about summary refs log tree commit diff
path: root/src/aflrun.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/aflrun.cpp')
-rw-r--r--src/aflrun.cpp4039
1 files changed, 4039 insertions, 0 deletions
diff --git a/src/aflrun.cpp b/src/aflrun.cpp
new file mode 100644
index 00000000..fb94cb16
--- /dev/null
+++ b/src/aflrun.cpp
@@ -0,0 +1,4039 @@
+#include "aflrun.h"
+
+#include <boost/algorithm/string.hpp>
+#include <boost/dynamic_bitset.hpp>
+#include <boost/functional/hash.hpp>
+#include <boost/make_shared.hpp>
+namespace bo = boost;
+
+#include <robin_hood.h>
+namespace rh = robin_hood;
+
+#include <algorithm>
+#include <cassert>
+#include <cmath>
+#include <cstring>
+#include <fstream>
+#include <functional>
+#include <iostream>
+#include <memory>
+#include <numeric>
+#include <queue>
+#include <random>
+#include <stack>
+#include <string>
+#include <tuple>
+#include <vector>
+
+namespace { struct Fringe; struct SeedFringes; struct ClusterPair; }
+template<> struct std::hash<Fringe>
+{
+	std::size_t operator()(const Fringe&) const noexcept;
+};
+template<> struct std::hash<SeedFringes>
+{
+	std::size_t operator()(const SeedFringes&) const noexcept;
+};
+template<> struct std::hash<std::pair<reach_t, reach_t>>
+{
+	std::size_t operator()(const std::pair<reach_t, reach_t>&) const noexcept;
+};
+template<> struct std::hash<ClusterPair>
+{
+	std::size_t operator()(const ClusterPair&) const noexcept;
+};
+
+using namespace std;
+
+/* ----- Global data structures for AFLRUN ----- */
+namespace
+{
+
+struct AFLRunUpdateTime
+{
+	/* Record the time of last update of our maintained information */
+	u64 last_reachable, last_fringe,
+		last_pro_fringe, last_target;
+	u64 last_ctx_reachable, last_ctx_fringe,
+		last_ctx_pro_fringe, last_ctx_target;
+
+	AFLRunUpdateTime() :
+		last_reachable(0), last_fringe(0),
+		last_pro_fringe(0), last_target(0),
+		last_ctx_reachable(0), last_ctx_fringe(0),
+		last_ctx_pro_fringe(0), last_ctx_target(0) {}
+};
+
+AFLRunUpdateTime update_time;
+
+struct AFLRunConfig
+{
+	bool slow_ctx_bfs;
+	bool check_at_begin, log_at_begin;
+	u64 log_check_interval;
+	double cycle_energy; int max_cycle_count;
+	bool check_fringe;
+	double supp_cnt_thr; double conf_thr; bool count_seed;
+	double trim_thr; double linear_cycle_energy;
+	double exp_ratio; bool favor_high_cov;
+	bool disable_mode[4]; u8 reset_level; bool reset_target;
+	bool no_diversity; bool uni_whole_cycle; bool show_all_seeds;
+	double init_cov_quant; double col_weight_k;
+	u8 div_level; u32 div_seed_thr; bool trim_col; u8 init_cov_reset;
+	bool seed_based_energy; bool assign_ctx;
+	bool unite_assign; double unite_ratio[4]; bool single_supp_thr;
+	double dist_k; double queue_quant_thr; u32 min_num_exec;
+	bool uniform_targets; bool extra_cov; bool no_critical;
+	/*
+	This callback function takes in information about seeds and fringes,
+	and allocate given `total_energy` to `ret` array by adding to it.
+	In other word, increase of sum of `ret` array should equal to `total_energy`.
+	*/
+
+	explicit AFLRunConfig() : slow_ctx_bfs(false),
+	check_at_begin(false), log_at_begin(false),
+	log_check_interval(36000),
+	cycle_energy(60 * 10), max_cycle_count(32), check_fringe(false),
+	supp_cnt_thr(100), conf_thr(0.9), count_seed(true), trim_thr(1),
+	linear_cycle_energy(0), exp_ratio(1), favor_high_cov(false),
+	disable_mode{false, false, false, false}, reset_level(1),
+	reset_target(true), no_diversity(false), uni_whole_cycle(false),
+	show_all_seeds(false), init_cov_quant(10 * 60 * 10),
+	col_weight_k(1.0), div_level(1), div_seed_thr(100), trim_col(true),
+	init_cov_reset(0), seed_based_energy(true), assign_ctx(false),
+	unite_assign(true), unite_ratio{1, 1, 1, 3}, single_supp_thr(false),
+	dist_k(1), queue_quant_thr(0), min_num_exec(1), uniform_targets(false),
+	extra_cov(false), no_critical(false) {}
+
+	static const rh::unordered_map<string,
+		function<void(AFLRunConfig*, const string&)>> loaders;
+
+	void load(const string& cmd)
+	{
+		if (cmd.empty())
+			return;
+		size_t idx = cmd.find('=');
+		if (idx == string::npos)
+			throw string("Format of config must be 'key=value'");
+		auto key = cmd.substr(0, idx);
+		auto callback = loaders.find(key);
+		if (callback == loaders.end())
+			throw string("No such option: " + key);
+		callback->second(this, cmd.substr(idx + 1));
+	}
+	void check() const
+	{
+		if (!check_fringe && check_at_begin)
+			throw string("If you want to check at beginning, "
+				"please enable check_fringe.");
+		if (no_critical && !unite_assign)
+			throw string("For no critical block ablation study, "
+				"please enable unite_assign.");
+	}
+private:
+	static void check_digit(const string& val, string name)
+	{
+		if (val.empty())
+			throw string("'"+name+"' must be digit");
+		for (char c : val)
+		{
+			if (!isdigit(c))
+				throw string("'"+name+"' must be digit");
+		}
+	}
+};
+
+const rh::unordered_map<string, function<void(AFLRunConfig*, const string&)>>
+AFLRunConfig::loaders(
+{
+	#define BOOL_AFLRUN_ARG(name) \
+		if (val == "1") \
+			config->name = true; \
+		else if (val == "0") \
+			config->name = false; \
+		else \
+			throw string("Invalid value '"+val+"' for '"#name"'");
+
+	{"slow_ctx_bfs", [](AFLRunConfig* config, const string& val)
+	{
+		BOOL_AFLRUN_ARG(slow_ctx_bfs)
+	}},
+	{"check_at_begin", [](AFLRunConfig* config, const string& val)
+	{
+		BOOL_AFLRUN_ARG(check_at_begin)
+	}},
+	{"log_at_begin", [](AFLRunConfig* config, const string& val)
+	{
+		BOOL_AFLRUN_ARG(log_at_begin)
+	}},
+	{"log_check_interval", [](AFLRunConfig* config, const string& val)
+	{
+		check_digit(val, "log_check_interval");
+		config->log_check_interval = stoull(val);
+	}},
+	{"count_seed", [](AFLRunConfig* config, const string& val)
+	{
+		BOOL_AFLRUN_ARG(count_seed);
+	}},
+	{"cycle_energy", [](AFLRunConfig* config, const string& val)
+	{
+		config->cycle_energy = stod(val);
+		if (isnan(config->cycle_energy) || isinf(config->cycle_energy) ||
+			config->cycle_energy <= 0)
+			throw string("Invalid 'cycle_energy'");
+	}},
+	{"max_cycle_count", [](AFLRunConfig* config, const string& val)
+	{
+		check_digit(val, "max_cycle_count");
+		config->max_cycle_count = stoi(val);
+	}},
+	{"check_fringe", [](AFLRunConfig* config, const string& val)
+	{
+		BOOL_AFLRUN_ARG(check_fringe)
+	}},
+	{"supp_cnt_thr", [](AFLRunConfig* config, const string& val)
+	{ // To disable target diversity, set "supp_cnt_thr=0:conf_thr=0"
+		config->supp_cnt_thr = stod(val);
+		if (isnan(config->supp_cnt_thr) || isinf(config->supp_cnt_thr) ||
+			config->supp_cnt_thr < 0)
+			throw string("Invalid 'supp_cnt_thr'");
+	}},
+	{"conf_thr", [](AFLRunConfig* config, const string& val)
+	{
+		if (val == "inf")
+		{ // For infinite threshold, we don't cluster anything
+			config->conf_thr = numeric_limits<double>::infinity();
+			return;
+		}
+		config->conf_thr = stod(val);
+		if (isnan(config->conf_thr) ||
+			config->conf_thr < 0 || config->conf_thr > 1)
+			throw string("Invalid 'conf_thr'");
+	}},
+	{"dist_k", [](AFLRunConfig* config, const string& val)
+	{
+		if (val == "inf")
+		{ // If `k` is infinity, we distribute weight uniformly
+			config->dist_k = numeric_limits<double>::infinity();
+			return;
+		}
+		config->dist_k = stod(val);
+		if (isnan(config->dist_k) || config->dist_k <= 0)
+			throw string("Invalid 'dist_k'");
+	}},
+	{"trim_thr", [](AFLRunConfig* config, const string& val)
+	{
+		if (val == "inf")
+		{ // For infinite threshold, we don't trim any seed.
+			config->trim_thr = numeric_limits<double>::infinity();
+			return;
+		}
+		config->trim_thr = stod(val);
+		// For 0 threshold, we always trim every seed.
+		if (isnan(config->trim_thr) || config->trim_thr < 0)
+			throw string("Invalid 'trim_thr'");
+	}},
+	{"linear_cycle_energy", [](AFLRunConfig* config, const string& val)
+	{
+		// If this value is non-zero, we will have cycle energy to be:
+		// max(cycle_energy, linear_cycle_energy * num_active_seeds)
+		config->linear_cycle_energy = stod(val);
+		if (isnan(config->linear_cycle_energy) ||
+			isinf(config->linear_cycle_energy) ||
+			config->linear_cycle_energy < 0)
+			throw string("Invalid 'linear_cycle_energy'");
+	}},
+	{"exp_ratio", [](AFLRunConfig* config, const string& val)
+	{
+		// Ratio of desired exploitation / exploration:
+		// if >1, more energy will be allocated to exploitation;
+		// if <1, more energy will be allocated to exploration;
+		// if =1, exploitation and exploration are equal;
+		// if =inf, it almost only does exploitation;
+		// if =0, it amlmost only does exploration.
+		config->exp_ratio = stod(val);
+		if (isnan(config->exp_ratio) || config->exp_ratio < 0)
+			throw string("Invalid 'exp_ratio'");
+	}},
+	{"favor_high_cov", [](AFLRunConfig* config, const string& val)
+	{
+		BOOL_AFLRUN_ARG(favor_high_cov)
+	}},
+	{"disable_mode", [](AFLRunConfig* config, const string& val)
+	{ // Same as order in enum Mode:
+		// 0 for cov; 1 for ctx fringe; 2 for fringe; 3 for target
+		unsigned long m = stoul(val);
+		if (m > 3)
+			throw string("Invalid 'disable_mode'");
+		config->disable_mode[m] = true;
+	}},
+	{"reset_level", [](AFLRunConfig* config, const string& val)
+	{
+		unsigned long l = stoul(val);
+		if (l > 1) // TODO: level=2, reset when new ctx fringe is reached
+			throw string("Invalid 'reset_level'");
+		config->reset_level = static_cast<u8>(l);
+	}},
+	{"reset_target", [](AFLRunConfig* config, const string& val)
+	{
+		BOOL_AFLRUN_ARG(reset_target)
+	}},
+	{"no_diversity", [](AFLRunConfig* config, const string& val)
+	{
+		BOOL_AFLRUN_ARG(no_diversity)
+	}},
+	{"uni_whole_cycle", [](AFLRunConfig* config, const string& val)
+	{ // If set, whole_count will not increase, use cautiously because
+		// this will make some AFL stuff based on cycle count not work.
+		BOOL_AFLRUN_ARG(uni_whole_cycle)
+	}},
+	{"show_all_seeds", [](AFLRunConfig* config, const string& val)
+	{
+		BOOL_AFLRUN_ARG(show_all_seeds)
+	}},
+	{"init_cov_quant", [](AFLRunConfig* config, const string& val)
+	{
+		config->init_cov_quant = stod(val);
+		if (isnan(config->init_cov_quant) || config->init_cov_quant < 0)
+			throw string("Invalid 'init_cov_quant'");
+	}},
+	{"col_weight_k", [](AFLRunConfig* config, const string& val)
+	{
+		config->col_weight_k = stod(val);
+		if (isnan(config->col_weight_k) || isinf(config->col_weight_k) ||
+			config->col_weight_k < 0)
+			throw string("Invalid 'col_weight_k'");
+	}},
+	{"div_level", [](AFLRunConfig* config, const string& val)
+	{ // 0: only target diversity; 1: +pro fringe diversity; 2. +fringe diversity
+		config->div_level = stoi(val);
+		if (config->div_level > 1)
+			throw string("Invalid 'div_level'");
+		/* TODO: diversity for context-sensitive fringe
+		Current implementation is problematic. Instead, we should use a switch
+		bitmap with context for these context sensitive fringe, which is leaved
+		as future work.
+		*/
+	}},
+	{"div_seed_thr", [](AFLRunConfig* config, const string& val)
+	{
+		if (val == "inf")
+		{
+			config->div_seed_thr = numeric_limits<u32>::max();
+			return;
+		}
+		config->div_seed_thr = stoi(val);
+		if (config->div_seed_thr < 2)
+			throw string("Invalid 'div_seed_thr'");
+	}},
+	{"trim_col", [](AFLRunConfig* config, const string& val)
+	{
+		BOOL_AFLRUN_ARG(trim_col)
+	}},
+	{"init_cov_reset", [](AFLRunConfig* config, const string& val)
+	{
+		// 0: no reset;
+		// 1: reset at update on reachable;
+		// 2: reset at update on context reachable;
+		// 3: reset at new seed covering fringe.
+		config->init_cov_reset = stoi(val);
+		if (config->init_cov_reset > 2)
+			throw string("Invalid 'init_cov_reset'");
+	}},
+	{"seed_based_energy", [](AFLRunConfig* config, const string& val)
+	{ // Use new energy assignment algorithm!
