length()).c_str()); + + // update name and dist into global data structure + assert(name_to_id.find(bb_name) != name_to_id.end()); + reach_t block = name_to_id.find(bb_name)->second; + auto tmp = bb_to_dists[block].find(t); + if (tmp == bb_to_dists[block].end()) + { + bb_to_dists[block].emplace(t, bb_dis); + } + else if (tmp->second > bb_dis) + { + tmp->second = bb_dis; // we get minimum of all distances + } + } + cf.close(); + } + + // calculate the average distance among all targets + // TODO: calculate the average lazily + rh::unordered_map<reach_t, double> dists; + for (reach_t bb = 0; bb < num_reachables; ++bb) + { + double sum = 0.0; size_t count = 0; + for (reach_t t = 0; t < num_targets; ++t) + { + auto d = bb_to_dists[bb].find(t); + if (d != bb_to_dists[bb].end()) + { + sum += d->second; ++count; + } + } + assert(count > 0); + bb_to_avg_dists.emplace(bb, sum / count); + } +} + +// The config is in form "xxx=aaa:yyy=bbb" +void aflrun_load_config(const char* config_str, + u8* check_at_begin, u8* log_at_begin, u64* log_check_interval, + double* trim_thr, double* queue_quant_thr, u32* min_num_exec) +{ + string s(config_str); + try + { + while (true) + { + size_t idx = s.find(':'); + if (idx == string::npos) + { + config.load(s); + break; + } + config.load(s.substr(0, idx)); + s = s.substr(idx + 1); + } + config.check(); + } + catch (const string& e) + { + cerr << e << endl; + abort(); + } + *check_at_begin = config.check_at_begin; + *log_at_begin = config.log_at_begin; + *log_check_interval = config.log_check_interval; + *trim_thr = config.trim_thr; + *queue_quant_thr = config.queue_quant_thr; + *min_num_exec = config.min_num_exec; +} + +void aflrun_remove_seed(u32 seed) +{ + path_pro_fringes->remove_seed(seed); + path_fringes->remove_seed(seed); + reached_targets->remove_seed(seed); + div_blocks->remove_seed(seed); +} + +/* ----- Functions called for some time interval to log and check ----- */ + +#ifdef NDEBUG +void aflrun_check_state(void) {} +#else +namespace +{ +template <typename F, typename D> +void check_state(const FringeBlocks<F, D>& fringes) +{ + for (reach_t t = 0; t < fringes.target_to_fringes.size(); ++t) + { + for (const F& f : fringes.target_to_fringes[t]) + { + auto it = fringes.fringes.find(f); + assert(it != fringes.fringes.end()); + auto it2 = it->second.decisives.find(t); + assert(it2 != it->second.decisives.end()); + assert(!it->second.seeds.empty()); + for (u32 seed : it->second.seeds) + { + const auto& seed_fringes = fringes.seed_fringes.find(seed)->second; + assert(seed_fringes.find(f) != seed_fringes.end()); + } + } + } + for (const auto& fi : fringes.fringes) + { + assert(!fi.second.decisives.empty()); + for (const auto& td : fi.second.decisives) + { + const auto& fs = fringes.target_to_fringes.at(td.first); + assert(fs.find(fi.first) != fs.end()); + } + } +} +} +void aflrun_check_state(void) +{ + if (!config.check_fringe) + return; + check_state(*path_fringes); + check_state(*path_pro_fringes); + check_state(*reached_targets); + for (reach_t t = 0; t < path_pro_fringes->target_to_fringes.size(); ++t) + { + for (const auto& f : path_pro_fringes->target_to_fringes[t]) + { + assert(path_fringes->target_to_fringes[t].find(f) != + path_fringes->target_to_fringes[t].end()); + } + } +} +#endif + + +namespace +{ +string targets_info; + +template <typename F, typename D> +void log_fringes(ofstream& out, const FringeBlocks<F, D>& fringes) +{ + out << "fringe | target group | decisives | seeds | freq" << endl; + for (const auto& f : fringes.fringes) + { + auto res = fringes.grouper->separate(f.second.decisives); + for (const rh::unordered_set<reach_t>& group : res) + { + log_fringe<F>(out, f.first); + out << " |"; + rh::unordered_set<D> decisives; + for (reach_t t : group) + { + out << ' ' << g->reachable_names[t]; + const auto& tmp = f.second.decisives.find(t)->second; + decisives.insert(tmp.begin(), tmp.end()); + } + out << " | "; + for (const D& d : decisives) + { + log_fringe<D>(out, d); out << ' '; + } + out << '|'; + if (config.show_all_seeds) + { + for (u32 s : f.second.seeds) + { + out << ' ' << s; + } + } + else if (f.second.has_top_rated) + { + out << ' ' << f.second.top_rated_seed; + } + out << " | " << f.second.fuzzed_quant << endl; + } + } +} +} + +void aflrun_log_fringes(const char* path, u8 which) +{ + ofstream out(path); + // When critical block is disabled, we don't need log. + if (!out.is_open() || config.no_critical) + return; + + path_fringes->group(); + path_pro_fringes->group(); + reached_targets->group(); + + switch (which) + { + case 2: // print all paths towards all targets + out << "context | target | seeds" << endl; + for (const auto& f : reached_targets->fringes) + { + assert(f.first.block < g->num_targets); + out << f.first.context << " | " << + g->reachable_names[f.first.block] << " |"; + if (config.show_all_seeds) + { + for (u32 s : f.second.seeds) + { + out << ' ' << s; + } + } + else if (f.second.has_top_rated) + { + out << ' ' << f.second.top_rated_seed; + } + out << endl; + } + clusters.print(out); + div_blocks->print(out); + break; + case 1: + log_fringes(out, *path_pro_fringes); + break; + case 0: + log_fringes(out, *path_fringes); + break; + default: + abort(); + } + if (which == 2) + out << targets_info; + out.close(); +} + +u64 aflrun_queue_cycle(void) +{ + if (g->cycle_time) + return (get_cur_time() - g->init_time) / 1000 / g->cycle_time; + else + return state.get_whole_count(); +} + +void aflrun_get_state(int* cycle_count, u32* cov_quant, + size_t* div_num_invalid, size_t* div_num_fringes) +{ + state.get_counts(*cycle_count, *cov_quant); + *div_num_invalid = div_blocks->num_invalid; + *div_num_fringes = div_blocks->num_fringes; +} + +u8 aflrun_get_mode(void) +{ + return state.get_mode(); +} + +bool aflrun_is_uni(void) +{ + return state.get_mode() == AFLRunState::kUnite; +} + +double aflrun_get_seed_quant(u32 seed) +{ + return seed < seed_quant.size() ? seed_quant[seed] : 0; +} + +void aflrun_get_reached(reach_t* num_reached, reach_t* num_freached, + reach_t* num_reached_targets, reach_t* num_freached_targets) +{ + *num_reached = g->num_reached; + *num_freached = g->num_freached; + *num_reached_targets = g->num_reached_targets; + *num_freached_targets = g->num_freached_targets; +} + +void aflrun_get_time(u64* last_reachable, u64* last_fringe, + u64* last_pro_fringe, u64* last_target, u64* last_ctx_reachable, + u64* last_ctx_fringe, u64* last_ctx_pro_fringe, u64* last_ctx_target) +{ + *last_reachable = update_time.last_reachable; + *last_fringe = update_time.last_fringe; + *last_pro_fringe = update_time.last_pro_fringe; + *last_target = update_time.last_target; + *last_ctx_reachable = update_time.last_ctx_reachable; + *last_ctx_fringe = update_time.last_ctx_fringe; + *last_ctx_pro_fringe = update_time.last_ctx_pro_fringe; + *last_ctx_target = update_time.last_ctx_target; +} + +/* ----- Functions called at begining of each cycle ----- */ + +namespace +{ +void assign_energy_seed(u32 num_seeds, const u32* seeds, double* ret) +{ + switch (state.get_mode()) + { + case AFLRunState::kFringe: + { + path_fringes->assign_energy(num_seeds, seeds, ret); + return; + } + case AFLRunState::kProFringe: + { + path_pro_fringes->assign_energy(num_seeds, seeds, ret); + return; + } + case AFLRunState::kTarget: + { + reached_targets->assign_energy(num_seeds, seeds, ret); + return; + } + case AFLRunState::kUnite: + { + assign_energy_unite(num_seeds, seeds, ret); + return; + } + default: + abort(); + } +} +} + +void aflrun_assign_energy(u32 num_seeds, const u32* seeds, double* ret) +{ + if (!config.seed_based_energy) + { + cerr << "Old energy assignment is no longer supported" << endl; + abort(); + } + assign_energy_seed(num_seeds, seeds, ret); +} + +// Call this function at end of all cycles, +// including beginning of the first cycle or when state is reset +// (pseudo cycle end where `cycle_count` increment from -1 to 0). +// The function return the new mode +u8 aflrun_cycle_end(u8* whole_end) +{ + *whole_end = state.cycle_end(); + return state.get_mode(); +} + +/* ----- Functions called when new reachable block becomes non-virgin ----- */ + +namespace +{ + +// Perform vigin BFS from given block, +// return map from reached target to a set of blocks containing a path to it + +template <typename D> +inline rh::unordered_set<D> trace_decisives( + const rh::unordered_map<D, D>& parent, const D& start, const D& v) +{ + rh::unordered_set<D> decisives; + + // Get all blocks consisting of path towards the target + D cur = v; + do + { + decisives.insert(cur); + cur = parent.find(cur)->second; + } while (!