+		BOOL_AFLRUN_ARG(seed_based_energy)
+	}},
+	{"assign_ctx", [](AFLRunConfig* config, const string& val)
+	{ // If we should assign uniformly among different contexts in new allocation
+		BOOL_AFLRUN_ARG(assign_ctx)
+	}},
+	{"unite_assign", [](AFLRunConfig* config, const string& val)
+	{ // If true, we don't use state machine, instead we do everything together
+		BOOL_AFLRUN_ARG(unite_assign)
+	}},
+	{"unite_ratio", [](AFLRunConfig* config, const string& val)
+	{ // Format: "cov,ctx,pro,tgt"
+		vector<string> ratios;
+		bo::split(ratios, val, [](char c) -> bool { return c == ','; });
+		if (ratios.size() != 4)
+			throw string("Invalid 'unite_ratio'");
+		for (size_t i = 0; i < 4; ++i)
+		{
+			double r = stod(ratios[i]);
+			if (isnan(r) || isinf(r) || r < 0)
+				throw string("Invalid 'unite_ratio'");
+			config->unite_ratio[i] = r;
+		}
+	}},
+	{"single_supp_thr", [](AFLRunConfig* config, const string& val)
+	{ // If true, we only use LHS as support count threshold
+		BOOL_AFLRUN_ARG(single_supp_thr)
+	}},
+	{"queue_quant_thr", [](AFLRunConfig* config, const string& val)
+	{
+		config->queue_quant_thr = stod(val);
+		if (config->queue_quant_thr < 0 || isnan(config->queue_quant_thr) ||
+			isinf(config->queue_quant_thr))
+			throw string("Invalid 'queue_quant_thr'");
+	}},
+	{"min_num_exec", [](AFLRunConfig* config, const string& val)
+	{
+		config->min_num_exec = stoul(val);
+		if (config->min_num_exec < 1)
+			throw string("Invalid 'min_num_exec'");
+	}},
+	{"uniform_targets", [](AFLRunConfig* config, const string& val)
+	{
+		BOOL_AFLRUN_ARG(uniform_targets)
+	}},
+	{"extra_cov", [](AFLRunConfig* config, const string& val)
+	{
+		BOOL_AFLRUN_ARG(extra_cov)
+	}},
+	{"no_critical", [](AFLRunConfig* config, const string& val)
+	{
+		BOOL_AFLRUN_ARG(no_critical)
+	}},
+	#undef BOOL_AFLRUN_ARG
+});
+
+AFLRunConfig config;
+
+struct AFLRunGlobals
+{
+	reach_t num_targets, num_reachables;
+	reach_t num_ftargets, num_freachables;
+	u8* virgin_reachables;
+	u8* virgin_freachables;
+	u8* virgin_ctx;
+	char** reachable_names;
+	reach_t** reachable_to_targets;
+	reach_t* reachable_to_size;
+	reach_t num_reached, num_freached; /* Number of non-virgin */
+	reach_t num_reached_targets, num_freached_targets;
+	string out_dir;
+	const double* target_weights;
+	u32 map_size;
+	void* afl;
+	u64 init_time, cycle_time;
+
+	explicit AFLRunGlobals(reach_t num_targets, reach_t num_reachables,
+		reach_t num_ftargets, reach_t num_freachables,
+		u8* virgin_reachables, u8* virgin_freachables, u8* virgin_ctx,
+		char** reachable_names, reach_t** reachable_to_targets,
+		reach_t* reachable_to_size, const char* out_dir,
+		const double* target_weights, u32 map_size, void* afl,
+		u64 init_time, u64 cycle_time)
+	: num_targets(num_targets), num_reachables(num_reachables),
+	num_ftargets(num_ftargets), num_freachables(num_freachables),
+	virgin_reachables(virgin_reachables), virgin_freachables(virgin_freachables),
+	virgin_ctx(virgin_ctx), reachable_names(reachable_names),
+	reachable_to_targets(reachable_to_targets),
+	reachable_to_size(reachable_to_size),
+	num_reached(0), num_freached(0), num_reached_targets(0),
+	num_freached_targets(0), out_dir(out_dir),
+	target_weights(target_weights), map_size(map_size), afl(afl),
+	init_time(init_time), cycle_time(cycle_time)
+	{
+		if (this->out_dir.back() != '/')
+			this->out_dir.push_back('/');
+	}
+
+	inline double get_tw(reach_t t) const
+	{
+		return config.uniform_targets ? 1 : target_weights[t];
+	}
+};
+
+unique_ptr<AFLRunGlobals> g = nullptr;
+
+struct AFLRunGraph
+{
+	vector<rh::unordered_flat_set<reach_t>> src_to_dst;
+	vector<vector<reach_t>> dst_to_src;
+	rh::unordered_map<pair<reach_t, reach_t>, vector<u32>> call_hashes;
+	explicit AFLRunGraph(reach_t num)
+		: src_to_dst(num), dst_to_src(num) {}
+};
+
+struct BasicBlockGraph : public AFLRunGraph
+{
+	explicit BasicBlockGraph(const char* bb_edges, reach_t num_reachables)
+		: AFLRunGraph(num_reachables)
+	{
+		ifstream in(bb_edges); assert(in.is_open());
+		string line; char* endptr;
+		while (getline(in, line))
+		{
+			const char* l = line.c_str();
+			reach_t src = strtoul(l, &endptr, 10); assert(*endptr == ',');
+			reach_t dst = strtoul(endptr+1, &endptr, 10); assert(*endptr == 0);
+			assert(src < num_reachables && dst < num_reachables);
+			src_to_dst[src].insert(dst);
+			dst_to_src[dst].push_back(src);
+		}
+		in.close();
+	}
+};
+
+struct Fringe
+{
+	reach_t block;
+	u32 context;
+	explicit Fringe(reach_t block, u32 context) :
+		block(block), context(context) {}
+	bool operator==(const Fringe& rhs) const
+	{
+		return this->block == rhs.block && this->context == rhs.context;
+	}
+};
+
+class TargetGrouper;
+
+struct SeedFringes
+{
+	bo::shared_ptr<u8[]> bitmap;
+	size_t bitmap_size;
+	size_t num_ones;
+	explicit SeedFringes(size_t num_fringes)
+		: bitmap_size((num_fringes + 7) / 8), num_ones(0)
+	{
+		bitmap = bo::make_shared<u8[]>(bitmap_size);
+		fill(bitmap.get(), bitmap.get() + bitmap_size, 0);
+	}
+	bool operator==(const SeedFringes& rhs) const
+	{
+		size_t size = this->bitmap_size;
+		const u8* ptr = this->bitmap.get();
+		return size == rhs.bitmap_size &&
+			equal(ptr, ptr + size, rhs.bitmap.get());
+	}
+	inline void set(size_t idx)
+	{
+		if (!get(idx)) ++num_ones;
+		bitmap[idx / 8] |= 1 << (idx % 8);
+	}
+	inline bool get(size_t idx)
+	{
+		return ((bitmap[idx / 8]) & (1 << (idx % 8))) != 0;
+	}
+};
+
+template <typename F, typename D>
+struct FringeBlocks
+{
+	struct Info
+	{
+		rh::unordered_set<u32> seeds; // Set of all seeds that cover the fringe
+		rh::unordered_map<reach_t, rh::unordered_set<D>> decisives;
+		// decisives for each target of this fringe
+		double fuzzed_quant;
+
+		// We can only access these 2 variables when `has_top_rated == true`
+		u64 top_rated_factor;
+		u32 top_rated_seed; bool has_top_rated;
+		Info() : fuzzed_quant(0), has_top_rated(false) {}
+	};
+
+	vector<rh::unordered_set<F>> target_to_fringes;
+	// maps each target to a set of fringe blocks
+	rh::unordered_map<reach_t, rh::unordered_set<F>> block_to_fringes;
+	// maps each block of fringe to fringes with that block
+
+	rh::unordered_map<F, Info> fringes;
+	// Maps each fringe block to set of targets that contain such block as fringe,
+	// this information should be consistent with `target_to_fringes`;
+	// for each target a set of neighbor virgin blocks are recorded,
+	// which are the blocks that make this fringe block a fringe.
+	// Note that when set of neighbors are emptied, we need to delete target;
+	// similarly when set of targets are emptied, we need to delete fringe.
+
+	rh::unordered_map<D, rh::unordered_set<F>> decisive_to_fringes;
+	// Map decisive blocks to corresponding fringes,
+	// works for both normal and progressive fringes.
+
+	rh::unordered_map<F, size_t> freq_idx;
+	vector<pair<size_t, u64>> freq; // frequency for each current fringe
+	// first element is index to bitmap and second is frequency
+	rh::unordered_map<u32, rh::unordered_set<F>> seed_fringes;
+	// map seed to all fringes covered by it, must be consistent as above
+
+	rh::unordered_set<u32> favored_seeds;
+
+	explicit FringeBlocks(reach_t num_targets) : target_to_fringes(num_targets) {}
+
+	void add_fringe(
+		const F& f, reach_t t, rh::unordered_set<D>&& decisives);
+	bool del_fringe(const F& f, const vector<reach_t>& ts);
+	bool del_fringe(const F& f);
+	bool fringe_coverage(const u8* bitmap, u32 seed,
+		const rh::unordered_set<Fringe>* new_criticals = nullptr,
+		const rh::unordered_set<reach_t>* new_bits_targets = nullptr);
+	void inc_freq(const u8* bitmap);
+	void update_fuzzed_quant(u32 seed, double fuzzed_quant);
+	void update_fringe_score(u32 seed);
+	u32 cull_queue(u32* seeds, u32 num);
+	rh::unordered_set<u32> select_favored_seeds() const;
+	void set_favored_seeds(const u32* seeds, u32 num);
+
+	unique_ptr<TargetGrouper> grouper;
+	void group();
+	void assign_energy(u32 num_seeds, const u32* seeds, double* ret) const;
+
+	u8 try_add_fringe(const Fringe& cand);
+	vector<reach_t> try_del_fringe(const Fringe& cand);
+
+	void remove_seed(u32 seed);
+
+	friend void assign_energy_unite(u32 num_seeds, const u32* ss, double* ret);
+
+private:
+	struct FringeInfo
+	{
+		double quant;
+		rh::unordered_set<u32> seeds;
+		size_t idx;
+		FringeInfo() : quant(0), idx(0) {}
+	};
+
+	pair<rh::unordered_map<u32, double>, double> assign_seed_no_ctx(
+		const rh::unordered_map<reach_t, double>& block_weight,
+		const rh::unordered_map<u32, u32>& seed_to_idx) const;
+	pair<rh::unordered_map<u32, double>, double> assign_seed_ctx(
+		const rh::unordered_map<reach_t, double>& block_weight,
+		const rh::unordered_map<u32, u32>& seed_to_idx) const;
+	inline pair<rh::unordered_map<u32, double>, double> assign_seed(
+		const rh::unordered_map<reach_t, double>& block_weight,
+		const rh::unordered_map<u32, u32>& seed_to_idx) const;
+	void assign_seeds_covered(
+		const rh::unordered_set<u32>& seeds, double total_weight,
+		const rh::unordered_map<u32, u32>& seed_to_idx,
+		rh::unordered_map<u32, double>& seed_weight, double& all_sum) const;
+	void record_new_cvx_opt(
+		const vector<pair<reach_t, rh::unordered_set<reach_t>>>& target_fringes,
+		const rh::unordered_map<reach_t, double>& block_weight,
+		const rh::unordered_map<u32, double>& seed_ratio,
+		const vector<pair<u32, double>>& sol) const;
+
+	void remove_freq(const F& f);
+	bool remove_block(const F& f);
+	pair<unique_ptr<double[]>, unique_ptr<double[]>> allocate_ratio(
+		const rh::unordered_map<reach_t, FringeInfo>& fringe_info,
+		const vector<reach_t>& vec_fringes) const;
+};
+
+unique_ptr<FringeBlocks<Fringe, Fringe>> path_fringes = nullptr;
+unique_ptr<FringeBlocks<Fringe, reach_t>> path_pro_fringes = nullptr;
+unique_ptr<FringeBlocks<Fringe, u8/*not used*/>> reached_targets = nullptr;
+
+// Convert block index into distance for each target
+vector<rh::unordered_map<reach_t, double>> bb_to_dists;
+
+// Given set of blocks, we distribute target weight `total` to basic blocks,
+// using distance to target `t`, returned by adding each weight value to `dst`.
+void dist_block_ratio(
+	const rh::unordered_set<reach_t>& blocks, reach_t t, double total,
+	rh::unordered_map<reach_t, double>& dst)
+{
+	if (isinf(config.dist_k))
+	{ // If `k` is infinity, we just uniformly distribute.
+		for (reach_t b : blocks)
+		{
+			dst[b] += total / blocks.size();
+		}
+		return;
+	}
+	vector<pair<reach_t, double>> block_ratios; double sum = 0;
+	for (reach_t b : blocks)
+	{
+		double w = 1.0 / (bb_to_dists[b].find(t)->second + config.dist_k);
+		sum += w;
+		block_ratios.emplace_back(b, w);
+	}
+	for (const auto& p : block_ratios)
+	{
+		dst[p.first] += total * p.second / sum;
+	}
+}
+
+class AFLRunState
+{
+public:
+	enum Mode : u8
+	{
+		kCoverage = 0, kFringe, kProFringe, kTarget, kUnite
+	};
+private:
+	Mode mode;
+	bool reset_exploit, init_cov;
+	int cycle_count;
+	u64 whole_count;
+	double cov_quant, exploration_quant, exploitation_quant;
+	void reset(Mode new_mode)
+	{
+		if (mode == kUnite)
+		{ // Unite mode always resets to it self when there is any fringe update
+			cycle_count = -1;
+			assert(cov_quant == 0);
+			return;
+		}
+		// we don't want to reset to a more explorative state;
+		// we also don't want to reset to exploration mode in exploitation mode,
+		// exploitation goes back to exploration only if certain amount of energy
+		// is totally executed. e.i. see `cycle_end` when `mode == kTarget`.
+		if (new_mode < mode)
+			return;
+		mode = new_mode;
+		// set to -1 because we don't want to count current cycle
+		cycle_count = -1;
+		cov_quant = 0;
+	}
+	// 4. Solve favor high column(e.i. linear to number of seeds)
+	// 5. Better Splice
+	// 6. Better design for fringe? Keep some deleted fringe. (Might take time)
+
+public:
+	AFLRunState() : mode(kCoverage), reset_exploit(false), init_cov(true),
+		cycle_count(-1), whole_count(0), cov_quant(0),
+		exploration_quant(0), exploitation_quant(0) {}
+	// Initialize cycle_count to -1 since cycle_end is called at start of cycle
+
+	inline u64 get_whole_count() const
+	{
+		return whole_count;
+	}
+
+	bool cycle_end() // Return true if whole_count has increased
+	{
+		// For coverage mode,
+		// we look quantum being executed instead of number of cycles
+		if (init_cov)
+		{
+			assert(mode == kCoverage);
+			++cycle_count;
+			if (cov_quant >= config.init_cov_quant)
+			{
+				// After initial coverage fuzzing,
+				// we switch to either state machine or unite assignment.
+				if (config.unite_assign)
+					mode = kUnite; // Start unite energy assignment mode
+				else
+					mode = kProFringe; // Start directed fuzzing
+				cov_quant = 0; cycle_count = 0;
+				init_cov = false;
+			}
+			return false;
+		}
+		if (mode == kUnite)
+		{
+			++cycle_count; // We never switch as long as we enter unite state
+			return false; // TODO: whole_count for unite mode?
+		}
+		if (mode == kCoverage)
+		{
+			// we still need to count cycle to precent cycle to be always -1
+			++cycle_count;
+			if (cov_quant >= config.max_cycle_count * config.cycle_energy ||
+				config.disable_mode[kCoverage])
+			{ // When we cannot find anything new, start exploitation
+				mode = kTarget;
+				cov_quant = 0;
+				cycle_count = 0;
+			}
+			return false;
+		}
+		assert(cov_quant == 0); // We should not have cov_quant in non-cov mode
+		if (mode == kTarget)
+		{
+			bool ret = false;
+			++cycle_count;
+			// If we have already done more exploitation than exploration,
+			// switch back to exploration again.
+			if (exploitation_quant >= exploration_quant * config.exp_ratio ||
+				reached_targets->fringes.empty() || // If no reached target, skip
+				config.disable_mode[kTarget])
+			{
+				mode = kProFringe;
+				cycle_count = 0;
+				if (reset_exploit || config.uni_whole_cycle)
+				{
+					reset_exploit = false;
+				}
+				else
+				{
+					++whole_count; // Only inc when exploitation is not resetted
+					ret = true;
+				}
+			}
+			return ret;
+		}
+		assert(cycle_count < config.max_cycle_count);
+		if (mode == kProFringe)
+		{
+			if (++cycle_count == config.max_cycle_count ||
+				path_pro_fringes->fringes.empty() || // If no pro fringe, skip
+				config.disable_mode[kProFringe])
+			{
+				mode = kFringe;
+				cycle_count = 0;
+			}
+		}
+		else
+		{
+			assert(mode == kFringe);
+			if (++cycle_count == config.max_cycle_count ||
+				path_fringes->fringes.empty() || // If no fringe, skip
+				config.disable_mode[kFringe])
+			{
+				mode = kCoverage;
+				cycle_count = 0;
+			}
+		}
+		return false;
+	}
+
+	void reset(u8 r)
+	{
+		if (init_cov)
+			return; // Don't reset at initial coverage based stage
+		switch (r)
+		{
+			case 2:
+				return reset(kProFringe);
+			case 1:
+				return reset(kFringe);
+			case 0:
+				return reset(kCoverage);
+			default: abort();
+		}
+	}
+
+	// Reset to exploitation state directly
+	void exploit()
+	{
+		if (mode == kUnite)
+		{ // Unite mode always resets to it self when there is any target update
+			cycle_count = -1;
+			assert(cov_quant == 0);
+			return;
+		}
+		// If already in exploitation, we don't reset itself,
+		// this is different from situation in explorative mode.
+		if (init_cov || mode == kTarget)
+			return;
+		reset_exploit = true;
+		mode = kTarget;
+		cycle_count = -1;
+		cov_quant = 0;
+	}
+
+	void add_quant(double quant)
+	{
+		Mode m = get_mode();
+		// We don't need to use quant in unite mode
+		if (m == kUnite)
+			return;
+
+		if (m == kTarget)
+		{
+			exploitation_quant += quant;
+		}
+		else
+		{
+			exploration_quant += quant;
+			if (m == kCoverage)
+				cov_quant += quant;
+		}
+	}
+
+	inline Mode get_mode() const { return mode; }
+	inline bool is_reset() const { return cycle_count == -1; }
+	inline bool is_init_cov() const { return init_cov; }
+	inline void reset_cov_quant() { cov_quant = 0; }
+	inline bool is_end_cov() const
+	{
+		if (init_cov)
+			return cov_quant >= config.init_cov_quant;
+		if (mode == kCoverage)
+			return config.disable_mode[kCoverage] ||
+				cov_quant >= config.max_cycle_count * config.cycle_energy;
+		return false;
+	}
+	inline void get_counts(int& cycle, u32& cov) const
+	{
+		cycle = cycle_count;
+		cov = cov_quant;
+	}
+};
+
+AFLRunState state;
+
+template <typename F>
+inline size_t to_bitmap_idx(const F& f);
+
+template <>
+inline size_t to_bitmap_idx<Fringe>(const Fringe& f)
+{
+	return CTX_IDX(f.block, f.context);
+}
+
+template <typename F>
+inline F from_bitmap_idx(size_t idx);
+
+template <>
+inline Fringe from_bitmap_idx<Fringe>(size_t idx)
+{
+	return Fringe(idx / CTX_SIZE, idx % CTX_SIZE);
+}
+
+template <typename F>
+inline reach_t to_fringe_block(const F& f);
+
+template <>
+inline reach_t to_fringe_block<Fringe>(const Fringe& f)
+{
+	return f.block;
+}
+
+template <>
+inline reach_t to_fringe_block<reach_t>(const reach_t& f)
+{
+	return f;
+}
+
+// Add new fringe to the given target
+template <typename F, typename D>
+void FringeBlocks<F, D>::add_fringe(
+	const F& f, reach_t t, rh::unordered_set<D>&& decisives)
+{
+	target_to_fringes[t].insert(f);
+	block_to_fringes[to_fringe_block<F>(f)].insert(f);
+	for (const D& dec : decisives)
+		decisive_to_fringes[dec].insert(f);
+	auto p = fringes.emplace(f, Info());
+	p.first->second.decisives.emplace(t, std::move(decisives));
+	if (p.second)
+	{
+		freq_idx.emplace(f, freq.size());
+		freq.emplace_back(to_bitmap_idx<F>(f), 0);
+	}
+}
+
+// Return true if the block is removed
+template <typename F, typename D>
+bool FringeBlocks<F, D>::remove_block(const F& f)
+{
+	// Remove fringe from `block_to_fringes`
+	auto it2 = block_to_fringes.find(to_fringe_block<F>(f));
+	it2->second.erase(f);
+	if (it2->second.empty())
+	{
+		block_to_fringes.erase(it2);
+		return true;
+	}
+	return false;
+}
+
+// Remove the element in frequency array
+template <typename F, typename D>
+void FringeBlocks<F, D>::remove_freq(const F& f)
+{
+	auto i = freq_idx.find(f);
+	if (i != freq_idx.end())
+	{
+		assert(freq[i->second].first == to_bitmap_idx<F>(f));
+		assert(i->second < freq.size());
+		if (i->second + 1 != freq.size())
+		{
+			// Remove the fringe from `freq` array
+			freq[i->second] = freq.back();
+			freq.pop_back();
+
+			// Update index value in `freq_idx` map
+			size_t idx = freq[i->second].first;
+			freq_idx.find(from_bitmap_idx<F>(idx))->second = i->second;
+			freq_idx.erase(i);
+		}
+		else
+		{ // Special case: remove last element in `freq` array
+			freq.pop_back();
+			freq_idx.erase(i);
+		}
+	}
+}
+
+void try_disable_seed(u32 s)
+{
+	if (reached_targets->seed_fringes.count(s) == 0 &&
+		path_pro_fringes->seed_fringes.count(s) == 0 &&
+		path_fringes->seed_fringes.count(s) == 0)
+	{ // If the seed is not used by aflrun now, try to disable it
+		disable_aflrun_extra(g->afl, s);
+	}
+}
+
+// Remove the fringe in given set of targets, return true if `f.block` is removed
+template <typename F, typename D>
+bool FringeBlocks<F, D>::del_fringe(const F& f, const vector<reach_t>& ts)
+{
+	auto it = fringes.find(f);
+	assert(it != fringes.end());
+
+	// Remove the fringe in given set of targets
+	for (reach_t t : ts)
+	{
+		it->second.decisives.erase(t);
+		target_to_fringes[t].erase(f);
+	}
+
+	// If given fringe in all targets is removed, remove the fringe itself
+	if (it->second.decisives.empty())
+	{
+		auto seeds = std::move(it->second.seeds);
+		fringes.erase(it);
+		// Remove the all seeds reaching the deleted fringe
+		for (u32 seed : seeds)
+		{
+			auto it3 = seed_fringes.find(seed);
+			it3->second.erase(f);
+			if (it3->second.empty())
+			{
+				seed_fringes.erase(it3);
+				try_disable_seed(seed);
+			}
+		}
+		remove_freq(f);
+		return remove_block(f);
+	}
+	return false;
+}
+
+// Remove the fringe in all targets, return true if `f.block` is removed
+template <typename F, typename D>
+bool FringeBlocks<F, D>::del_fringe(const F& f)
+{
+	auto it = fringes.find(f);
+
+	for (const auto& td : it->second.decisives)
+	{
+		target_to_fringes[td.first].erase(f);
+	}
+	it->second.decisives.clear();
+
+	auto seeds = std::move(it->second.seeds);
+	fringes.erase(it);
+
+	for (u32 seed : seeds)
+	{
+		auto it3 = seed_fringes.find(seed);
+		it3->second.erase(f);
+		if (it3->second.empty())
+		{
+			seed_fringes.erase(it3);
+			try_disable_seed(seed);
+		}
+	}
+	remove_freq(f);
+	return remove_block(f);
+}
+
+template <typename F>
+inline void log_fringe(ostream& out, const F& f);
+
+// Given `trace_ctx` of a `seed`, check its coverage of fringe and add if necessary
+template <typename F, typename D>
+bool FringeBlocks<F, D>::fringe_coverage(const u8* bitmap, u32 seed,
+	const rh::unordered_set<Fringe>* new_criticals,
+	const rh::unordered_set<reach_t>* new_bits_targets)
+{
+	// fringe_coverage for each seed should only be called once
+	assert(seed_fringes.find(seed) == seed_fringes.end());
+	rh::unordered_set<F> sf;
+	for (auto& p : fringes)
+	{
+		const F& f = p.first;
+
+		// If new_criticals is NULL, we think no new critical is found;
+		// otherwise, we consider coverage only if `f` is new critical.
+		bool is_new_critical = new_criticals ?
+			(new_criticals->count(f) != 0) : false;
+		// If new_bits_targets is NULL, we consider coverage of every critical,
+		// so in other word, there is no seed isolation, used for non-extra seeds;
+		// otherwise, we consider coverage only if `f` is target with new bits.
+		bool is_new_bits_targets = new_bits_targets ?
+			(new_bits_targets->count(f.block) != 0) : true;
+
+		// We try coverage if at least one of them is true.
+		if ((is_new_critical || is_new_bits_targets) &&
+			IS_SET(bitmap, to_bitmap_idx<F>(f)))
+		{ // If covered, add the seed
+			p.second.seeds.insert(seed);
+			sf.insert(f);
+		}
+	}
+	if (!sf.empty())
+	{
+		ofstream out(g->out_dir + "seeds.txt", ios::app);
+		out << seed << " | ";
+		for (const auto& f : sf)
+		{
+			log_fringe<F>(out, f); out << ' ';
+		}
+		out << endl;
+		seed_fringes.emplace(seed, std::move(sf));
+		return true;
+	}
+	else
+	{
+		return false;
+	}
+}
+
+// Increase frequency of fringe according to given trace exerted by mutated input
+template <typename F, typename D>
+void FringeBlocks<F, D>::inc_freq(const u8* bitmap)
+{
+	for (auto& p : freq)
+	{
+		if (IS_SET(bitmap, p.first))
+		{
+			p.second++;
+		}
+	}
+}
+
+template <typename F, typename D>
+void FringeBlocks<F, D>::update_fuzzed_quant(u32 seed, double fuzzed_quant)
+{
+	// When fuzzing norm fringe, seed fuzzed can have no fringe in pro fringe.
+	auto it = seed_fringes.find(seed);
+	if (it == seed_fringes.end())
+		return;
+	const auto& fs = it->second;
+	for (const F& f : fs)
+	{ // For each of its fringe, add `fuzzed_quant`
+		fringes.find(f)->second.fuzzed_quant += fuzzed_quant;
+	}
+}
+
+template <typename F, typename D>
+void FringeBlocks<F, D>::update_fringe_score(u32 seed)
+{
+	// If seed does not touch any fringe, skip
+	auto it = seed_fringes.find(seed);
+	if (it == seed_fringes.end())
+		return;
+	u64 fav_factor = get_seed_fav_factor(g->afl, seed);
+	for (const F& f : it->second)
+	{
+		Info& info = fringes.find(f)->second;
+		if (info.has_top_rated && fav_factor > info.top_rated_factor)
+			continue;
+
+		// Update top-rated seed and factor when possible
+		assert(info.seeds.find(seed) != info.seeds.end());
+		info.top_rated_seed = seed;
+		info.top_rated_factor = fav_factor;
+		info.has_top_rated = true;
+	}
+}
+
+vector<double> seed_quant;
+
+random_device rd;
+mt19937 gen(rd());
+uniform_int_distribution<> distrib(0, 99);
+
+template <typename F, typename D>
+rh::unordered_set<u32> FringeBlocks<F, D>::select_favored_seeds() const
+{
+	// Seeds that are considered favored
+	rh::unordered_set<u32> favored;
+
+	// Record all visited fringes
+	rh::unordered_set<F> temp_v;
+
+	for (const auto& p : fringes)
+	{ // For each unvisited fringe, we get top rated seed, if any
+		if (p.second.has_top_rated && temp_v.find(p.first) == temp_v.end())
+		{
+			// The seed must be contained in initial seed set,
+			// because disabled seeds cannot be considered top-rated.
+			u32 seed = p.second.top_rated_seed;
+
+			// We insert all fringes the seed cover into visited set
+			const auto& fs = seed_fringes.find(seed)->second;
+			temp_v.insert(fs.begin(), fs.end());
+			assert(temp_v.find(p.first) != temp_v.end());
+
+			// Add seed to favored set
+			favored.insert(seed);
+		}
+	}
+
+	return favored;
+}
+
+template <typename F, typename D>
+void FringeBlocks<F, D>::set_favored_seeds(const u32* seeds, u32 num)
+{
+	auto favored = select_favored_seeds();
+	favored_seeds.clear();
+	for (u32 i = 0; i < num; ++i)
+	{
+		if (favored.count(seeds[i]) > 0 || get_seed_div_favored(g->afl, seeds[i]))
+			favored_seeds.insert(seeds[i]);
+	}
+}
+
+template <typename F, typename D>
+u32 FringeBlocks<F, D>::cull_queue(u32* seeds, u32 num)
+{
+	// Set containing original seeds
+	const rh::unordered_set<u32> seed_set(seeds, seeds + num);
+
+	auto favored = select_favored_seeds();
+	for (u32 seed : favored)
+		assert(seed_set.find(seed) != seed_set.end());
+
+	// Select seeds to fuzz in this cycle
+	u32 idx = 0;
+	favored_seeds.clear();
+	for (u32 seed : seed_set)
+	{
+		if (favored.find(seed) != favored.end() ||
+			get_seed_div_favored(g->afl, seed))
+			// `cull_queue_div` should be called first
+		{
+			seeds[idx++] = seed;
+			favored_seeds.insert(seed);
+		}
+		else if (aflrun_get_seed_quant(seed) > 0)
+		{ // If the unfavored seed is fuzzed before
+			if (distrib(gen) >= SKIP_NFAV_OLD_PROB)
+				seeds[idx++] = seed;
+		}
+		else
+		{
+			if (distrib(gen) >= SKIP_NFAV_NEW_PROB)
+				seeds[idx++] = seed;
+		}
+	}
+	return idx;
+}
+
+u32 cull_queue_unite(u32* seeds, u32 num)
+{
+	// Set containing original seeds
+	const rh::unordered_set<u32> seed_set(seeds, seeds + num);
+
+	u32 idx = 0;
+	for (u32 seed : seed_set)
+	{ // Similar to `cull_queue` above
+		if (path_fringes->favored_seeds.count(seed) > 0 ||
+			path_pro_fringes->favored_seeds.count(seed) > 0 ||
+			reached_targets->favored_seeds.count(seed) > 0 ||
+			get_seed_cov_favored(g->afl, seed) == 2)
+		{
+			seeds[idx++] = seed;
+		}
+		else if (aflrun_get_seed_quant(seed) > 0)
+		{
+			if (distrib(gen) >= SKIP_NFAV_OLD_PROB)
+				seeds[idx++] = seed;
+		}
+		else
+		{
+			if (distrib(gen) >= SKIP_NFAV_NEW_PROB)
+				seeds[idx++] = seed;
+		}
+	}
+
+	return idx;
+}
+
+template <typename T>
+void write_vec(ostream& o, const vector<T>& v)
+{
+	o << '[';
+	for (T e : v)
+	{
+		o << e << ", ";
+	}
+	o << "]";
+}
+
+template <typename T>
+void write_arr(ostream& o, const T* arr, size_t size)
+{
+	o << '[';
+	for (size_t i = 0; i < size; ++i)
+	{
+		o << arr[i] << ", ";
+	}
+	o << "]";
+}
+
+template <typename F, typename D>
+pair<unique_ptr<double[]>, unique_ptr<double[]>>
+	FringeBlocks<F, D>::allocate_ratio(
+	const rh::unordered_map<reach_t, FringeInfo>& fringe_info,
+	const vector<reach_t>& vec_fringes) const
+{
+	assert(fringe_info.size() == vec_fringes.size());
+	size_t num_fringes = vec_fringes.size();
+	struct Elem
+	{
+		reach_t target;
+		rh::unordered_set<reach_t> fringes;
+		Elem(reach_t target, rh::unordered_set<reach_t>&& fringes) :
+			target(target), fringes(std::move(fringes)) {}
+	};
+
+	// We firstly get fringes of each active target
+	vector<Elem> targets_info;
+	for (reach_t t = 0; t < target_to_fringes.size(); ++t)
+	{
+		const auto& tf = target_to_fringes[t];
+
+		// Skip targets without fringe
+		if (tf.empty())
+			continue;
+
+		rh::unordered_set<reach_t> fringes;
+		for (const F& f : tf)
+		{
+			fringes.insert(f.block);
+		}
+		targets_info.emplace_back(t, std::move(fringes));
+	}
+
+	// Allocate weight of each target to its fringes
+	auto static_weights = make_unique<double[]>(num_fringes);
+	auto ret = make_unique<double[]>(num_fringes);
+	for (const Elem& e : targets_info)
+	{
+		rh::unordered_map<reach_t, double> res;
+		dist_block_ratio(e.fringes, e.target, g->get_tw(e.target), res);
+		for (const auto& fw : res)
+		{
+			static_weights[fringe_info.find(fw.first)->second.idx] += fw.second;
+		}
+	}
+
+	double sum = 0;
+	for (size_t i = 0; i < num_fringes; ++i)
+	{
+		double w = static_weights[i];
+		ret[i] = w;
+		sum += w;
+	}
+	for (size_t i = 0; i < num_fringes; ++i)
+	{
+		ret[i] /= sum;
+	}
+	return make_pair<>(std::move(ret), std::move(static_weights));
+}
+
+u32 num_active_seeds = 0;
+void trim_new_cvx(
+	rh::unordered_map<u32, double>& seed_weight, double& all_sum, double total)
+{
+	bool trimed;
+	do
+	{
+		double total_after = total;
+		vector<tuple<u32, double, double>> seed_weight_prev;
+		seed_weight_prev.reserve(seed_weight.size());
+
+		// Flatten the unordered map, also add `prev`,
+		// and calculate total energy after the allocation.
+		for (const auto& sw : seed_weight)
+		{
+			double prev = aflrun_get_seed_quant(sw.first);
+			total_after += prev;
+			seed_weight_prev.emplace_back(sw.first, sw.second, prev);
+		}
+
+		double sum = all_sum;
+		trimed = false;
+		for (const auto& swp : seed_weight_prev)
+		{
+			// If previous energy is already >= than desired energy calculated
+			// from desired ratio, we will not allocate energy to it, so it can
+			// be removed for optimization.
+			if (get<2>(swp) >= total_after * get<1>(swp) / sum)
+			{
+				seed_weight.erase(get<0>(swp));
+				all_sum -= get<1>(swp);
+				trimed = true;
+			}
+		}
+
+	// We recursively trim, until there is no trimming happens
+	} while (trimed);
+}
+
+vector<pair<u32, double>> solve_new_cvx(
+	const rh::unordered_map<u32, double>& seed_weight, double sum, double total)
+{
+	// Same as above
+	double total_after = total;
+	vector<tuple<u32, double, double>> seed_weight_prev;
+	seed_weight_prev.reserve(seed_weight.size());
+	for (const auto& sw : seed_weight)
+	{
+		double prev = aflrun_get_seed_quant(sw.first);
+		total_after += prev;
+		seed_weight_prev.emplace_back(sw.first, sw.second, prev);
+	}
+
+	vector<pair<u32, double>> ret;
+	for (const auto& swp : seed_weight_prev)
+	{ // After trimming, desired energy must be larger than previous energy
+		double seed_energy = total_after * get<1>(swp) / sum - get<2>(swp);
+		assert(seed_energy > 0);
+
+		// TODO: potential precision problem?