(cur == start)); + + return decisives; +} + +template <typename D> +rh::unordered_map<reach_t, rh::unordered_set<D>> get_target_paths(D); + +template <> +rh::unordered_map<reach_t, rh::unordered_set<reach_t>> + get_target_paths<reach_t>(reach_t block) +{ + // https://en.wikipedia.org/wiki/Breadth-first_search#Pseudocode + rh::unordered_map<reach_t, rh::unordered_set<reach_t>> ret; + queue<reach_t> q; rh::unordered_map<reach_t, reach_t> parent; + for (reach_t dst : graph->src_to_dst[block]) + { + if (IS_SET(g->virgin_reachables, dst)) + { // add all outgoing virgin vertexes to queue as initialization + parent.emplace(dst, block); + q.push(dst); + } + } + while (!q.empty()) + { + reach_t v = q.front(); q.pop(); + + if (v < g->num_targets) + { + ret.emplace(v, trace_decisives<reach_t>(parent, block, v)); + } + + for (reach_t w : graph->src_to_dst[v]) + { + if (!IS_SET(g->virgin_reachables, w)) + continue; + if (parent.find(w) == parent.end()) + { + parent.emplace(w, v); + q.push(w); + } + } + } + return ret; +} + +vector<u32> get_next_hashes(const Fringe& src, reach_t dst, bool& is_call) +{ + u32 ctx = src.context; + reach_t block = src.block; + auto p = make_pair<reach_t, reach_t>(std::move(block), std::move(dst)); + auto it = graph->call_hashes.find(p); + + vector<u32> next_hashes; + // If it is a call edge with multiple hashes, calculate new ctx. + // e.i. one block calls same function for multiple times + if (it != graph->call_hashes.end()) + { + for (u32 h : it->second) + { + next_hashes.push_back(ctx ^ h); + } + is_call = true; + } + else + { + next_hashes.push_back(ctx); + is_call = false; + } + + return next_hashes; +} + +// This is a helper function for `get_target_paths<Fringe>` for optimization, +// because going through all possible states with contexts are too expensive. +bool all_targets_visited(reach_t block, + const rh::unordered_map<reach_t, rh::unordered_set<Fringe>>& cur) +{ + size_t num_ts = g->reachable_to_size[block]; + + // If number of reachable targets are larger than number of visited targets, + // then there must be some targets reachable by `block` not visited yet; + // this is just a quick path for slight optimization. + if (num_ts > cur.size()) + return false; + + const reach_t* beg = g->reachable_to_targets[block]; + const reach_t* end = beg + num_ts; + + for (const reach_t* t = beg; t < end; ++t) + { // If there is a target rechable by `block` not yet visited by `cur`, + // we should return false. + if (cur.find(*t) == cur.end()) + return false; + } + + // If all targets reachable by `block` already has a path, + // we can then skip this block by not adding it to stack. + return true; +} + +// Basically same as above, except when doing BFS, +// we consider the context and regard same `dst` node with different contexts +// as different next possible states. +rh::unordered_map<reach_t, rh::unordered_set<Fringe>> + get_target_paths_slow(const Fringe& block_ctx) +{ + rh::unordered_map<reach_t, rh::unordered_set<Fringe>> ret; + queue<Fringe> q; rh::unordered_map<Fringe, Fringe> parent; + reach_t block = block_ctx.block; + bool dummy; + + // For given source state (e.i. block and context), + // we iterate all possible next states and add them into queue. + for (reach_t dst : graph->src_to_dst[block]) + { + auto next_hashes = get_next_hashes(block_ctx, dst, dummy); + for (u32 next_hash : next_hashes) + { + if (IS_SET(g->virgin_ctx, CTX_IDX(dst, next_hash))) + { + Fringe next(dst, next_hash); + parent.emplace(next, block_ctx); + q.push(next); + } + } + } + + while (!q.empty()) + { + Fringe v = q.front(); q.pop(); + + // If we reached the target via BFS for the first time, + // we trace and record paths to it, similar to above + if (v.block < g->num_targets && ret.find(v.block) == ret.end()) + { + ret.emplace(v.block, trace_decisives<Fringe>(parent, block_ctx, v)); + } + + // All possible next states are virgin (block, ctx) pairs + for (reach_t w : graph->src_to_dst[v.block]) + { + if (all_targets_visited(w, ret)) + continue; + auto next_hashes = get_next_hashes(v, w, dummy); + for (u32 next_hash : next_hashes) + { + if (!IS_SET(g->virgin_ctx, CTX_IDX(w, next_hash))) + continue; + Fringe next(w, next_hash); + if (parent.find(next) == parent.end()) + { + parent.emplace(next, v); + q.push(next); + } + } + } + } + + return ret; +} + +// The problem of a thorough BFS is that it can be too slow for big binaries, +// so we have another fast version that only BFS inside the function and +// entry block of each function it calls. +// The core idea is that as long as it reaches a entry block whose next context +// is virgin, it add all targets the block can reach into `decisives` with the +// partial trace reaching the entry block. The idea is that as long as we have +// entry block with virgin context, the stack trace before + this call site +// must not have been visited, thus any target it can reach can potentially +// have stack trace before + this call site + other call sites to reach target, +// which must also be not visited before. Thus it is okay to know there exists +// a context-sensitive path to these targets. +// However, such fast hack has 2 problems: +// 1. Cannot handle hash collision; 2. potentially problematic for recursion. +rh::unordered_map<reach_t, rh::unordered_set<Fringe>> + get_target_paths_fast(const Fringe& block_ctx) +{ + rh::unordered_map<reach_t, rh::unordered_set<Fringe>> ret; + queue<pair<Fringe, bool>> q; rh::unordered_map<Fringe, Fringe> parent; + reach_t block = block_ctx.block; + + // Similar to the slow one, + // except we also record whether `Fringe` is a call in the queue. + + for (reach_t dst : graph->src_to_dst[block]) + { + bool is_call; + auto next_hashes = get_next_hashes(block_ctx, dst, is_call); + for (u32 next_hash : next_hashes) + { + if (IS_SET(g->virgin_ctx, CTX_IDX(dst, next_hash))) + { + Fringe next(dst, next_hash); + parent.emplace(next, block_ctx); + q.push(make_pair(std::move(next), std::move(is_call))); + } + } + } + + while (!q.empty()) + { + auto tmp = q.front(); q.pop(); + const Fringe& v = tmp.first; + + // We still need to check potential targets in the function + if (!tmp.second && + v.block < g->num_targets && ret.find(v.block) == ret.end()) + { + ret.emplace(v.block, trace_decisives<Fringe>(parent, block_ctx, v)); + } + + // If current virgin `Fringe` is visited from call edge, + // then we get a trace from it, and assign to each target it can reach; + // also we don't continue to visit its child blocks. + if (tmp.second) + { + auto decisives = trace_decisives(parent, block_ctx, v); + + const reach_t* beg = g->reachable_to_targets[v.block]; + const reach_t* end = beg + g->reachable_to_size[v.block]; + for (const reach_t* t = beg + 1; t < end; ++t) + { + // If key `*t` already exists, `emplace` does nothing. + ret.emplace(*t, decisives); + } + ret.emplace(*beg, std::move(decisives)); + } + else + { + for (reach_t w : graph->src_to_dst[v.block]) + { + bool is_call; + auto next_hashes = get_next_hashes(v, w, is_call); + for (u32 next_hash : next_hashes) + { + if (!IS_SET(g->virgin_ctx, CTX_IDX(w, next_hash))) + continue; + Fringe next(w, next_hash); + if (parent.find(next) == parent.end()) + { + parent.emplace(next, v); + q.push(make_pair(std::move(next), std::move(is_call))); + } + } + } + } + } + + return ret; +} + +template <> +rh::unordered_map<reach_t, rh::unordered_set<Fringe>> + get_target_paths<Fringe>(Fringe block_ctx) +{ + if (config.slow_ctx_bfs) + return get_target_paths_slow(block_ctx); + else + return get_target_paths_fast(block_ctx); +} + +/* ----- Functions called for each test case mutated and executed ----- */ + +template <typename D> +inline D to_decisive(const Fringe& f); +template <> +inline reach_t to_decisive<reach_t>(const Fringe& f) +{ + return f.block; +} +template <> +inline Fringe to_decisive<Fringe>(const Fringe& f) +{ + return f; +} + +template <typename F, typename D> +u8 FringeBlocks<F, D>::try_add_fringe(const Fringe& cand) +{ + auto target_decisives = get_target_paths<D>(to_decisive<D>(cand)); + if (target_decisives.empty()) + return 0; + for (auto& td : target_decisives) + { + this->add_fringe(cand, td.first, std::move(td.second)); + } + return 1; +} + +u8 try_add_fringe(const ctx_t& cand) +{ + reach_t block = cand.block; + Fringe f_cand(block, cand.call_ctx); + + /* For the ablation study that removes the critical blocks, + `path_pro_fringes` and `path_fringes` are both empty, + and we put all covered blocks into reached_targets. + Hope this hack does not cause any other problem. :) */ + if (config.no_critical) + { + const reach_t* beg = g->reachable_to_targets[block]; + const reach_t* end = beg + g->reachable_to_size[block]; + for (const reach_t* i = beg; i < end; ++i) + { + reached_targets->add_fringe(f_cand, *i, rh::unordered_set<u8>()); + } + return 0; + } + + u8 r2 = path_pro_fringes->try_add_fringe(f_cand); + +#ifdef AFLRUN_CTX + // We add criticals to into `path_fringes` only when context is enabled. + u8 r1 = path_fringes->try_add_fringe(f_cand); + assert(!r2 || r1); // r2 -> r1 +#endif + + // If candidate is fringe reaching a target and it is not added yet, we add it + if (block < g->num_targets) + { + reached_targets->add_fringe(f_cand, block, rh::unordered_set<u8>()); + } + +#ifdef AFLRUN_CTX + return r2 + r1; +#else + // When context is not enabled, we return 2 when new critical is added. + return r2 * 2; +#endif +} + +// Return set of all blocks it removed +template <typename F, typename D> +vector<reach_t> FringeBlocks<F, D>::try_del_fringe(const Fringe& cand) +{ + vector<reach_t> ret; + auto it = this->decisive_to_fringes.find(to_decisive<D>(cand)); + if (it == this->decisive_to_fringes.end()) + return ret; + rh::unordered_set<Fringe> fringes_decided(std::move(it->second)); + this->decisive_to_fringes.erase(it); + + for (const Fringe& f : fringes_decided) + { + auto it2 = this->fringes.find(f); + if (it2 == this->fringes.end()) + continue; + + // Re-evaluate the fringe to see if it can still reach any target + auto target_decisives = get_target_paths<D>(to_decisive<D>(f)); + if (target_decisives.empty()) + { // If not, delete the fringe + if (this->del_fringe(f)) + ret.push_back(f.block); + } + else + { // Otherwise, update the fringe with: + // 1. new targets(a subset of original targets) and 2. new decisives + for (const auto& td : it2->second.decisives) + { + // If an old target is not covered by new set of targets + if (target_decisives.find(td.first) == target_decisives.end()) + { + this->target_to_fringes[td.first].erase(f); + } + } + for (const auto& td : target_decisives) + { + for (const D& d : td.second) + { + this->decisive_to_fringes[d].insert(f); + } + } + it2->second.decisives = std::move(target_decisives); + } + } + return ret; +} + +template <typename F, typename D> +void FringeBlocks<F, D>::remove_seed(u32 seed) +{ + auto it = seed_fringes.find(seed); + // skip if seed does not exists + if (it == seed_fringes.end()) + return; + assert(!it->second.empty()); + for (const auto& f : it->second) + { // For all fringes, we need also to update its info about seeds + auto& info = fringes.find(f)->second; + + // Because we only remove duplicate seed, + // there must be another seed covering the fringe + info.seeds.erase(seed); assert(!info.seeds.empty()); + + if (info.has_top_rated && info.top_rated_seed == seed) + { // If top_rated_seed has been removed, we need to update it + u32 best_seed = 0xdeadbeefu; + u64 best_fav_factor = numeric_limits<u64>::max(); + for (u32 seed : info.seeds) + { + u64 fav_factor = get_seed_fav_factor(g->afl, seed); + if (fav_factor <= best_fav_factor) + { + best_seed = seed; + best_fav_factor = fav_factor; + } + } + info.top_rated_seed = best_seed; + info.top_rated_factor = best_fav_factor; + } + } + seed_fringes.erase(it); +} + +} + +u8 aflrun_has_new_path(const u8* freached, const u8* reached, const u8* path, + const ctx_t* new_paths, size_t len, u8 inc, u32 seed, + const u8* new_bits, const size_t* cur_clusters, size_t num_clusters) +{ + u8 ret = 0; + unique_ptr<rh::unordered_set<Fringe>> new_criticals; + unique_ptr<rh::unordered_set<reach_t>> new_critical_blocks; + if (len != 0) + { + // If there are `new_paths`, we update virgin bits. + // Note that if there are new virgin bits, there must be `new_paths`, + // so any newly reached virgin bits will not be missed. + + // update virgin bit for reachale functions + for (reach_t i = 0; i < g->num_freachables; ++i) + { + if (IS_SET(g->virgin_freachables, i) && IS_SET(freached, i)) + { + g->virgin_freachables[i / 8] &= 0xffu ^ (1u << (i % 8)); + g->num_freached++; + if (i < g->num_ftargets) + g->num_freached_targets++; + } + } + + rh::unordered_set<reach_t> new_blocks; + for (reach_t i = 0; i < g->num_reachables; ++i) + { + // If the bit is virgin (e.i not reached before), + // and this execution can reach such virgin bit + if (IS_SET(g->virgin_reachables, i) && IS_SET(reached, i)) + { + // we clear the virgin bit + g->virgin_reachables[i / 8] &= 0xffu ^ (1u << (i % 8)); + g->num_reached++; + new_blocks.insert(i); + if (i < g->num_targets) + g->num_reached_targets++; + } + } + + for (size_t i = 0; i < len; ++i) + { + const ctx_t& cand = new_paths[i]; + Fringe f_cand(cand.block, cand.call_ctx); + auto del_norm = path_fringes->try_del_fringe(f_cand); + auto del_pro = path_pro_fringes->try_del_fringe(f_cand); + if (config.no_diversity) + continue; + if (config.div_level == 1) // Only pro-fringe + { + for (reach_t b : del_pro) + { // For all blocks removed from pro fringe + assert(path_pro_fringes->block_to_fringes.count(b) == 0); + if (b >= g->num_targets) + { // If it is not target, we switch it off + div_blocks->switch_off(b); + } + } + clusters.clean_supp_cnts(); + } + else if (config.div_level == 2) // pro-fringe + norm-fringe + { + rh::unordered_set<reach_t> switched_off; + for (reach_t b : del_pro) + { + assert(path_pro_fringes->block_to_fringes.count(b) == 0); + if (b >= g->num_targets && + path_fringes->block_to_fringes.count(b) == 0) + { // If fringe is not pro, but still in norm, we still keep. + div_blocks->switch_off(b); + switched_off.insert(b); + } + } + for (reach_t b : del_norm) + { + // If a block is deleted from norm fringe, + // it cannot appear in pro fringe either. + assert(path_pro_fringes->block_to_fringes.count(b) == 0); + assert(path_fringes->block_to_fringes.count(b) == 0); + if (b >= g->num_targets && switched_off.count(b) == 0) + { + div_blocks->switch_off(b); + } + } + clusters.clean_supp_cnts(); + } + // All fringes removed by `path_pro_fringes` + } + + u8 cf = 0, ct = 0, f = 0, t = 0; + new_criticals = make_unique<rh::unordered_set<Fringe>>(); + new_critical_blocks = make_unique<rh::unordered_set<reach_t>>(); + for (size_t i = 0; i < len; ++i) + { + reach_t block = new_paths[i].block; + u8 r = try_add_fringe(new_paths[i]) + 1; + + // Update context-sensitive fringe and target + cf = max(r, cf); + if (block < g->num_targets) + ct = 1; + + // It it is the first time a block is reached, + // we update context-insensitive fringe and target. + if (new_blocks.find(block) != new_blocks.end()) + { + f = max(r, f); + if (block < g->num_targets) + t = 1; + } + + if (r >= 2 || block < g->num_targets) + { + new_criticals->emplace( + new_paths[i].block, new_paths[i].call_ctx); + new_critical_blocks->insert(new_paths[i].block); + } + + // When there is a new fringe or target, we activate its switch. + if (block < g->num_targets || r > 3 - config.div_level) + { // Note this can happen multiple times for a block, 3 cases: + // 1. If first time it is activated, then switch is turned on. + // 2. If switch is already on, them nothing is done. + // 3. If switch was turned off before, then turn on again. + // Such case only occurs for r == 2. (e.i. context fringe) + div_blocks->switch_on(block); + } + } + if (config.reset_level == 1) + { + if (f > 0) + state.reset(f - 1); // state.reset(cf - 1); TODO: config + if (config.reset_target && t) + state.exploit(); + } // TODO: reset_level == 2 + if (state.is_init_cov()) + { + if (config.init_cov_reset == 1) + { + if (f > 0 || t) + state.reset_cov_quant(); + } + else if (config.init_cov_reset == 2) + { + if (cf > 0 || ct) + state.reset_cov_quant(); + } + } + + /* + Given a execution trace exerted by a program, + and try to see if there is something new; + it returns information about if fringe is created, + cf: + 1 for a new context-sensitive block is covered, + 2 for a new context-sensitive fringe is added, + 3 for a new context-sensitive pro fringe is added; + ct: + 1 for new context-sensitive target is reached + f: + 1 for a new reachable block is covered, + 2 for a new fringe is added for the first time, + 3 for a new pro fringe is added for