+		ret.emplace_back(get<0>(swp), seed_energy);
+	}
+
+	return ret;
+}
+
+template <typename F, typename D>
+void FringeBlocks<F, D>::record_new_cvx_opt(
+	const vector<pair<reach_t, rh::unordered_set<reach_t>>>& target_fringes,
+	const rh::unordered_map<reach_t, double>& block_weight,
+	const rh::unordered_map<u32, double>& seed_ratio,
+	const vector<pair<u32, double>>& sol) const
+{
+	ofstream out(g->out_dir + "cvx/opt.py");
+	if (!out.is_open())
+		return;
+
+	out << "import numpy as np" << endl;
+
+	// Output normalized weights of targets
+	double sum = 0;
+	for (const auto& t : target_fringes)
+		sum += g->get_tw(t.first);
+	out << "target_weight = np.array([" << endl;
+	out << "# target, ratio" << endl;
+	for (const auto& t : target_fringes)
+		out << "[\"" << g->reachable_names[t.first] <<
+			"\", " << g->get_tw(t.first) / sum << "]," << endl;
+	out << "])" << endl;
+
+	// Output normalized weights of blocks
+	sum = 0;
+	for (const auto& bw : block_weight)
+		sum += bw.second;
+	out << "block_weight = np.array([" << endl;
+	out << "# block, ctx_count, ratio" << endl;
+	for (const auto& bw : block_weight)
+		out << "[\"" << g->reachable_names[bw.first] <<
+			"\", " << block_to_fringes.find(bw.first)->second.size() <<
+			", " << bw.second / sum << "]," << endl;
+	out << "])" << endl;
+
+	out << "opt = np.array([" << endl;
+	out << "# seed, prev, ratio, solution" << endl;
+
+	rh::unordered_set<u32> non_zero_seeds;
+	for (const auto& se : sol)
+	{
+		out << '[' << se.first << ", " << aflrun_get_seed_quant(se.first) <<
+			", " << seed_ratio.find(se.first)->second << ", " <<
+			se.second << "]," << endl;
+		non_zero_seeds.insert(se.first);
+	}
+	for (const auto& sr : seed_ratio)
+	{
+		if (non_zero_seeds.count(sr.first) > 0)
+			continue;
+		out << '[' << sr.first << ", " << aflrun_get_seed_quant(sr.first) <<
+			", " << sr.second << ", " << 0.0 << "]," << endl;
+	}
+	out << "])" << endl;
+}
+
+void record_new_cvx_opt_uni(
+	const vector<pair<reach_t, array<double, 3>>>& target_type_weights,
+	const array<rh::unordered_map<reach_t, double>, 3>& block_weights,
+	const array<rh::unordered_map<u32, double>, 4>& seed_weights,
+	const double* seed_sums, const rh::unordered_map<u32, double>& seed_ratio,
+	const vector<pair<u32, double>>& sol)
+{
+	ofstream out(g->out_dir + "cvx/opt.py");
+	if (!out.is_open())
+		return;
+	out << "import numpy as np" << endl;
+
+	// Output normalized weights of targets for each type
+	double sum = 0;
+	for (const auto& ttw : target_type_weights)
+		for (size_t i = 0; i < 3; ++i)
+			sum += ttw.second[i];
+	out << "target_weights = np.array([" << endl;
+	out << "# target, N ratio, P ratio, T ratio" << endl;
+	for (const auto& ttw : target_type_weights)
+	{
+		out << "[\"" << g->reachable_names[ttw.first] << "\"";
+		for (size_t i = 0; i < 3; ++i)
+			out << ", " << ttw.second[i] / sum;
+		out << "]," << endl;
+	}
+	out << "])" << endl;
+
+	// Output normalized weights of blocks for each mode
+	function<size_t(u32)> ctx_count[3] = {
+		[](u32 s) -> size_t
+		{
+			return path_fringes->block_to_fringes.find(s)->second.size();
+		},
+		[](u32 s) -> size_t
+		{
+			return path_pro_fringes->block_to_fringes.find(s)->second.size();
+		},
+		[](u32 s) -> size_t
+		{
+			return reached_targets->block_to_fringes.find(s)->second.size();
+		},
+	};
+	const char* names = "NPT";
+	for (size_t i = 0; i < 3; ++i)
+	{
+		sum = 0;
+		for (const auto& btw : block_weights[i])
+			sum += btw.second;
+		out << "block_weight_" << names[i] << " = np.array([" << endl;
+		out << "# block, ctx_count, ratio" << endl;
+		for (const auto& btw : block_weights[i])
+			out << "[\"" << g->reachable_names[btw.first] <<
+				"\", " << ctx_count[i](btw.first) <<
+				", " << btw.second / sum << "]," << endl;
+		out << "])" << endl;
+	}
+
+	out << "opt = np.array([" << endl;
+	out << "# seed, prev, ratio, solution, N, P, T, C" << endl;
+	rh::unordered_set<u32> non_zero_seeds;
+	double weight_sums[4] = {0,0,0,0}; double ratio_sum = 0;
+	auto log_seed_weights =
+	[&seed_weights, &out, &weight_sums](u32 seed)
+	{
+		for (size_t i = 0; i < 4; ++i)
+		{
+			auto it = seed_weights[i].find(seed);
+			double val = it == seed_weights[i].end() ? 0.0 : it->second;
+			out << ", " << val;
+			weight_sums[i] += val;
+		}
+	};
+	for (const auto& se : sol)
+	{
+		double ratio = seed_ratio.find(se.first)->second;
+		ratio_sum += ratio;
+		out << '[' << se.first << ", " << aflrun_get_seed_quant(se.first) <<
+			", " << ratio << ", " << se.second;
+		log_seed_weights(se.first);
+		out << "]," << endl;
+		non_zero_seeds.insert(se.first);
+	}
+	for (const auto& sr : seed_ratio)
+	{
+		if (non_zero_seeds.count(sr.first) > 0)
+			continue;
+		ratio_sum += sr.second;
+		out << '[' << sr.first << ", " << aflrun_get_seed_quant(sr.first) <<
+			", " << sr.second << ", " << 0.0;
+		log_seed_weights(sr.first);
+		out << "]," << endl;
+	}
+	out << "])" << endl;
+	out << "# " << ratio_sum;
+	for (size_t i = 0; i < 4; ++i)
+	{
+		out << ' ' << seed_sums[i] << "==" << weight_sums[i];
+	}
+	out << endl;
+}
+
+template <typename F, typename D>
+void FringeBlocks<F, D>::assign_seeds_covered(
+	const rh::unordered_set<u32>& seeds, double total_weight,
+	const rh::unordered_map<u32, u32>& seed_to_idx,
+	rh::unordered_map<u32, double>& seed_weight, double& all_sum) const
+{
+	// For all seeds that cover this context block,
+	// we get their expected performance scores, and calculate their sum.
+	vector<pair<u32, double>> seed_perf_score;
+	double sum = 0;
+	for (u32 s : seeds)
+	{
+		// Skip seeds not selected for fuzzing
+		if (seed_to_idx.count(s) == 0)
+			continue;
+		double e_perf_score = get_seed_perf_score(g->afl, s) *
+			(favored_seeds.find(s) == favored_seeds.end() ?
+				(100 - SKIP_NFAV_OLD_PROB) / 100.0 : 1.0);
+		// Skip non-positive seeds,
+		// which is not quite possible but we do it anyway
+		if (e_perf_score <= 0)
+			continue;
+		seed_perf_score.emplace_back(s, e_perf_score);
+		sum += e_perf_score;
+	}
+
+	for (const auto& sps : seed_perf_score)
+	{ // Allocate weight of seeds according to ratio of performance scores
+		double w = total_weight * sps.second / sum;
+		seed_weight[sps.first] += w;
+		all_sum += w;
+	}
+}
+
+rh::unordered_map<u32, double> assign_seeds_coverage(
+	const u32* seeds, u32 num, double cov_sum)
+{
+	vector<pair<u32, double>> seed_perf_score;
+	double sum = 0;
+	for (u32 i = 0; i < num; ++i)
+	{
+		u8 level = get_seed_cov_favored(g->afl, seeds[i]);
+		if (!config.extra_cov && level == 0) // Skip aflrun extra seeds
+			continue;
+		double e_perf_score = get_seed_perf_score(g->afl, seeds[i]) *
+			(level == 2 ? 1.0 : (100 - SKIP_NFAV_OLD_PROB) / 100.0);
+		if (e_perf_score <= 0)
+			continue;
+		seed_perf_score.emplace_back(seeds[i], e_perf_score);
+		sum += e_perf_score;
+	}
+
+	rh::unordered_map<u32, double> ret;
+	for (const auto& sps : seed_perf_score)
+		ret.emplace(sps.first, cov_sum * sps.second / sum);
+	return ret;
+}
+
+template <typename F, typename D>
+pair<rh::unordered_map<u32, double>, double>
+	FringeBlocks<F, D>::assign_seed_no_ctx(
+	const rh::unordered_map<reach_t, double>& block_weight,
+	const rh::unordered_map<u32, u32>& seed_to_idx) const
+{
+	// Here we assign energy from fringe to seed directly, without context pass.
+	rh::unordered_map<u32, double> seed_weight;
+	double all_sum = 0;
+	for (const auto& bw : block_weight)
+	{
+		const auto& ctx_blocks = block_to_fringes.find(bw.first)->second;
+		assert(!ctx_blocks.empty());
+		rh::unordered_set<u32> seeds;
+		for (const F& cb : ctx_blocks)
+		{ // Collect all seeds that cover this fringe
+			assert(cb.block == bw.first);
+			const Info& info = fringes.find(cb)->second;
+			seeds.insert(info.seeds.begin(), info.seeds.end());
+		}
+
+		assign_seeds_covered(
+			seeds, bw.second, seed_to_idx, seed_weight, all_sum);
+	}
+
+	return make_pair(seed_weight, all_sum);
+}
+
+template <typename F, typename D>
+pair<rh::unordered_map<u32, double>, double> FringeBlocks<F, D>::assign_seed_ctx(
+	const rh::unordered_map<reach_t, double>& block_weight,
+	const rh::unordered_map<u32, u32>& seed_to_idx) const
+{
+	// Map context block to weight being allocated from parent block
+	rh::unordered_map<Fringe, double> ctx_block_weight;
+	for (const auto& bw : block_weight)
+	{
+		const auto& ctx_blocks = block_to_fringes.find(bw.first)->second;
+		assert(!ctx_blocks.empty());
+		for (const F& cb : ctx_blocks)
+		{ // Allocate weight of each block uniformly to its context blocks
+			assert(cb.block == bw.first && ctx_block_weight.count(cb) == 0);
+			ctx_block_weight.emplace(cb, bw.second / ctx_blocks.size());
+		}
+	}
+
+	// Map seed to weight being allocated from context blocks it covers
+	rh::unordered_map<u32, double> seed_weight;
+	double all_sum = 0;
+	for (const auto& cbw : ctx_block_weight)
+	{
+		const Info& info = fringes.find(cbw.first)->second;
+		assign_seeds_covered(
+			info.seeds, cbw.second, seed_to_idx, seed_weight, all_sum);
+	}
+
+	return make_pair(seed_weight, all_sum);
+}
+
+template <typename F, typename D>
+pair<rh::unordered_map<u32, double>, double> FringeBlocks<F, D>::assign_seed(
+	const rh::unordered_map<reach_t, double>& block_weight,
+	const rh::unordered_map<u32, u32>& seed_to_idx) const
+{
+	if (config.assign_ctx)
+		return assign_seed_ctx(block_weight, seed_to_idx);
+	else
+		return assign_seed_no_ctx(block_weight, seed_to_idx);
+}
+
+template <typename F, typename D>
+void FringeBlocks<F, D>::assign_energy(
+	u32 num_seeds, const u32* ss, double* ret) const
+{
+	// Map seed to index to the return array
+	rh::unordered_map<u32, u32> seed_to_idx;
+	for (u32 i = 0; i < num_seeds; ++i)
+		seed_to_idx.emplace(ss[i], i);
+	assert(seed_to_idx.size() == num_seeds);
+
+	vector<pair<reach_t, rh::unordered_set<reach_t>>> target_fringes;
+
+	for (reach_t t = 0; t < target_to_fringes.size(); ++t)
+	{ // Iterate all targets with any fringes
+		const auto& tf = target_to_fringes[t];
+		if (tf.empty())
+			continue;
+
+		// Record all fringes a target has
+		rh::unordered_set<reach_t> fringes;
+		for (const F& f : tf)
+			fringes.insert(f.block);
+		target_fringes.emplace_back(t, std::move(fringes));
+	}
+
+	// Map fringe block to weight being allocated from targets
+	rh::unordered_map<reach_t, double> block_weight;
+	for (const auto& e : target_fringes)
+	{
+		dist_block_ratio(
+			e.second, e.first, g->get_tw(e.first), block_weight);
+	}
+
+	rh::unordered_map<u32, double> seed_weight; double all_sum;
+	tie(seed_weight, all_sum) = assign_seed(block_weight, seed_to_idx);
+
+	// Original seed ratio, used for output only
+	rh::unordered_map<u32, double> seed_ratio;
+	for (const auto& sw : seed_weight)
+		seed_ratio.emplace(sw.first, sw.second / all_sum);
+
+	const double total = max<double>(
+		num_active_seeds * config.linear_cycle_energy, config.cycle_energy);
+	trim_new_cvx(seed_weight, all_sum, total);
+	auto sol = solve_new_cvx(seed_weight, all_sum, total);
+
+	fill(ret, ret + num_seeds, 0.0);
+	for (const auto& se : sol)
+		ret[seed_to_idx.find(se.first)->second] = se.second;
+
+	record_new_cvx_opt(target_fringes, block_weight, seed_ratio, sol);
+}
+
+rh::unordered_set<reach_t> strip_ctx(const rh::unordered_set<Fringe>& from)
+{
+	// Record all blocks a target has
+	rh::unordered_set<reach_t> blocks;
+	for (const Fringe& f : from)
+		blocks.insert(f.block);
+	return blocks;
+}
+
+void sum_seed_weight(
+	rh::unordered_map<u32, double>& seed_weight, double& all_sum,
+	const rh::unordered_map<u32, double>& tmp_weight, double tmp_sum)
+{
+	all_sum += tmp_sum;
+	for (const auto& sw : tmp_weight)
+		seed_weight[sw.first] += sw.second;
+}
+
+void assign_energy_unite(u32 num_seeds, const u32* ss, double* ret)
+{
+	// Map seed to index to the return array
+	rh::unordered_map<u32, u32> seed_to_idx;
+	for (u32 i = 0; i < num_seeds; ++i)
+		seed_to_idx.emplace(ss[i], i);
+	assert(seed_to_idx.size() == num_seeds);
+
+	constexpr size_t kNumTypes = 3;
+	// [0]: ctx_fringes; [1]: pro_fringes; [2]: targets
+	using FringeEach = array<rh::unordered_set<reach_t>, kNumTypes>;
+	vector<pair<reach_t, FringeEach>> target_fringes;
+	for (reach_t t = 0; t < g->num_targets; ++t)
+	{ // For each target, we get its fringes from all 3 types, if any
+		FringeEach tf;
+		if (config.unite_ratio[1] > 0)
+			tf[0] = strip_ctx(path_fringes->target_to_fringes[t]);
+		if (config.unite_ratio[2] > 0)
+			tf[1] = strip_ctx(path_pro_fringes->target_to_fringes[t]);
+		if (config.unite_ratio[3] > 0)
+			tf[2] = strip_ctx(reached_targets->target_to_fringes[t]);
+
+		// If the target has no block in any of these, skip it
+		if (tf[0].empty() && tf[1].empty() && tf[2].empty())
+			continue;
+
+		target_fringes.emplace_back(t, std::move(tf));
+	}
+
+	// Map target to weights of 3 types, whose sum should be target weight
+	vector<pair<reach_t, array<double, kNumTypes>>> target_type_weights;
+	for (const auto& e : target_fringes)
+	{
+		array<double, kNumTypes> type_weights; double sum = 0;
+		for (size_t i = 0; i < kNumTypes; ++i)
+		{
+			double ratio = config.unite_ratio[i + 1];
+			if (e.second[i].empty() || ratio == 0)
+			{ // For each non-active type, we skip it by setting weight to zero.
+				type_weights[i] = 0;
+			}
+			else
+			{ // For each active type, we sum and record the ratio.
+				sum += ratio;
+				type_weights[i] = ratio;
+			}
+		}
+		assert(sum > 0);
+
+		// Assign `type_weights` from `tw` according to the ratio
+		double tw = g->get_tw(e.first);
+		for (size_t i = 0; i < kNumTypes; ++i)
+		{
+			type_weights[i] = tw * type_weights[i] / sum;
+		}
+
+		target_type_weights.emplace_back(e.first, std::move(type_weights));
+	}
+	assert(target_fringes.size() == target_type_weights.size());
+
+	// Now we can allocate weight for each block
+	array<rh::unordered_map<reach_t, double>, kNumTypes> block_weights;
+	for (size_t i = 0; i < kNumTypes; ++i)
+	{
+		// For each type, we iterate its active targets,
+		// each of which has a weight and a set of blocks;
+		// we can imagine this to be allocation of
+		// `target_weights` -> `block_weight` in non-unite modes.
+		auto tf_it = target_fringes.begin();
+		auto ttw_it = target_type_weights.begin();
+		for (; tf_it != target_fringes.end(); ++tf_it, ++ttw_it)
+		{
+			assert(tf_it->first == ttw_it->first);
+			double ttw = ttw_it->second[i];
+			if (ttw == 0) // Skip non-active targets
+				continue;
+			dist_block_ratio(
+				tf_it->second[i], tf_it->first, ttw, block_weights[i]);
+		}
+	}
+
+	// Assign seed for each block_weights[i], and sum them together
+	rh::unordered_map<u32, double> seed_weight; double all_sum = 0;
+	array<rh::unordered_map<u32, double>, kNumTypes + 1> type_seed_weight;
+	double type_sum[kNumTypes + 1];
+	tie(type_seed_weight[0], type_sum[0]) =
+		path_fringes->assign_seed(block_weights[0], seed_to_idx);
+	sum_seed_weight(seed_weight, all_sum, type_seed_weight[0], type_sum[0]);
+	tie(type_seed_weight[1], type_sum[1]) =
+		path_pro_fringes->assign_seed(block_weights[1], seed_to_idx);
+	sum_seed_weight(seed_weight, all_sum, type_seed_weight[1], type_sum[1]);
+	tie(type_seed_weight[2], type_sum[2]) =
+		reached_targets->assign_seed(block_weights[2], seed_to_idx);
+	sum_seed_weight(seed_weight, all_sum, type_seed_weight[2], type_sum[2]);
+
+	// Calculate total weight for coverage background according to ratios
+	type_sum[3] = 0; size_t count = 0;
+	for (size_t i = 0; i < kNumTypes; ++i)
+	{
+		if (type_sum[i] > 0)
+		{
+			double ratio = config.unite_ratio[i + 1]; assert(ratio > 0);
+			type_sum[3] += type_sum[i] * config.unite_ratio[0] / ratio;
+			++count;
+		}
+	}
+
+	if (count == 0)
+	{ // If no reachable block is covered, do coverage mode
+		assert(all_sum == 0 && seed_weight.empty());
+		all_sum = 1;
+		seed_weight = assign_seeds_coverage(ss, num_seeds, all_sum);
+	}
+	else
+	{
+		type_sum[3] /= count; // Take the average
+
+		if (type_sum[3] > 0)
+		{
+			type_seed_weight[3] =
+				assign_seeds_coverage(ss, num_seeds, type_sum[3]);
+			sum_seed_weight(
+				seed_weight, all_sum, type_seed_weight[3], type_sum[3]);
+		}
+	}
+
+	// Original seed ratio, used for output only
+	rh::unordered_map<u32, double> seed_ratio;
+	for (const auto& sw : seed_weight)
+		seed_ratio.emplace(sw.first, sw.second / all_sum);
+
+	// Finally we get the correct `seed_weight` just like before,
+	// we solve it as the final energy assignment.
+	const double total = max<double>(
+		num_active_seeds * config.linear_cycle_energy, config.cycle_energy);
+	trim_new_cvx(seed_weight, all_sum, total);
+	auto sol = solve_new_cvx(seed_weight, all_sum, total);
+
+	fill(ret, ret + num_seeds, 0.0);
+	for (const auto& se : sol)
+		ret[seed_to_idx.find(se.first)->second] = se.second;
+
+	record_new_cvx_opt_uni(target_type_weights, block_weights,
+		type_seed_weight, type_sum, seed_ratio, sol);
+}
+
+unique_ptr<AFLRunGraph> graph = nullptr;
+
+rh::unordered_map<reach_t, double> bb_to_avg_dists;
+
+rh::unordered_map<string, reach_t> name_to_id, fname_to_id;
+vector<string> id_to_fname;
+
+// Array of traces for each target
+// e.g. (*all_exec_paths[id])[target].data()
+vector<unique_ptr<reach_t[]>> all_exec_paths;
+
+template <>
+inline void log_fringe<Fringe>(ostream& out, const Fringe& f)
+{
+	if (f.block == g->num_reachables)
+	{ // For printing cluster only
+		assert(f.context == 0);
+		out << "primary";
+	}
+	else
+	{
+		char hex_buf[4];
+		snprintf(hex_buf, sizeof(hex_buf), "%.2X", f.context);
+		out << g->reachable_names[f.block] << ',' << hex_buf;
+	}
+}
+
+template <>
+inline void log_fringe<reach_t>(ostream& out, const reach_t& f)
+{
+	out << g->reachable_names[f];
+}
+
+// template<typename F>
+// F target_trace_to_fringe(const T* targets, size_t idx);
+
+// template<>
+// Fringe target_trace_to_fringe<Fringe, ctx_t>(
+// 	const ctx_t* targets, size_t idx)
+// {
+// 	// Pseudo fringe representing primary map
+// 	if (idx == 0)
+// 		return Fringe(g->num_reachables, 0);
+// 	else
+// 	{
+// 		const ctx_t* t = targets + (idx - 1);
+// 		return Fringe(t->block, t->call_ctx);
+// 	}
+// }
+
+// template<>
+// reach_t target_trace_to_fringe<reach_t, reach_t>(
+// 	const reach_t* targets, size_t idx)
+// {
+// 	return idx == 0 ? g->num_reachables : targets[idx - 1];
+// }
+
+struct ClusterPair
+{
+private:
+	size_t fst; size_t snd;
+public:
+	inline size_t get_fst() const noexcept
+	{
+		return fst;
+	}
+	inline size_t get_snd() const noexcept
+	{
+		return snd;
+	}
+	bool operator==(const ClusterPair& rhs) const
+	{
+		return this->fst == rhs.fst && this->snd == rhs.snd;
+	}
+	explicit ClusterPair(size_t c1, size_t c2)
+	{ // Make the pair order insensitive such that `fst <= snd` always holds
+		assert(c1 != c2);
+		if (c1 < c2)
+		{
+			fst = c1;
+			snd = c2;
+		}
+		else
+		{
+			fst = c2;
+			snd = c1;
+		}
+	}
+};
+
+template<typename F>
+class Clusters
+{
+private:
+	rh::unordered_map<F, size_t> target_to_idx;
+	vector<rh::unordered_set<F>> clusters; // Reverse of `target_to_idx`
+	vector<unique_ptr<u8[]>> cluster_maps;
+	vector<unique_ptr<void*[]>> cluster_tops;
+
+	// Each pair of the vector stores 64 `and` bit sequences corresponding to
+	// each virgin map including the primary map, and first `u64` is a `or`
+	// value of all values in the `vector`, so we don't need to consider 0 seqs.
+	vector<pair<u64, unique_ptr<vector<u64>>>> and_bit_seqs;
+
+	// Support count for single target or a pair of targets
+	rh::unordered_map<ClusterPair, double> pair_supp_cnt;
+	vector<double> supp_cnt;
+
+	bool cluster_valid(size_t cluster) const
+	{
+		return cluster == 0 || cluster_maps[cluster] != nullptr;
+	}
+
+	// Merge cluster `src` to cluster `dst`;
+	// after this function, `src` cluster is invalid.
+	void merge_cluster(size_t src, size_t dst)
+	{
+		// `src` cannot be primary cluster, and cannot be invalid cluster
+		assert(src != dst && cluster_maps[src] != nullptr && cluster_valid(dst));
+		rh::unordered_set<F> src_cluster(std::move(clusters[src]));
+		for (F t : src_cluster)
+			target_to_idx.find(t)->second = dst;
+		clusters[dst].insert(src_cluster.begin(), src_cluster.end());
+		cluster_maps[src] = nullptr; cluster_tops[src] = nullptr;
+		// We don't clean support counts with `src` here,
+		// because they cannot be used again.
+	}
+
+	inline static bool supp_cnt_enough(double lhs, double both)
+	{
+		return config.single_supp_thr ?
+			lhs >= config.supp_cnt_thr : both >= config.supp_cnt_thr;
+	}
+
+	// Try to merge clusters, if any; return true iff merge happens
+	bool try_merge()
+	{
+		// Store each LHS->RHS to be merged and corresponding confidence value
+		rh::unordered_map<size_t, pair<size_t, double>> to_merge;
+
+		for (const auto& p : pair_supp_cnt)
+		{ // Iterate each pair support count
+			size_t fst = p.first.get_fst();
+			size_t snd = p.first.get_snd();
+
+			// Check if snd->fst reach merge threshold
+			double snd_supp_cnt = supp_cnt[snd];
+			if (supp_cnt_enough(snd_supp_cnt, p.second))
+			{
+				double conf = p.second / snd_supp_cnt;
+				if (conf >= config.conf_thr)
+				{ // If snd->fst reach merge threshold, merge snd into fst
+					auto p2 = make_pair(fst, conf);
+					auto p3 = to_merge.emplace(snd, p2);
+					// If existing element has less confidence, replace
+					if (!p3.second && p3.first->second.second < conf)
+						p3.first->second = p2;
+				}
+			}
+
+			// Note that we should not merge primary map to anything
+			if (fst == 0) continue;
+
+			// Check fst->snd, same as above
+			double fst_supp_cnt = supp_cnt[fst];
+			if (supp_cnt_enough(fst_supp_cnt, p.second))
+			{
+				double conf = p.second / fst_supp_cnt;
+				if (conf >= config.conf_thr)
+				{
+					auto p2 = make_pair(snd, conf);
+					auto p3 = to_merge.emplace(fst, p2);
+					if (!p3.second && p3.first->second.second < conf)
+						p3.first->second = p2;
+				}
+			}
+		}
+
+		if (to_merge.empty()) return false;
+
+		// Todo: Merge may be optimized using Kosaraju's algorithm.
+		for (const auto& p : to_merge)
+		{
+			size_t src = p.first;
+			size_t dst = p.second.first;
+			// We are going to merge src to dst, but dst can already be invalid,
+			// so we need to walk to find a valid cluster to merge
+			while (!cluster_valid(dst))
+			{ // Walk through the graph until `dst` is valid
+				dst = to_merge.find(dst)->second.first;
+			}
+			// If they finally become same cluster, we don't merge
+			if (src != dst)
+				merge_cluster(src, dst);
+		}
+
+		clean_supp_cnts();
+
+		return true;
+	}
+
+public:
+
+	// Index 0 prepresent primary map, which is not stored here.
+	Clusters() : clusters(1), cluster_maps(1), cluster_tops(1), supp_cnt(1) {}
+
+	void clean_supp_cnts()
+	{
+		vector<ClusterPair> to_remove;
+		for (const auto& p : pair_supp_cnt)
+		{
+			if (!cluster_valid(p.first.get_fst()) ||
+				!cluster_valid(p.first.get_snd()))
+				to_remove.push_back(p.first);
+		}
+		for (const auto& p : to_remove)
+		{
+			pair_supp_cnt.erase(p);
+		}
+	}
+
+	// Given a context-sensitive target, return corresponding cluster index;
+	// this may also create a new cluster, for example, when target is new.
+	size_t get_cluster(F target)
+	{
+		/*
+		Currently `get_cluster` allocate each different target with a new cluster,
+		but this is going to be changed when clustering algorithm is implemented.
+		*/
+		size_t num_clusters = cluster_maps.size();
+		auto res = target_to_idx.emplace(target, num_clusters);
+		if (res.second)
+		{
+			auto v = make_unique<u8[]>(g->map_size);
+			fill(v.get(), v.get() + g->map_size, 255);
+			cluster_maps.push_back(std::move(v));
+			cluster_tops.push_back(make_unique<void*[]>(g->map_size));
+			clusters.emplace_back(initializer_list<F>{target});
+			supp_cnt.push_back(0);
+			return num_clusters;
+		}
+		else
+		{
+			return res.first->second;
+		}
+	}
+	// Return virgin map of given cluster, cluster id must < num of clusters
+	u8* get_virgin_map(size_t cluster) const
+	{
+		return cluster_maps[cluster].get();
+	}
+	void** get_top_rated(size_t cluster) const
+	{
+		return cluster_tops[cluster].get();
+	}
+	const rh::unordered_set<F>& get_targets(size_t cluster) const
+	{
+		return clusters[cluster];
+	}
+	size_t size(void) const
+	{
+		return clusters.size();
+	}
+	size_t get_all_tops(void*** ret_tops, u8 mode) const
+	{
+		// Instead of get all top_rated maps,
+		// we only get ones corresponding to fringe blocks of current state.
+		const rh::unordered_map<reach_t, rh::unordered_set<Fringe>>* blocks;
+		switch (mode)
+		{
+		case AFLRunState::kFringe:
+			blocks = &path_fringes->block_to_fringes;
+			break;
+		case AFLRunState::kProFringe:
+			blocks = &path_pro_fringes->block_to_fringes;
+			break;
+		case AFLRunState::kTarget:
+			blocks = &reached_targets->block_to_fringes;
+			break;
+		default:
+			abort();
+		}
+		size_t idx = 0;
+		bo::dynamic_bitset<> visited_clusters(size());
+		for (const auto& b : *blocks)
+		{
+			auto it = target_to_idx.find(b.first);
+			if (it == target_to_idx.end() || visited_clusters[it->second] ||
+				cluster_tops[it->second] == nullptr)
+				continue;
+
+			visited_clusters[it->second] = true;
+			ret_tops[idx++] = cluster_tops[it->second].get();
+		}
+		return idx;
+	}
+	void add_bit_seq(u64 or_all, unique_ptr<vector<u64>>&& seq)
+	{
+		and_bit_seqs.emplace_back(or_all, std::move(seq));
+	}
+	void commit_bit_seqs(const size_t* clusters, size_t num)
+	{
+		if (and_bit_seqs.empty()) return;
+
+		// Sequences representing all ones in bit arrays
+		vector<vector<size_t>> sequences;
+
+		for (const auto& seq : and_bit_seqs)
+		{
+			u64 or_all = seq.first;
+			assert(seq.second->size() == num);
+			for (size_t i = 0; or_all != 0; ++i, or_all >>= 1)
+			{ // Iterate each bit of `or_all`, and process these `1` bits
+				if ((or_all & 1) == 0)
+					continue;
+
+				vector<size_t> sequence;
+				size_t j = 0; auto it = seq.second->begin();
+				for (; it != seq.second->end(); ++it, ++j)
+				{ // Iterate bit sequence `i`
+					if (((*it) & (1uLL << i)) != 0uLL)
+					{
+						sequence.push_back(clusters[j]);
+					}
+				}
+				assert(!sequence.empty()); // Sequence must have at least one `1`
+				sequences.push_back(std::move(sequence));
+			}
+		}
+		and_bit_seqs.clear();
+		// If count using seed, we should deem each sequence as a factor count.
+		double w_each = config.count_seed ? 1.0 / sequences.size() : 1.0;
+
+		bool if_try = false;
+		for (const auto& seq : sequences)
+		{
+			for (auto i = seq.begin(); i != seq.end(); ++i)
+			{ // For each cluster, increment support count
+				double cnt_after = (supp_cnt[*i] += w_each);
+				if_try = if_try || cnt_after >= config.supp_cnt_thr;
+				for (auto j = i + 1; j != seq.end(); ++j)
+				{ // For each cluster pair, increment pair support count
+					pair_supp_cnt[ClusterPair(*i, *j)] += w_each;
+				}
+			}
+		}
+
+		if (if_try)
+		{ // Only try to merge if there is any support count >= threshold
+			while (try_merge()) {}
+		}
+
+	}
+	// Move `b` from its cluster to primary cluster,
+	// if original cluster becomes empty, remove the cluster.
+	void invalidate_div_block(F b)
+	{
+		// Find corresponding cluster
+		auto it = target_to_idx.find(b);
+		auto& cluster = clusters[it->second];
+		assert(cluster.find(b) != cluster.end());
+
+		// Move `b` to primary map
+		cluster.erase(b);
+		clusters.front().insert(b);
+
+		if (cluster.empty())
+		{ // If it is the last seed in the corpus, we remove the cluster
+			cluster_maps[it->second] = nullptr;
+			cluster_tops[it->second] = nullptr;
+		}
+		it->second = 0;
+	}
+	void remove_div_block(F b)
+	{ // To remove a div block, we need delete corresponding `target_to_idx`.
+		// If final cluster is also empty, we delete the cluster.
+
+		// Find corresponding cluster
+		auto it = target_to_idx.find(b);
+		auto& cluster = clusters[it->second];
+		assert(cluster.find(b) != cluster.end());
+
+		cluster.erase(b);
+		if (cluster.empty())
+		{
+			cluster_maps[it->second] = nullptr;
+			cluster_tops[it->second] = nullptr;
+		}
+		target_to_idx.erase(it);
+	}
+	void print(ostream& out) const
+	{
+		out << "Clusters" << endl;
+		size_t c = 0; auto it = clusters.begin();
+		for (; it != clusters.end(); ++it, ++c)
+		{
+			const auto& cluster = *it;
+			if (cluster.empty())
+				continue;
+			out << c << " | ";
+			for (const F& t : cluster)
+			{
+				log_fringe<F>(out, t); out << ' ';
+			}
+			out << endl;
+		}
+		out << "Confidence Values" << endl;
+
+		vector<ClusterPair> to_erase;
+		for (const auto& p : pair_supp_cnt)
+		{
+			size_t fst = p.first.get_fst();
+			size_t snd = p.first.get_snd();
+			assert(cluster_valid(fst) && cluster_valid(snd));
+			double fst_cnt = supp_cnt[fst];
+			double snd_cnt = supp_cnt[snd];
+
+			out << fst << "->" << snd << " | " << p.second << " / " <<
+				fst_cnt << " = " << p.second / fst_cnt << endl;
+			out << snd << "->" << fst << " | " << p.second << " / " <<
+				snd_cnt << " = " << p.second / snd_cnt << endl;
+		}
+	}
+};
+
+#ifdef AFLRUN_CTX_DIV
+Clusters<Fringe> clusters;
+inline Fringe to_cluster_target(const ctx_t* t)
+{
+	return Fringe(t->block, t->call_ctx);
+}
+inline Fringe to_cluster_target(const Fringe& t)
+{
+	return t;
+}
+#else
+Clusters<reach_t> clusters;
+inline reach_t to_cluster_target(const ctx_t* t)
+{
+	return t->block;
+}
+inline reach_t to_cluster_target(const Fringe& t)
+{
+	return t.block;
+}
+#endif
+
+// TODO: context sensitive diversity blocks
+template <typename F>
+struct DiversityBlocks
+{
+	// Map seed to currently active diversity blocks
+	rh::unordered_map<u32, rh::unordered_set<F>> seed_blocks;
+
+	// Map diversity block to seeds that cover it
+	rh::unordered_map<F, rh::unordered_set<u32>> block_seeds;
+
+	// Both unordered maps above must not contain any empty value
+
+	u8* div_switch; // Shared Memory
+
+	// Number of diversity block that reach threshold, targets not included;
+	// Number of fringe diversity currently has,
+	// including invalid ones, excluding targets.
+	size_t num_invalid, num_fringes;
+
+	explicit DiversityBlocks(u8* div_switch)
+		: div_switch(div_switch), num_invalid(0), num_fringes(0) {}
+
+	// For each new seed, update its coverage of active diversity blocks
+	void div_coverage(const u8* bitmap, u32 seed,
+		const rh::unordered_set<reach_t>* new_criticals = nullptr,
+		const rh::unordered_set<reach_t>* new_bits_targets = nullptr);
+
+	// TODO: add and delete diversity blocks when new fringe is added or deleted
+	void switch_on(F f);
+	void switch_off(F f);
+	void remove_seed(u32 seed);
+
+	void print(ostream& out) const;
+};
+
+template <>
+void DiversityBlocks<reach_t>::div_coverage(const u8 *bitmap, u32 seed,
+	const rh::unordered_set<reach_t>* new_criticals,
+	const rh::unordered_set<reach_t>* new_bits_targets)
+{ // Similar to `fringe_coverage`
+	if (config.no_diversity)
+		return;
+	assert(seed_blocks.find(seed) == seed_blocks.end());
+	rh::unordered_set<reach_t> blocks;
+	vector<reach_t> to_invalidate;
+	for (auto& b : block_seeds)
+	{
+		bool is_new_critical = new_criticals ?
+			(new_criticals->count(b.first) != 0) : false;
+		bool is_new_bits_targets = new_bits_targets ?
+			(new_bits_targets->count(b.first) != 0) : true;
+
+		assert(IS_SET(div_switch, b.first));
+		if ((is_new_critical || is_new_bits_targets) && IS_SET(bitmap, b.first))
+		{
+			b.second.insert(seed);
+			// We don't use `>=` to not invalidate already invalid blocks
+			if (b.second.size() == config.div_seed_thr &&
+				b.first >= g->num_targets)
+			{ // If number of seeds reach threshold for fringe, invalidate it
+				to_invalidate.push_back(b.first);
+				++num_invalid;
+			}
+			blocks.insert(b.first);
+		}
+	}
+	if (!blocks.empty())
+		seed_blocks.emplace(seed, std::move(blocks));
+
+	// For invalid diversity blocks, we only merge it to primary cluster,
+	// so that it will not contribute to any new extra seeds.
+	// We don't turn it off because we don't want to lose all previous seeds.