the first time, + t bit: + 1 for new context-insensitive target is reached + */ + + if (f >= 1) update_time.last_reachable = get_cur_time(); + if (f >= 2) update_time.last_fringe = get_cur_time(); + if (f >= 3) update_time.last_pro_fringe = get_cur_time(); + + if (t) update_time.last_target = get_cur_time(); + + if (cf >= 1) update_time.last_ctx_reachable = get_cur_time(); + if (cf >= 2) update_time.last_ctx_fringe = get_cur_time(); + if (cf >= 3) update_time.last_ctx_pro_fringe = get_cur_time(); + + if (ct) update_time.last_ctx_target = get_cur_time(); + + ret = cf >= 2 || ct; + } + + // TODO: Coverage for Seed Isolation + + bool has_cov = false; + if (num_clusters == 0 || (new_bits && new_bits[0])) + { // If `num_clusters` is zero, or primary map has new bits, + // then the seed is non-extra, + // so we don't do seed isolation and consider all coverage. + has_cov |= path_fringes->fringe_coverage(path, seed); + has_cov |= path_pro_fringes->fringe_coverage(path, seed); + has_cov |= reached_targets->fringe_coverage(path, seed); + div_blocks->div_coverage(reached, seed); + } + else + { + rh::unordered_set<reach_t> new_bits_targets; + if (new_bits) + { // If new_bits is not NULL, there is any virgin map update. + for (size_t i = 1; i < num_clusters; ++i) + { + if (new_bits[i]) + { // If there is any new bit, insert all blocks in the cluster. + const auto& ts = clusters.get_targets(cur_clusters[i]); + new_bits_targets.insert(ts.begin(), ts.end()); + } + } + } + has_cov |= path_fringes->fringe_coverage( + path, seed, new_criticals.get(), &new_bits_targets); + has_cov |= path_pro_fringes->fringe_coverage( + path, seed, new_criticals.get(), &new_bits_targets); + has_cov |= reached_targets->fringe_coverage( + path, seed, new_criticals.get(), &new_bits_targets); + div_blocks->div_coverage( + reached, seed, new_critical_blocks.get(), &new_bits_targets); + } + + // Reset `cov_quant` to 0 in initial coverage if any new fringe coverage + if (config.init_cov_reset == 3 && state.is_init_cov() && has_cov) + state.reset_cov_quant(); + + /*if (inc) + { + path_fringes->inc_freq(path); + reached_targets->inc_freq(path); + }*/ + + return ret; +} + +u8 aflrun_end_cycle() +{ + return state.is_reset() || state.is_end_cov(); +} + +void aflrun_update_fuzzed_quant(u32 id, double fuzzed_quant) +{ + path_fringes->update_fuzzed_quant(id, fuzzed_quant); + path_pro_fringes->update_fuzzed_quant(id, fuzzed_quant); + reached_targets->update_fuzzed_quant(id, fuzzed_quant); + state.add_quant(fuzzed_quant); + if (id >= seed_quant.size()) + seed_quant.resize(id + 1); + seed_quant[id] += fuzzed_quant; +} + +void aflrun_update_fringe_score(u32 seed) +{ + path_fringes->update_fringe_score(seed); + path_pro_fringes->update_fringe_score(seed); + reached_targets->update_fringe_score(seed); +} + +void aflrun_set_favored_seeds(const u32* seeds, u32 num, u8 mode) +{ + switch (mode) + { + case AFLRunState::kFringe: + return path_fringes->set_favored_seeds(seeds, num); + case AFLRunState::kProFringe: + return path_pro_fringes->set_favored_seeds(seeds, num); + case AFLRunState::kTarget: + return reached_targets->set_favored_seeds(seeds, num); + default: + abort(); + } +} + +u32 aflrun_cull_queue(u32* seeds, u32 num) +{ + switch (state.get_mode()) + { + case AFLRunState::kFringe: + return path_fringes->cull_queue(seeds, num); + case AFLRunState::kProFringe: + return path_pro_fringes->cull_queue(seeds, num); + case AFLRunState::kTarget: + return reached_targets->cull_queue(seeds, num); + case AFLRunState::kUnite: + return cull_queue_unite(seeds, num); + default: + abort(); + } +} + +// Note that the virgin maps returned can be inaccurate, +// which should not be used into `has_new_bits_mul`, +// instead use ones returned by `aflrun_get_seed_virgins`. +size_t aflrun_get_virgins( + const ctx_t* targets, size_t num, u8** ret_maps, size_t* ret_clusters) + // `ret_maps` and `ret_clusters` must have size at least `num` +{ + if (config.no_diversity) + return 0; + const ctx_t* t_end = targets + num; + // The maximum potential number of clusters is current number of cluster + // plus number of new context-sensitive targets, because each target + // can only increase the number of clusters by one. + bo::dynamic_bitset<> visited_clusters(clusters.size() + num); + visited_clusters[0] = true; // always skip primary cluster + + size_t idx = 0; + for (const ctx_t* t = targets; t < t_end; ++t) + { + // Note that even if binary is compiled with AFLRUN_CTX_DIV, + // but fuzzer is not, it can still work correctly + size_t cluster = clusters.get_cluster(to_cluster_target(t)); + if (visited_clusters[cluster]) + continue; + visited_clusters[cluster] = true; + + ret_clusters[idx] = cluster; + ret_maps[idx++] = clusters.get_virgin_map(cluster); + } + return idx; +} + +// The maximum number of clusters of a seed is number of active diversity +// blocks it cover, assuming each diversity block can create one cluster, +// including primary cluster. +size_t aflrun_max_clusters(u32 seed) +{ + auto it = div_blocks->seed_blocks.find(seed); + return 1 + + (it == div_blocks->seed_blocks.end() ? 0 : it->second.size()); +} + +// Basically same as above, except div blocks are fetched from `div_blocks` +size_t aflrun_get_seed_virgins(u32 seed, u8** ret_maps, size_t* ret_clusters) +{ + if (config.no_diversity) + return 0; + auto it = div_blocks->seed_blocks.find(seed); + if (it == div_blocks->seed_blocks.end()) + return 0; + bo::dynamic_bitset<> visited_clusters(clusters.size() + it->second.size()); + visited_clusters[0] = true; // always skip primary cluster + + size_t idx = 0; + for (auto t : it->second) + { + size_t cluster = clusters.get_cluster(t); + if (visited_clusters[cluster]) + continue; + visited_clusters[cluster] = true; + + ret_clusters[idx] = cluster; + ret_maps[idx++] = clusters.get_virgin_map(cluster); + } + return idx; +} + +size_t aflrun_get_seed_tops(u32 seed, void*** ret_tops) +{ + if (config.no_diversity) + return 0; + auto it = div_blocks->seed_blocks.find(seed); + if (it == div_blocks->seed_blocks.end()) + return 0; + bo::dynamic_bitset<> visited_clusters(clusters.size() + it->second.size()); + visited_clusters[0] = true; // always skip primary cluster + + size_t idx = 0; + for (auto t : it->second) + { + size_t cluster = clusters.get_cluster(t); + if (visited_clusters[cluster]) + continue; + visited_clusters[cluster] = true; + + ret_tops[idx++] = clusters.get_top_rated(cluster); + } + return idx; +} + +size_t aflrun_get_num_clusters(void) +{ + size_t size = clusters.size(); + size_t ret = 0; + for (size_t i = 0; i < size; ++i) + { + if (clusters.get_top_rated(i)) ++ret; + } + return ret; +} + +size_t aflrun_get_all_tops(void*** ret_tops, u8 mode) +{ + if (config.no_diversity) + return 0; + return clusters.get_all_tops(ret_tops, mode); +} + +void aflrun_set_num_active_seeds(u32 n) +{ + num_active_seeds = n; +} + +void discover_word_mul(u8 *new_bits, + u64 *current, u64* const *virgins, size_t num, size_t idx, u8 modify) +{ + u64 or_all = 0; + unique_ptr<vector<u64>> and_bit_seq(nullptr); + + for (size_t i = 0; i < num; ++i) + { + u64* virgin = virgins[i] + idx; + + u64 tmp = *current & *virgin; + + if (and_bit_seq != nullptr) + and_bit_seq->push_back(tmp); + + if (tmp) + { + or_all |= tmp; + + // For the first time we touched a virgin map, + // we create the sequence to store all `*current & *virgin` values. + // This is a lazy approach so that we don't create the sequence + // for most zero sequences. + if (and_bit_seq == nullptr) + { + and_bit_seq = make_unique<vector<u64>>(); + and_bit_seq->reserve(num); + // Since this is the first time we touch virgin bits, + // all previous `*current & *virgin` values are zeros. + for (size_t j = 0; j < i; ++j) + and_bit_seq->push_back(0); + and_bit_seq->push_back(tmp); + } + + u8* ret = new_bits + i; + if (likely(*ret < 2)) + { + u8 *cur = (u8 *)current; + u8 *vir = (u8 *)virgin; + + if ((cur[0] && vir[0] == 0xff) || (cur[1] && vir[1] == 0xff) || + (cur[2] && vir[2] == 0xff) || (cur[3] && vir[3] == 0xff) || + (cur[4] && vir[4] == 0xff) || (cur[5] && vir[5] == 0xff) || + (cur[6] && vir[6] == 0xff) || (cur[7] && vir[7] == 0xff)) + *ret = 2; + else + *ret = 1; + } + if (modify) + *virgin &= ~*current; + } + } + + if (modify && or_all != 0) + { + clusters.add_bit_seq(or_all, std::move(and_bit_seq)); + } +} + +void aflrun_commit_bit_seqs(const size_t* cs, size_t num) +{ + clusters.commit_bit_seqs(cs, num); +} |