+	if (!to_invalidate.empty())
+	{
+		for (reach_t b : to_invalidate)
+			clusters.invalidate_div_block(b);
+		clusters.clean_supp_cnts();
+	}
+}
+
+template <>
+void DiversityBlocks<reach_t>::switch_on(reach_t f)
+{
+	// If already switched on, this function does nothing
+	if (!block_seeds.emplace(f, rh::unordered_set<u32>()).second)
+		return;
+	div_switch[f / 8] |= 1 << (f % 8);
+
+	// This will be added very soon, so empty value does not matter
+	if (f >= g->num_targets)
+		++num_fringes;
+}
+
+template <>
+void DiversityBlocks<reach_t>::switch_off(reach_t f)
+{
+	auto it = block_seeds.find(f);
+	assert(f >= g->num_targets && IS_SET(div_switch, f));
+	div_switch[f / 8] &= ~(1 << (f % 8));
+
+	for (u32 s : it->second)
+	{ // Delete the block in all seeds
+		auto it2 = seed_blocks.find(s);
+		it2->second.erase(f);
+		if (it2->second.empty())
+			seed_blocks.erase(it2);
+	}
+	if (it->second.size() >= config.div_seed_thr)
+		--num_invalid;
+	--num_fringes;
+	block_seeds.erase(it);
+	clusters.remove_div_block(f);
+}
+
+template <>
+void DiversityBlocks<reach_t>::remove_seed(u32 seed)
+{
+	auto it = seed_blocks.find(seed);
+	if (it == seed_blocks.end())
+		return;
+	assert(!it->second.empty());
+	for (reach_t b : it->second)
+	{
+		auto& seeds = block_seeds.find(b)->second;
+		seeds.erase(seed); assert(!seeds.empty());
+	}
+	seed_blocks.erase(it);
+}
+
+template<>
+void DiversityBlocks<reach_t>::print(ostream& out) const
+{
+	out << "Diversity" << endl;
+	size_t num_reached = 0, num_non_targets = 0;
+	for (const auto& b : block_seeds)
+	{
+		bool target = b.first < g->num_targets;
+		size_t s = b.second.size();
+		bool reached = s >= config.div_seed_thr;
+		if (!target)
+		{
+			++num_non_targets;
+			if (reached) ++num_reached;
+		}
+		out << g->reachable_names[b.first] << " | " << s <<
+			(target ? " T" : (reached ? " R" : "")) << endl;
+	}
+	assert(num_reached == num_invalid && num_fringes == num_non_targets);
+}
+
+unique_ptr<DiversityBlocks<reach_t>> div_blocks = nullptr;
+
+using group_t = reach_t;
+class TargetGrouper
+{
+public:
+	friend void ::aflrun_init_groups(reach_t num_targets);
+private:
+	static rh::unordered_set<reach_t> all_targets;
+
+	unique_ptr<group_t[]> target_to_group;
+	vector<rh::unordered_set<reach_t>> groups;
+
+	// some memory pool to save allocation time
+	vector<reach_t> subgroups_;
+	vector<reach_t> sizes_;
+	vector<u8> covered_groups_;
+	vector<group_t> covered_groups_arr_;
+public:
+	explicit TargetGrouper()
+	{
+		target_to_group = make_unique<group_t[]>(g->num_targets);
+		fill(target_to_group.get(), target_to_group.get() + g->num_targets, 0);
+		groups.emplace_back(all_targets);
+		subgroups_.resize(g->num_targets);
+		sizes_.resize(1);
+		covered_groups_.resize(1);
+		covered_groups_arr_.resize(1);
+	}
+
+	// Pre: targets must be unique
+	template<typename D>
+	void add_reachable(
+		const rh::unordered_map<reach_t, rh::unordered_set<D>>& decs)
+	{
+		reach_t* subgroups = subgroups_.data();
+		reach_t* sizes = sizes_.data();
+		u8* covered_groups = covered_groups_.data();
+		group_t* covered_groups_arr = covered_groups_arr_.data();
+		const reach_t num_targets = g->num_targets;
+
+		size_t group_size = groups.size();
+		// Map each group index into all elements in `targets` belonging to it
+		fill(sizes, sizes + group_size, 0);
+		fill(covered_groups, covered_groups + group_size, 0);
+		size_t num_covered_groups = 0;
+		for (const auto& t : decs)
+		{
+			// Get group idx that the target belongs to
+			group_t g = target_to_group[t.first];
+			// Append the target to the corresponding subgroup
+			subgroups[g * num_targets + sizes[g]++] = t.first;
+			if (!covered_groups[g])
+			{
+				covered_groups[g] = 1;
+				covered_groups_arr[num_covered_groups++] = g;
+			}
+		}
+
+		// For subgroup that can cut any of existing group, we need to cut
+		for (size_t i = 0; i < num_covered_groups; ++i)
+		{
+			group_t g = covered_groups_arr[i];
+			size_t size = sizes[g];
+			assert(0 < size);
+			if (size < groups[g].size())
+			{
+				const reach_t* subgroup = subgroups + g * num_targets;
+				group_t new_idx = groups.size();
+				groups.emplace_back(subgroup, subgroup + size);
+				for (size_t j = 0; j < size; ++j)
+				{
+					groups[g].erase(subgroup[j]);
+					target_to_group[subgroup[j]] = new_idx;
+				}
+			}
+		}
+
+		group_size = groups.size();
+		subgroups_.resize(group_size * num_targets);
+		sizes_.resize(group_size);
+		covered_groups_.resize(group_size);
+		covered_groups_arr_.resize(group_size);
+	}
+
+	inline group_t to_group(reach_t target) const
+	{
+		return target_to_group[target];
+	}
+
+	inline const rh::unordered_set<reach_t>& to_targets(group_t group) const
+	{
+		return groups[group];
+	}
+
+	inline size_t size() const
+	{
+		return groups.size();
+	}
+
+	// Separate given set of targets according to current group
+	template<typename D>
+	vector<rh::unordered_set<reach_t>> separate(
+		const rh::unordered_map<reach_t, rh::unordered_set<D>>& decs) const
+	{
+		rh::unordered_set<reach_t> targets;
+		for (const auto& td : decs)
+		{
+			targets.insert(td.first);
+		}
+		vector<rh::unordered_set<reach_t>> ret;
+		while (!targets.empty())
+		{
+			reach_t t = *targets.begin();
+			rh::unordered_set<reach_t> group = to_targets(to_group(t));
+#ifndef NDEBUG
+			size_t prev_size = targets.size();
+#endif
+			for (reach_t e : group)
+				targets.erase(e);
+			// Check that all group elements removed are indeed in `targets`
+			assert(targets.size() + group.size() == prev_size);
+
+			ret.push_back(std::move(group));
+		}
+		return ret;
+	}
+
+	void slow_check() const
+	{
+		for (reach_t t = 0; t < g->num_targets; ++t)
+		{
+			group_t g = target_to_group[t];
+			assert(groups.at(g).find(t) != groups.at(g).end());
+			for (size_t i = 0; i < groups.size(); ++i)
+			{
+				if (i == g)
+					continue;
+				assert(groups[i].find(t) == groups[i].end());
+			}
+		}
+	}
+};
+
+template <typename F, typename D>
+void FringeBlocks<F, D>::group()
+{
+	grouper = make_unique<TargetGrouper>();
+	// For each of fringe, we add associated targets to grouper
+	for (const auto& f : fringes)
+	{
+		grouper->add_reachable<D>(f.second.decisives);
+	}
+}
+
+rh::unordered_set<reach_t> TargetGrouper::all_targets;
+
+} // namespace
+
+size_t hash<Fringe>::operator()(const Fringe& p) const noexcept
+{
+	size_t seed = 0;
+	bo::hash_combine(seed, p.block);
+	bo::hash_combine(seed, p.context);
+	return seed;
+}
+
+size_t hash<SeedFringes>::operator()(const SeedFringes& p) const noexcept
+{
+	const u8* ptr = p.bitmap.get();
+	return bo::hash_range(ptr, ptr + p.bitmap_size);
+}
+
+size_t hash<pair<reach_t, reach_t>>::operator()(
+	const pair<reach_t, reach_t>& p) const noexcept
+{
+	size_t seed = 0;
+	bo::hash_combine(seed, p.first);
+	bo::hash_combine(seed, p.second);
+	return seed;
+}
+
+size_t hash<ClusterPair>::operator()(
+	const ClusterPair& p) const noexcept
+{
+	size_t seed = 0;
+	bo::hash_combine(seed, p.get_fst());
+	bo::hash_combine(seed, p.get_snd());
+	return seed;
+}
+
+/* ----- Functions called at initialization ----- */
+
+void aflrun_init_groups(reach_t num_targets)
+{
+	for (reach_t t = 0; t < num_targets; ++t)
+	{
+		TargetGrouper::all_targets.insert(t);
+	}
+}
+
+void aflrun_init_fringes(reach_t num_reachables, reach_t num_targets)
+{
+	path_fringes = make_unique<FringeBlocks<Fringe, Fringe>>(num_targets);
+	path_pro_fringes = make_unique<FringeBlocks<Fringe, reach_t>>(num_targets);
+	reached_targets = make_unique<FringeBlocks<Fringe, u8>>(num_targets);
+}
+
+void aflrun_init_globals(void* afl, reach_t num_targets, reach_t num_reachables,
+		reach_t num_ftargets, reach_t num_freachables,
+		u8* virgin_reachables, u8* virgin_freachables, u8* virgin_ctx,
+		char** reachable_names, reach_t** reachable_to_targets,
+		reach_t* reachable_to_size, const char* out_dir,
+		const double* target_weights, u32 map_size, u8* div_switch,
+		const char* cycle_time)
+{
+	assert(g == nullptr);
+	g = make_unique<AFLRunGlobals>(num_targets, num_reachables,
+		num_ftargets, num_freachables, virgin_reachables,
+		virgin_freachables, virgin_ctx, reachable_names,
+		reachable_to_targets, reachable_to_size, out_dir,
+		target_weights, map_size, afl, get_cur_time(),
+		cycle_time == NULL ? 0 : strtoull(cycle_time, NULL, 10));
+	div_blocks = make_unique<DiversityBlocks<reach_t>>(div_switch);
+}
+
+void aflrun_load_freachables(const char* temp_path,
+	reach_t* num_ftargets, reach_t* num_freachables)
+{
+	string temp(temp_path);
+	if (temp.back() != '/')
+		temp.push_back('/');
+	ifstream fd(temp + "Freachable.txt"); assert(fd.is_open());
+	string line;
+	getline(fd, line);
+	size_t idx = line.find(','); assert(idx != string::npos);
+	*num_ftargets = strtoul(line.c_str(), NULL, 10);
+	*num_freachables = strtoul(line.c_str() + idx + 1, NULL, 10);
+
+	reach_t i = 0;
+	while (getline(fd, line))
+	{
+		fname_to_id.emplace(line, i++);
+		id_to_fname.push_back(std::move(line));
+	}
+
+	assert(i == *num_freachables && i == fname_to_id.size());
+}
+
+void aflrun_load_edges(const char* temp_path, reach_t num_reachables)
+{
+	string temp(temp_path);
+	if (temp.back() != '/')
+		temp.push_back('/');
+	graph = make_unique<BasicBlockGraph>(
+		(temp + "BBedges.txt").c_str(), num_reachables);
+
+	ifstream fd(temp + "Chash.txt"); assert(fd.is_open());
+	string line;
+	while (getline(fd, line))
+	{
+		size_t idx1 = line.find(','); assert(idx1 != string::npos);
+		size_t idx2 = line.find('|'); assert(idx2 != string::npos);
+		auto call_edge = make_pair<reach_t, reach_t>(
+			strtoul(line.c_str(), NULL, 10),
+			strtoul(line.c_str() + idx1 + 1, NULL, 10));
+		graph->call_hashes[call_edge].push_back(
+			strtoul(line.c_str() + idx2 + 1, NULL, 10));
+	}
+}
+
+void aflrun_load_dists(const char* dir, reach_t num_targets,
+	reach_t num_reachables, char** reachable_names)
+{
+	bb_to_dists.resize(num_reachables);
+
+	// Convert reachable name to id in O(1)
+	for (reach_t i = 0; i < num_reachables; i++)
+	{
+		name_to_id.emplace(reachable_names[i], i);
+	}
+
+	string path(dir);
+	if (path.back() != '/')
+		path.push_back('/');
+	path += "distance.cfg/";
+	for (reach_t t = 0; t < num_targets; ++t)
+	{
+		ifstream cf(path + to_string(t) + ".txt"); assert(cf.is_open());
+		string line;
+		while (getline(cf, line))
+		{
+			// get name and dist
+			size_t pos = line.find(","); assert(pos != string::npos);
+			string bb_name = line.substr(0, pos);
+			double bb_dis = atof(line.substr(pos + 1, line.length()).c_str());
+
+			// update name and dist into global data structure
+			assert(name_to_id.find(bb_name) != name_to_id.end());
+			reach_t block = name_to_id.find(bb_name)->second;
+			auto tmp = bb_to_dists[block].find(t);
+			if (tmp == bb_to_dists[block].end())
+			{
+				bb_to_dists[block].emplace(t, bb_dis);
+			}
+			else if (tmp->second > bb_dis)
+			{
+				tmp->second = bb_dis; // we get minimum of all distances
+			}
+		}
+		cf.close();
+	}
+
+	// calculate the average distance among all targets
+	// TODO: calculate the average lazily
+	rh::unordered_map<reach_t, double> dists;
+	for (reach_t bb = 0; bb < num_reachables; ++bb)
+	{
+		double sum = 0.0; size_t count = 0;
+		for (reach_t t = 0; t < num_targets; ++t)
+		{
+			auto d = bb_to_dists[bb].find(t);
+			if (d != bb_to_dists[bb].end())
+			{
+				sum += d->second; ++count;
+			}
+		}
+		assert(count > 0);
+		bb_to_avg_dists.emplace(bb, sum / count);
+	}
+}
+
+// The config is in form "xxx=aaa:yyy=bbb"
+void aflrun_load_config(const char* config_str,
+	u8* check_at_begin, u8* log_at_begin, u64* log_check_interval,
+	double* trim_thr, double* queue_quant_thr, u32* min_num_exec)
+{
+	string s(config_str);
+	try
+	{
+		while (true)
+		{
+			size_t idx = s.find(':');
+			if (idx == string::npos)
+			{
+				config.load(s);
+				break;
+			}
+			config.load(s.substr(0, idx));
+			s = s.substr(idx + 1);
+		}
+		config.check();
+	}
+	catch (const string& e)
+	{
+		cerr << e << endl;
+		abort();
+	}
+	*check_at_begin = config.check_at_begin;
+	*log_at_begin = config.log_at_begin;
+	*log_check_interval = config.log_check_interval;
+	*trim_thr = config.trim_thr;
+	*queue_quant_thr = config.queue_quant_thr;
+	*min_num_exec = config.min_num_exec;
+}
+
+void aflrun_remove_seed(u32 seed)
+{
+	path_pro_fringes->remove_seed(seed);
+	path_fringes->remove_seed(seed);
+	reached_targets->remove_seed(seed);
+	div_blocks->remove_seed(seed);
+}
+
+/* ----- Functions called for some time interval to log and check ----- */
+
+#ifdef NDEBUG
+void aflrun_check_state(void) {}
+#else
+namespace
+{
+template <typename F, typename D>
+void check_state(const FringeBlocks<F, D>& fringes)
+{
+	for (reach_t t = 0; t < fringes.target_to_fringes.size(); ++t)
+	{
+		for (const F& f : fringes.target_to_fringes[t])
+		{
+			auto it = fringes.fringes.find(f);
+			assert(it != fringes.fringes.end());
+			auto it2 = it->second.decisives.find(t);
+			assert(it2 != it->second.decisives.end());
+			assert(!it->second.seeds.empty());
+			for (u32 seed : it->second.seeds)
+			{
+				const auto& seed_fringes = fringes.seed_fringes.find(seed)->second;
+				assert(seed_fringes.find(f) != seed_fringes.end());
+			}
+		}
+	}
+	for (const auto& fi : fringes.fringes)
+	{
+		assert(!fi.second.decisives.empty());
+		for (const auto& td : fi.second.decisives)
+		{
+			const auto& fs = fringes.target_to_fringes.at(td.first);
+			assert(fs.find(fi.first) != fs.end());
+		}
+	}
+}
+}
+void aflrun_check_state(void)
+{
+	if (!config.check_fringe)
+		return;
+	check_state(*path_fringes);
+	check_state(*path_pro_fringes);
+	check_state(*reached_targets);
+	for (reach_t t = 0; t < path_pro_fringes->target_to_fringes.size(); ++t)
+	{
+		for (const auto& f : path_pro_fringes->target_to_fringes[t])
+		{
+			assert(path_fringes->target_to_fringes[t].find(f) !=
+				path_fringes->target_to_fringes[t].end());
+		}
+	}
+}
+#endif
+
+
+namespace
+{
+string targets_info;
+
+template <typename F, typename D>
+void log_fringes(ofstream& out, const FringeBlocks<F, D>& fringes)
+{
+	out << "fringe | target group | decisives | seeds | freq" << endl;
+	for (const auto& f : fringes.fringes)
+	{
+		auto res = fringes.grouper->separate(f.second.decisives);
+		for (const rh::unordered_set<reach_t>& group : res)
+		{
+			log_fringe<F>(out, f.first);
+			out << " |";
+			rh::unordered_set<D> decisives;
+			for (reach_t t : group)
+			{
+				out << ' ' << g->reachable_names[t];
+				const auto& tmp = f.second.decisives.find(t)->second;
+				decisives.insert(tmp.begin(), tmp.end());
+			}
+			out << " | ";
+			for (const D& d : decisives)
+			{
+				log_fringe<D>(out, d); out << ' ';
+			}
+			out << '|';
+			if (config.show_all_seeds)
+			{
+				for (u32 s : f.second.seeds)
+				{
+					out << ' ' << s;
+				}
+			}
+			else if (f.second.has_top_rated)
+			{
+				out << ' ' << f.second.top_rated_seed;
+			}
+			out << " | " << f.second.fuzzed_quant << endl;
+		}
+	}
+}
+}
+
+void aflrun_log_fringes(const char* path, u8 which)
+{
+	ofstream out(path);
+	// When critical block is disabled, we don't need log.
+	if (!out.is_open() || config.no_critical)
+		return;
+
+	path_fringes->group();
+	path_pro_fringes->group();
+	reached_targets->group();
+
+	switch (which)
+	{
+	case 2: // print all paths towards all targets
+		out << "context | target | seeds" << endl;
+		for (const auto& f : reached_targets->fringes)
+		{
+			assert(f.first.block < g->num_targets);
+			out << f.first.context << " | " <<
+				g->reachable_names[f.first.block] << " |";
+			if (config.show_all_seeds)
+			{
+				for (u32 s : f.second.seeds)
+				{
+					out << ' ' << s;
+				}
+			}
+			else if (f.second.has_top_rated)
+			{
+				out << ' ' << f.second.top_rated_seed;
+			}
+			out << endl;
+		}
+		clusters.print(out);
+		div_blocks->print(out);
+		break;
+	case 1:
+		log_fringes(out, *path_pro_fringes);
+		break;
+	case 0:
+		log_fringes(out, *path_fringes);
+		break;
+	default:
+		abort();
+	}
+	if (which == 2)
+		out << targets_info;
+	out.close();
+}
+
+u64 aflrun_queue_cycle(void)
+{
+	if (g->cycle_time)
+		return (get_cur_time() - g->init_time) / 1000 / g->cycle_time;
+	else
+		return state.get_whole_count();
+}
+
+void aflrun_get_state(int* cycle_count, u32* cov_quant,
+	size_t* div_num_invalid, size_t* div_num_fringes)
+{
+	state.get_counts(*cycle_count, *cov_quant);
+	*div_num_invalid = div_blocks->num_invalid;
+	*div_num_fringes = div_blocks->num_fringes;
+}
+
+u8 aflrun_get_mode(void)
+{
+	return state.get_mode();
+}
+
+bool aflrun_is_uni(void)
+{
+	return state.get_mode() == AFLRunState::kUnite;
+}
+
+double aflrun_get_seed_quant(u32 seed)
+{
+	return seed < seed_quant.size() ? seed_quant[seed] : 0;
+}
+
+void aflrun_get_reached(reach_t* num_reached, reach_t* num_freached,
+	reach_t* num_reached_targets, reach_t* num_freached_targets)
+{
+	*num_reached = g->num_reached;
+	*num_freached = g->num_freached;
+	*num_reached_targets = g->num_reached_targets;
+	*num_freached_targets = g->num_freached_targets;
+}
+
+void aflrun_get_time(u64* last_reachable, u64* last_fringe,
+	u64* last_pro_fringe, u64* last_target, u64* last_ctx_reachable,
+	u64* last_ctx_fringe, u64* last_ctx_pro_fringe, u64* last_ctx_target)
+{
+	*last_reachable = update_time.last_reachable;
+	*last_fringe = update_time.last_fringe;
+	*last_pro_fringe = update_time.last_pro_fringe;
+	*last_target = update_time.last_target;
+	*last_ctx_reachable = update_time.last_ctx_reachable;
+	*last_ctx_fringe = update_time.last_ctx_fringe;
+	*last_ctx_pro_fringe = update_time.last_ctx_pro_fringe;
+	*last_ctx_target = update_time.last_ctx_target;
+}
+
+/* ----- Functions called at begining of each cycle ----- */
+
+namespace
+{
+void assign_energy_seed(u32 num_seeds, const u32* seeds, double* ret)
+{
+	switch (state.get_mode())
+	{
+	case AFLRunState::kFringe:
+	{
+		path_fringes->assign_energy(num_seeds, seeds, ret);
+		return;
+	}
+	case AFLRunState::kProFringe:
+	{
+		path_pro_fringes->assign_energy(num_seeds, seeds, ret);
+		return;
+	}
+	case AFLRunState::kTarget:
+	{
+		reached_targets->assign_energy(num_seeds, seeds, ret);
+		return;
+	}
+	case AFLRunState::kUnite:
+	{
+		assign_energy_unite(num_seeds, seeds, ret);
+		return;
+	}
+	default:
+		abort();
+	}
+}
+}
+
+void aflrun_assign_energy(u32 num_seeds, const u32* seeds, double* ret)
+{
+	if (!config.seed_based_energy)
+	{
+		cerr << "Old energy assignment is no longer supported" << endl;
+		abort();
+	}
+	assign_energy_seed(num_seeds, seeds, ret);
+}
+
+// Call this function at end of all cycles,
+// including beginning of the first cycle or when state is reset
+// (pseudo cycle end where `cycle_count` increment from -1 to 0).
+// The function return the new mode
+u8 aflrun_cycle_end(u8* whole_end)
+{
+	*whole_end = state.cycle_end();
+	return state.get_mode();
+}
+
+/* ----- Functions called when new reachable block becomes non-virgin ----- */
+
+namespace
+{
+
+// Perform vigin BFS from given block,
+// return map from reached target to a set of blocks containing a path to it
+
+template <typename D>
+inline rh::unordered_set<D> trace_decisives(
+	const rh::unordered_map<D, D>& parent, const D& start, const D& v)
+{
+	rh::unordered_set<D> decisives;
+
+	// Get all blocks consisting of path towards the target
+	D cur = v;
+	do
+	{
+		decisives.insert(cur);
+		cur = parent.find(cur)->second;
+	} while (!(cur == start));
+
+	return decisives;
+}
+
+template <typename D>
+rh::unordered_map<reach_t, rh::unordered_set<D>> get_target_paths(D);
+
+template <>
+rh::unordered_map<reach_t, rh::unordered_set<reach_t>>
+	get_target_paths<reach_t>(reach_t block)
+{
+	// https://en.wikipedia.org/wiki/Breadth-first_search#Pseudocode
+	rh::unordered_map<reach_t, rh::unordered_set<reach_t>> ret;
+	queue<reach_t> q; rh::unordered_map<reach_t, reach_t> parent;
+	for (reach_t dst : graph->src_to_dst[block])
+	{
+		if (IS_SET(g->virgin_reachables, dst))
+		{ // add all outgoing virgin vertexes to queue as initialization
+			parent.emplace(dst, block);
+			q.push(dst);
+		}
+	}
+	while (!q.empty())
+	{
+		reach_t v = q.front(); q.pop();
+
+		if (v < g->num_targets)
+		{
+			ret.emplace(v, trace_decisives<reach_t>(parent, block, v));
+		}
+
+		for (reach_t w : graph->src_to_dst[v])
+		{
+			if (!IS_SET(g->virgin_reachables, w))
+				continue;
+			if (parent.find(w) == parent.end())
+			{
+				parent.emplace(w, v);
+				q.push(w);
+			}
+		}
+	}
+	return ret;
+}
+
+vector<u32> get_next_hashes(const Fringe& src, reach_t dst, bool& is_call)
+{
+	u32 ctx = src.context;
+	reach_t block = src.block;
+	auto p = make_pair<reach_t, reach_t>(std::move(block), std::move(dst));
+	auto it = graph->call_hashes.find(p);
+
+	vector<u32> next_hashes;
+	// If it is a call edge with multiple hashes, calculate new ctx.
+	// e.i. one block calls same function for multiple times
+	if (it != graph->call_hashes.end())
+	{
+		for (u32 h : it->second)
+		{
+			next_hashes.push_back(ctx ^ h);
+		}
+		is_call = true;
+	}
+	else
+	{
+		next_hashes.push_back(ctx);
+		is_call = false;
+	}
+
+	return next_hashes;
+}
+
+// This is a helper function for `get_target_paths<Fringe>` for optimization,
+// because going through all possible states with contexts are too expensive.
+bool all_targets_visited(reach_t block,
+	const rh::unordered_map<reach_t, rh::unordered_set<Fringe>>& cur)
+{
+	size_t num_ts = g->reachable_to_size[block];
+
+	// If number of reachable targets are larger than number of visited targets,
+	// then there must be some targets reachable by `block` not visited yet;
+	// this is just a quick path for slight optimization.
+	if (num_ts > cur.size())
+		return false;
+
+	const reach_t* beg = g->reachable_to_targets[block];
+	const reach_t* end = beg + num_ts;
+
+	for (const reach_t* t = beg; t < end; ++t)
+	{ // If there is a target rechable by `block` not yet visited by `cur`,
+		// we should return false.
+		if (cur.find(*t) == cur.end())
+			return false;
+	}
+
+	// If all targets reachable by `block` already has a path,
+	// we can then skip this block by not adding it to stack.
+	return true;
+}
+
+// Basically same as above, except when doing BFS,
+// we consider the context and regard same `dst` node with different contexts
+// as different next possible states.
+rh::unordered_map<reach_t, rh::unordered_set<Fringe>>
+	get_target_paths_slow(const Fringe& block_ctx)
+{
+	rh::unordered_map<reach_t, rh::unordered_set<Fringe>> ret;
+	queue<Fringe> q; rh::unordered_map<Fringe, Fringe> parent;
+	reach_t block = block_ctx.block;
+	bool dummy;
+
+	// For given source state (e.i. block and context),
+	// we iterate all possible next states and add them into queue.
+	for (reach_t dst : graph->src_to_dst[block])
+	{
+		auto next_hashes = get_next_hashes(block_ctx, dst, dummy);
+		for (u32 next_hash : next_hashes)
+		{
+			if (IS_SET(g->virgin_ctx, CTX_IDX(dst, next_hash)))
+			{
+				Fringe next(dst, next_hash);
+				parent.emplace(next, block_ctx);
+				q.push(next);
+			}
+		}
+	}
+
+	while (!q.empty())
+	{
+		Fringe v = q.front(); q.pop();
+
+		// If we reached the target via BFS for the first time,
+		// we trace and record paths to it, similar to above
+		if (v.block < g->num_targets && ret.find(v.block) == ret.end())
+		{
+			ret.emplace(v.block, trace_decisives<Fringe>(parent, block_ctx, v));
+		}
+
+		// All possible next states are virgin (block, ctx) pairs
+		for (reach_t w : graph->src_to_dst[v.block])
+		{
+			if (all_targets_visited(w, ret))
+				continue;
+			auto next_hashes = get_next_hashes(v, w, dummy);
+			for (u32 next_hash : next_hashes)
+			{
+				if (!IS_SET(g->virgin_ctx, CTX_IDX(w, next_hash)))
+					continue;
+				Fringe next(w, next_hash);
+				if (parent.find(next) == parent.end())
+				{
+					parent.emplace(next, v);
+					q.push(next);
+				}
+			}
+		}
+	}
+
+	return ret;
+}
+
+// The problem of a thorough BFS is that it can be too slow for big binaries,
+// so we have another fast version that only BFS inside the function and
+// entry block of each function it calls.
+// The core idea is that as long as it reaches a entry block whose next context
+// is virgin, it add all targets the block can reach into `decisives` with the
+// partial trace reaching the entry block. The idea is that as long as we have
+// entry block with virgin context, the stack trace before + this call site
+// must not have been visited, thus any target it can reach can potentially
+// have stack trace before + this call site + other call sites to reach target,
+// which must also be not visited before. Thus it is okay to know there exists
+// a context-sensitive path to these targets.
+// However, such fast hack has 2 problems:
+// 1. Cannot handle hash collision; 2. potentially problematic for recursion.
+rh::unordered_map<reach_t, rh::unordered_set<Fringe>>
+	get_target_paths_fast(const Fringe& block_ctx)
+{
+	rh::unordered_map<reach_t, rh::unordered_set<Fringe>> ret;
+	queue<pair<Fringe, bool>> q; rh::unordered_map<Fringe, Fringe> parent;
+	reach_t block = block_ctx.block;
+
+	// Similar to the slow one,
+	// except we also record whether `Fringe` is a call in the queue.
+
+	for (reach_t dst : graph->src_to_dst[block])
+	{
+		bool is_call;
+		auto next_hashes = get_next_hashes(block_ctx, dst, is_call);
+		for (u32 next_hash : next_hashes)
+		{
+			if (IS_SET(g->virgin_ctx, CTX_IDX(dst, next_hash)))
+			{
+				Fringe next(dst, next_hash);
+				parent.emplace(next, block_ctx);
+				q.push(make_pair(std::move(next), std::move(is_call)));
+			}
+		}
+	}
+
+	while (!q.empty())
+	{
+		auto tmp = q.front(); q.pop();
+		const Fringe& v = tmp.first;
+
+		// We still need to check potential targets in the function
+		if (!tmp.second &&
+			v.block < g->num_targets && ret.find(v.block) == ret.end())
+		{
+			ret.emplace(v.block, trace_decisives<Fringe>(parent, block_ctx, v));
+		}
+
+		// If current virgin `Fringe` is visited from call edge,
+		// then we get a trace from it, and assign to each target it can reach;
+		// also we don't continue to visit its child blocks.
+		if (tmp.second)
+		{
+			auto decisives = trace_decisives(parent, block_ctx, v);
+
+			const reach_t* beg = g->reachable_to_targets[v.block];
+			const reach_t* end = beg + g->reachable_to_size[v.block];
+			for (const reach_t* t = beg + 1; t < end; ++t)
+			{
+				// If key `*t` already exists, `emplace` does nothing.
+				ret.emplace(*t, decisives);
+			}
+			ret.emplace(*beg, std::move(decisives));
+		}
+		else
+		{
+			for (reach_t w : graph->src_to_dst[v.block])
+			{
+				bool is_call;
+				auto next_hashes = get_next_hashes(v, w, is_call);
+				for (u32 next_hash : next_hashes)
+				{
+					if (!IS_SET(g->virgin_ctx, CTX_IDX(w, next_hash)))
+						continue;
+					Fringe next(w, next_hash);
+					if (parent.find(next) == parent.end())
+					{
+						parent.emplace(next, v);
+						q.push(make_pair(std::move(next), std::move(is_call)));
+					}
+				}
+			}
+		}
+	}
+
+	return ret;
+}
+
+template <>
+rh::unordered_map<reach_t, rh::unordered_set<Fringe>>
+	get_target_paths<Fringe>(Fringe block_ctx)
+{
+	if (config.slow_ctx_bfs)
+		return get_target_paths_slow(block_ctx);
+	else
+		return get_target_paths_fast(block_ctx);
+}
+
+/* ----- Functions called for each test case mutated and executed ----- */
+
+template <typename D>
+inline D to_decisive(const Fringe& f);
+template <>
+inline reach_t to_decisive<reach_t>(const Fringe& f)
+{
+	return f.block;
+}
+template <>
+inline Fringe to_decisive<Fringe>(const Fringe& f)
+{
+	return f;
+}
+
+template <typename F, typename D>
+u8 FringeBlocks<F, D>::try_add_fringe(const Fringe& cand)
+{
+	auto target_decisives = get_target_paths<D>(to_decisive<D>(cand));
+	if (target_decisives.empty())
+		return 0;
+	for (auto& td : target_decisives)
+	{
+		this->add_fringe(cand, td.first, std::move(td.second));
+	}
+	return 1;
+}
+
+u8 try_add_fringe(const ctx_t& cand)
+{
+	reach_t block = cand.block;
+	Fringe f_cand(block, cand.call_ctx);
+
+	/* For the ablation study that removes the critical blocks,
+	`path_pro_fringes` and `path_fringes` are both empty,
+	and we put all covered blocks into reached_targets.
+	Hope this hack does not cause any other problem. :) */
+	if (config.no_critical)
+	{
+		const reach_t* beg = g->reachable_to_targets[block];
+		const reach_t* end = beg + g->reachable_to_size[block];
+		for (const reach_t* i = beg; i < end; ++i)
+		{
+			reached_targets->add_fringe(f_cand, *i, rh::unordered_set<u8>());
+		}
+		return 0;
+	}
+
+	u8 r2 = path_pro_fringes->try_add_fringe(f_cand);
+
+#ifdef AFLRUN_CTX
+	// We add criticals to into `path_fringes` only when context is enabled.
+	u8 r1 = path_fringes->try_add_fringe(f_cand);
+	assert(!r2 || r1); // r2 -> r1
+#endif
+
+	// If candidate is fringe reaching a target and it is not added yet, we add it
+	if (block < g->num_targets)
+	{
+		reached_targets->add_fringe(f_cand, block, rh::unordered_set<u8>());
+	}
+
+#ifdef AFLRUN_CTX
+	return r2 + r1;
+#else
+	// When context is not enabled, we return 2 when new critical is added.
+	return r2 * 2;
+#endif
+}
+
+// Return set of all blocks it removed
+template <typename F, typename D>
+vector<reach_t> FringeBlocks<F, D>::try_del_fringe(const Fringe& cand)
+{
+	vector<reach_t> ret;
+	auto it = this->decisive_to_fringes.find(to_decisive<D>(cand));
+	if (it == this->decisive_to_fringes.end())
+		return ret;
+	rh::unordered_set<Fringe> fringes_decided(std::move(it->second));
+	this->decisive_to_fringes.erase(it);
+
+	for (const Fringe& f : fringes_decided)
+	{
+		auto it2 = this->fringes.find(f);
+		if (it2 == this->fringes.end())
+			continue;
+
+		// Re-evaluate the fringe to see if it can still reach any target
+		auto target_decisives = get_target_paths<D>(to_decisive<D>(f));
+		if (target_decisives.empty())
+		{ // If not, delete the fringe
+			if (this->del_fringe(f))
+				ret.push_back(f.block);
+		}
+		else
+		{ // Otherwise, update the fringe with:
+			// 1. new targets(a subset of original targets) and 2. new decisives
+			for (const auto& td : it2->second.decisives)
+			{
+				// If an old target is not covered by new set of targets
+				if (target_decisives.find(td.first) == target_decisives.end())
+				{
+					this->target_to_fringes[td.first].erase(f);
+				}
+			}
+			for (const auto& td : target_decisives)
+			{
+				for (const D& d : td.second)
+				{
+					this->decisive_to_fringes[d].insert(f);
+				}
+			}
+			it2->second.decisives = std::move(target_decisives);
+		}
+	}
+	return ret;
+}
+
+template <typename F, typename D>
+void FringeBlocks<F, D>::remove_seed(u32 seed)
+{
+	auto it = seed_fringes.find(seed);
+	// skip if seed does not exists
+	if (it == seed_fringes.end())
+		return;
+	assert(!it->second.empty());
+	for (const auto& f : it->second)
+	{ // For all fringes, we need also to update its info about seeds
+		auto& info = fringes.find(f)->second;
+
+		// Because we only remove duplicate seed,
+		// there must be another seed covering the fringe
+		info.seeds.erase(seed); assert(!info.seeds.empty());
+
+		if (info.has_top_rated && info.top_rated_seed == seed)
+		{ // If top_rated_seed has been removed, we need to update it
+			u32 best_seed = 0xdeadbeefu;
+			u64 best_fav_factor = numeric_limits<u64>::max();
+			for (u32 seed : info.seeds)
+			{
+				u64 fav_factor = get_seed_fav_factor(g->afl, seed);
+				if (fav_factor <= best_fav_factor)
+				{
+					best_seed = seed;
+					best_fav_factor = fav_factor;
+				}
+			}
+			info.top_rated_seed = best_seed;
+			info.top_rated_factor = best_fav_factor;
+		}
+	}
+	seed_fringes.erase(it);
+}
+
+}
+
+u8 aflrun_has_new_path(const u8* freached, const u8* reached, const u8* path,
+	const ctx_t* new_paths, size_t len, u8 inc, u32 seed,
+	const u8* new_bits, const size_t* cur_clusters, size_t num_clusters)
+{
+	u8 ret = 0;
+	unique_ptr<rh::unordered_set<Fringe>> new_criticals;
+	unique_ptr<rh::unordered_set<reach_t>> new_critical_blocks;
+	if (len != 0)
+	{
+		// If there are `new_paths`, we update virgin bits.
+		// Note that if there are new virgin bits, there must be `new_paths`,
+		// so any newly reached virgin bits will not be missed.
+
+		// update virgin bit for reachale functions
+		for (reach_t i = 0; i < g->num_freachables; ++i)
+		{
+			if (IS_SET(g->virgin_freachables, i) && IS_SET(freached, i))
+			{
+				g->virgin_freachables[i / 8] &= 0xffu ^ (1u << (i % 8));
+				g->num_freached++;
+				if (i < g->num_ftargets)
+					g->num_freached_targets++;
+			}
+		}
+
+		rh::unordered_set<reach_t> new_blocks;
+		for (reach_t i = 0; i < g->num_reachables; ++i)
+		{
+			// If the bit is virgin (e.i not reached before),
+			// and this execution can reach such virgin bit
+			if (IS_SET(g->virgin_reachables, i) && IS_SET(reached, i))
+			{
+				// we clear the virgin bit
+				g->virgin_reachables[i / 8] &= 0xffu ^ (1u << (i % 8));
+				g->num_reached++;
+				new_blocks.insert(i);
+				if (i < g->num_targets)
+					g->num_reached_targets++;
+			}
+		}
+
+		for (size_t i = 0; i < len; ++i)
+		{
+			const ctx_t& cand = new_paths[i];
+			Fringe f_cand(cand.block, cand.call_ctx);
+			auto del_norm = path_fringes->try_del_fringe(f_cand);
+			auto del_pro = path_pro_fringes->try_del_fringe(f_cand);
+			if (config.no_diversity)
+				continue;
+			if (config.div_level == 1) // Only pro-fringe
+			{
+				for (reach_t b : del_pro)
+				{ // For all blocks removed from pro fringe
+					assert(path_pro_fringes->block_to_fringes.count(b) == 0);
+					if (b >= g->num_targets)
+					{ // If it is not target, we switch it off
+						div_blocks->switch_off(b);
+					}
+				}
+				clusters.clean_supp_cnts();
+			}
+			else if (config.div_level == 2) // pro-fringe + norm-fringe
+			{
+				rh::unordered_set<reach_t> switched_off;
+				for (reach_t b : del_pro)
+				{
+					assert(path_pro_fringes->block_to_fringes.count(b) == 0);
+					if (b >= g->num_targets &&
+						path_fringes->block_to_fringes.count(b) == 0)
+					{ // If fringe is not pro, but still in norm, we still keep.
+						div_blocks->switch_off(b);
+						switched_off.insert(b);
+					}
+				}
+				for (reach_t b : del_norm)
+				{
+					// If a block is deleted from norm fringe,
+					// it cannot appear in pro fringe either.
+					assert(path_pro_fringes->block_to_fringes.count(b) == 0);
+					assert(path_fringes->block_to_fringes.count(b) == 0);
+					if (b >= g->num_targets && switched_off.count(b) == 0)
+					{
+						div_blocks->switch_off(b);
+					}
+				}
+				clusters.clean_supp_cnts();
+			}
+			// All fringes removed by `path_pro_fringes`
+		}
+
+		u8 cf = 0, ct = 0, f = 0, t = 0;
+		new_criticals = make_unique<rh::unordered_set<Fringe>>();
+		new_critical_blocks = make_unique<rh::unordered_set<reach_t>>();
+		for (size_t i = 0; i < len; ++i)
+		{
+			reach_t block = new_paths[i].block;
+			u8 r = try_add_fringe(new_paths[i]) + 1;
+
+			// Update context-sensitive fringe and target
+			cf = max(r, cf);
+			if (block < g->num_targets)
+				ct = 1;
+
+			// It it is the first time a block is reached,
+			// we update context-insensitive fringe and target.
+			if (new_blocks.find(block) != new_blocks.end())
+			{
+				f = max(r, f);
+				if (block < g->num_targets)
+					t = 1;
+			}
+
+			if (r >= 2 || block < g->num_targets)
+			{
+				new_criticals->emplace(
+					new_paths[i].block, new_paths[i].call_ctx);
+				new_critical_blocks->insert(new_paths[i].block);
+			}
+
+			// When there is a new fringe or target, we activate its switch.
+			if (block < g->num_targets || r > 3 - config.div_level)
+			{ // Note this can happen multiple times for a block, 3 cases:
+				// 1. If first time it is activated, then switch is turned on.
+				// 2. If switch is already on, them nothing is done.
+				// 3. If switch was turned off before, then turn on again.
+					// Such case only occurs for r == 2. (e.i. context fringe)
+				div_blocks->switch_on(block);
+			}
+		}
+		if (config.reset_level == 1)
+		{
+			if (f > 0)
+				state.reset(f - 1); // state.reset(cf - 1); TODO: config
+			if (config.reset_target && t)
+				state.exploit();
+		} // TODO: reset_level == 2
+		if (state.is_init_cov())
+		{
+			if (config.init_cov_reset == 1)
+			{
+				if (f > 0 || t)
+					state.reset_cov_quant();
+			}
+			else if (config.init_cov_reset == 2)
+			{
+				if (cf > 0 || ct)
+					state.reset_cov_quant();
+			}
+		}
+
+		/*
+		Given a execution trace exerted by a program,
+		and try to see if there is something new;
+		it returns information about if fringe is created,
+		cf:
+			1 for a new context-sensitive block is covered,
+			2 for a new context-sensitive fringe is added,
+			3 for a new context-sensitive pro fringe is added;
+		ct:
+			1 for new context-sensitive target is reached
+		f:
+			1 for a new reachable block is covered,
+			2 for a new fringe is added for the first time,
+			3 for a new pro fringe is added for the first time,
+		t bit:
+			1 for new context-insensitive target is reached
+		*/
+
+		if (f >= 1) update_time.last_reachable = get_cur_time();
+		if (f >= 2) update_time.last_fringe = get_cur_time();
+		if (f >= 3) update_time.last_pro_fringe = get_cur_time();
+
+		if (t) update_time.last_target = get_cur_time();
+
+		if (cf >= 1) update_time.last_ctx_reachable = get_cur_time();
+		if (cf >= 2) update_time.last_ctx_fringe = get_cur_time();
+		if (cf >= 3) update_time.last_ctx_pro_fringe = get_cur_time();
+
+		if (ct) update_time.last_ctx_target = get_cur_time();
+
+		ret = cf >= 2 || ct;
+	}
+
+	// TODO: Coverage for Seed Isolation
+
+	bool has_cov = false;
+	if (num_clusters == 0 || (new_bits && new_bits[0]))
+	{ // If `num_clusters` is zero, or primary map has new bits,
+		// then the seed is non-extra,
+		// so we don't do seed isolation and consider all coverage.
+		has_cov |= path_fringes->fringe_coverage(path, seed);
+		has_cov |= path_pro_fringes->fringe_coverage(path, seed);
+		has_cov |= reached_targets->fringe_coverage(path, seed);
+		div_blocks->div_coverage(reached, seed);
+	}
+	else
+	{
+		rh::unordered_set<reach_t> new_bits_targets;
+		if (new_bits)
+		{ // If new_bits is not NULL, there is any virgin map update.
+			for (size_t i = 1; i < num_clusters; ++i)
+			{
+				if (new_bits[i])
+				{ // If there is any new bit, insert all blocks in the cluster.
+					const auto& ts = clusters.get_targets(cur_clusters[i]);
+					new_bits_targets.insert(ts.begin(), ts.end());
+				}
+			}
+		}
+		has_cov |= path_fringes->fringe_coverage(
+			path, seed, new_criticals.get(), &new_bits_targets);
+		has_cov |= path_pro_fringes->fringe_coverage(
+			path, seed, new_criticals.get(), &new_bits_targets);
+		has_cov |= reached_targets->fringe_coverage(
+			path, seed, new_criticals.get(), &new_bits_targets);
+		div_blocks->div_coverage(
+			reached, seed, new_critical_blocks.get(), &new_bits_targets);
+	}
+
+	// Reset `cov_quant` to 0 in initial coverage if any new fringe coverage
+	if (config.init_cov_reset == 3 && state.is_init_cov() && has_cov)
+		state.reset_cov_quant();
+
+	/*if (inc)
+	{
+		path_fringes->inc_freq(path);
+		reached_targets->inc_freq(path);
+	}*/
+
+	return ret;
+}
+
+u8 aflrun_end_cycle()
+{
+	return state.is_reset() || state.is_end_cov();
+}
+
+void aflrun_update_fuzzed_quant(u32 id, double fuzzed_quant)
+{
+	path_fringes->update_fuzzed_quant(id, fuzzed_quant);
+	path_pro_fringes->update_fuzzed_quant(id, fuzzed_quant);
+	reached_targets->update_fuzzed_quant(id, fuzzed_quant);
+	state.add_quant(fuzzed_quant);
+	if (id >= seed_quant.size())
+		seed_quant.resize(id + 1);
+	seed_quant[id] += fuzzed_quant;
+}
+
+void aflrun_update_fringe_score(u32 seed)
+{
+	path_fringes->update_fringe_score(seed);
+	path_pro_fringes->update_fringe_score(seed);
+	reached_targets->update_fringe_score(seed);
+}
+
+void aflrun_set_favored_seeds(const u32* seeds, u32 num, u8 mode)
+{
+	switch (mode)
+	{
+	case AFLRunState::kFringe:
+		return path_fringes->set_favored_seeds(seeds, num);
+	case AFLRunState::kProFringe:
+		return path_pro_fringes->set_favored_seeds(seeds, num);
+	case AFLRunState::kTarget:
+		return reached_targets->set_favored_seeds(seeds, num);
+	default:
+		abort();
+	}
+}
+
+u32 aflrun_cull_queue(u32* seeds, u32 num)
+{
+	switch (state.get_mode())
+	{
+	case AFLRunState::kFringe:
+		return path_fringes->cull_queue(seeds, num);
+	case AFLRunState::kProFringe:
+		return path_pro_fringes->cull_queue(seeds, num);
+	case AFLRunState::kTarget:
+		return reached_targets->cull_queue(seeds, num);
+	case AFLRunState::kUnite:
+		return cull_queue_unite(seeds, num);
+	default:
+		abort();
+	}
+}
+
+// Note that the virgin maps returned can be inaccurate,
+// which should not be used into `has_new_bits_mul`,
+// instead use ones returned by `aflrun_get_seed_virgins`.
+size_t aflrun_get_virgins(
+	const ctx_t* targets, size_t num, u8** ret_maps, size_t* ret_clusters)
+	// `ret_maps` and `ret_clusters` must have size at least `num`
+{
+	if (config.no_diversity)
+		return 0;
+	const ctx_t* t_end = targets + num;
+	// The maximum potential number of clusters is current number of cluster
+	// plus number of new context-sensitive targets, because each target
+	// can only increase the number of clusters by one.
+	bo::dynamic_bitset<> visited_clusters(clusters.size() + num);
+	visited_clusters[0] = true; // always skip primary cluster
+
+	size_t idx = 0;
+	for (const ctx_t* t = targets; t < t_end; ++t)
+	{
+		// Note that even if binary is compiled with AFLRUN_CTX_DIV,
+		// but fuzzer is not, it can still work correctly
+		size_t cluster = clusters.get_cluster(to_cluster_target(t));
+		if (visited_clusters[cluster])
+			continue;
+		visited_clusters[cluster] = true;
+
+		ret_clusters[idx] = cluster;
+		ret_maps[idx++] = clusters.get_virgin_map(cluster);
+	}
+	return idx;
+}
+
+// The maximum number of clusters of a seed is number of active diversity
+// blocks it cover, assuming each diversity block can create one cluster,
+// including primary cluster.
+size_t aflrun_max_clusters(u32 seed)
+{
+	auto it = div_blocks->seed_blocks.find(seed);
+	return 1 +
+		(it == div_blocks->seed_blocks.end() ? 0 : it->second.size());
+}
+
+// Basically same as above, except div blocks are fetched from `div_blocks`
+size_t aflrun_get_seed_virgins(u32 seed, u8** ret_maps, size_t* ret_clusters)
+{
+	if (config.no_diversity)
+		return 0;
+	auto it = div_blocks->seed_blocks.find(seed);
+	if (it == div_blocks->seed_blocks.end())
+		return 0;
+	bo::dynamic_bitset<> visited_clusters(clusters.size() + it->second.size());
+	visited_clusters[0] = true; // always skip primary cluster
+
+	size_t idx = 0;
+	for (auto t : it->second)
+	{
+		size_t cluster = clusters.get_cluster(t);
+		if (visited_clusters[cluster])
+			continue;
+		visited_clusters[cluster] = true;
+
+		ret_clusters[idx] = cluster;
+		ret_maps[idx++] = clusters.get_virgin_map(cluster);
+	}
+	return idx;
+}
+
+size_t aflrun_get_seed_tops(u32 seed, void*** ret_tops)
+{
+	if (config.no_diversity)
+		return 0;
+	auto it = div_blocks->seed_blocks.find(seed);
+	if (it == div_blocks->seed_blocks.end())
+		return 0;
+	bo::dynamic_bitset<> visited_clusters(clusters.size() + it->second.size());
+	visited_clusters[0] = true; // always skip primary cluster
+
+	size_t idx = 0;
+	for (auto t : it->second)
+	{
+		size_t cluster = clusters.get_cluster(t);
+		if (visited_clusters[cluster])
+			continue;
+		visited_clusters[cluster] = true;
+
+		ret_tops[idx++] = clusters.get_top_rated(cluster);
+	}
+	return idx;
+}
+
+size_t aflrun_get_num_clusters(void)
+{
+	size_t size = clusters.size();
+	size_t ret = 0;
+	for (size_t i = 0; i < size; ++i)
+	{
+		if (clusters.get_top_rated(i)) ++ret;
+	}
+	return ret;
+}
+
+size_t aflrun_get_all_tops(void*** ret_tops, u8 mode)
+{
+	if (config.no_diversity)
+		return 0;
+	return clusters.get_all_tops(ret_tops, mode);
+}
+
+void aflrun_set_num_active_seeds(u32 n)
+{
+	num_active_seeds = n;
+}
+
+void discover_word_mul(u8 *new_bits,
+	u64 *current, u64* const *virgins, size_t num, size_t idx, u8 modify)
+{
+	u64 or_all = 0;
+	unique_ptr<vector<u64>> and_bit_seq(nullptr);
+
+	for (size_t i = 0; i < num; ++i)
+	{
+		u64* virgin = virgins[i] + idx;
+
+		u64 tmp = *current & *virgin;
+
+		if (and_bit_seq != nullptr)
+			and_bit_seq->push_back(tmp);
+
+		if (tmp)
+		{
+			or_all |= tmp;
+
+			// For the first time we touched a virgin map,
+			// we create the sequence to store all `*current & *virgin` values.
+			// This is a lazy approach so that we don't create the sequence
+			// for most zero sequences.
+			if (and_bit_seq == nullptr)
+			{
+				and_bit_seq = make_unique<vector<u64>>();
+				and_bit_seq->reserve(num);
+				// Since this is the first time we touch virgin bits,
+				// all previous `*current & *virgin` values are zeros.
+				for (size_t j = 0; j < i; ++j)
+					and_bit_seq->push_back(0);
+				and_bit_seq->push_back(tmp);
+			}
+
+			u8* ret = new_bits + i;
+			if (likely(*ret < 2))
+			{
+				u8 *cur = (u8 *)current;
+				u8 *vir = (u8 *)virgin;
+
+				if ((cur[0] && vir[0] == 0xff) || (cur[1] && vir[1] == 0xff) ||
+					(cur[2] && vir[2] == 0xff) || (cur[3] && vir[3] == 0xff) ||
+					(cur[4] && vir[4] == 0xff) || (cur[5] && vir[5] == 0xff) ||
+					(cur[6] && vir[6] == 0xff) || (cur[7] && vir[7] == 0xff))
+					*ret = 2;
+				else
+					*ret = 1;
+			}
+			if (modify)
+				*virgin &= ~*current;
+		}
+	}
+
+	if (modify && or_all != 0)
+	{
+		clusters.add_bit_seq(or_all, std::move(and_bit_seq));
+	}
+}
+
+void aflrun_commit_bit_seqs(const size_t* cs, size_t num)
+{
+	clusters.commit_bit_seqs(cs, num);
+}