1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
|
{
"cells": [
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [],
"source": [
"# benchmark.ipynb\n",
"# Part of the aflplusplus project, requires an ipynb (Jupyter) editor or viewer.\n",
"# Author: Chris Ball <chris@printf.net>\n",
"import json\n",
"import pandas as pd\n",
"with open(\"benchmark-results.jsonl\") as f:\n",
" lines = f.read().splitlines()\n",
"json_lines = [json.loads(line) for line in lines]\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Translate the JSON Lines entries into a single pandas DataFrame\n",
"\n",
"We have JSON Lines in [benchmark-results.jsonl](benchmark-results.jsonl) that look like this:"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{\n",
" \"config\": {\n",
" \"afl_persistent_config\": true,\n",
" \"afl_system_config\": true,\n",
" \"afl_version\": \"++4.09a\",\n",
" \"comment\": \"i9-9900k, 16GB DDR4-3000, Arch Linux\",\n",
" \"compiler\": \"clang version 15.0.7\",\n",
" \"target_arch\": \"x86_64-pc-linux-gnu\"\n",
" },\n",
" \"hardware\": {\n",
" \"cpu_fastest_core_mhz\": 4999.879,\n",
" \"cpu_model\": \"Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz\",\n",
" \"cpu_threads\": 16\n",
" },\n",
" \"targets\": {\n",
" \"test-instr\": {\n",
" \"multicore\": {\n",
" \"afl_execs_per_sec\": 11025.88,\n",
" \"afl_execs_total\": 519670,\n",
" \"fuzzers_used\": 1,\n",
" \"run_end\": \"2023-09-24 01:18:19.516294\",\n",
" \"run_start\": \"2023-09-24 01:17:55.982600\",\n",
" \"total_execs_per_sec\": 11019.3,\n",
" \"total_run_time\": 47.16\n",
" }\n",
" },\n",
" \"test-instr-persist-shmem\": {\n",
" \"multicore\": {\n",
" \"afl_execs_per_sec\": 134423.5,\n",
" \"afl_execs_total\": 519670,\n",
" \"fuzzers_used\": 1,\n",
" \"run_end\": \"2023-09-24 01:17:32.262373\",\n",
" \"run_start\": \"2023-09-24 01:17:30.328037\",\n",
" \"total_execs_per_sec\": 133591.26,\n",
" \"total_run_time\": 3.89\n",
" }\n",
" }\n",
" }\n",
"}\n"
]
}
],
"source": [
"print(json.dumps(json.loads(lines[0]), indent=2))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The [pd.json_normalize()](https://pandas.pydata.org/docs/reference/api/pandas.json_normalize.html]) method translates this into a flat table that we can perform queries against:"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>config.afl_persistent_config</th>\n",
" <th>config.afl_system_config</th>\n",
" <th>config.afl_version</th>\n",
" <th>config.comment</th>\n",
" <th>config.compiler</th>\n",
" <th>config.target_arch</th>\n",
" <th>hardware.cpu_fastest_core_mhz</th>\n",
" <th>hardware.cpu_model</th>\n",
" <th>hardware.cpu_threads</th>\n",
" <th>targets.test-instr.multicore.afl_execs_per_sec</th>\n",
" <th>...</th>\n",
" <th>targets.test-instr.singlecore.run_start</th>\n",
" <th>targets.test-instr.singlecore.total_execs_per_sec</th>\n",
" <th>targets.test-instr.singlecore.total_run_time</th>\n",
" <th>targets.test-instr-persist-shmem.singlecore.afl_execs_per_sec</th>\n",
" <th>targets.test-instr-persist-shmem.singlecore.afl_execs_total</th>\n",
" <th>targets.test-instr-persist-shmem.singlecore.fuzzers_used</th>\n",
" <th>targets.test-instr-persist-shmem.singlecore.run_end</th>\n",
" <th>targets.test-instr-persist-shmem.singlecore.run_start</th>\n",
" <th>targets.test-instr-persist-shmem.singlecore.total_execs_per_sec</th>\n",
" <th>targets.test-instr-persist-shmem.singlecore.total_run_time</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>++4.09a</td>\n",
" <td>i9-9900k, 16GB DDR4-3000, Arch Linux</td>\n",
" <td>clang version 15.0.7</td>\n",
" <td>x86_64-pc-linux-gnu</td>\n",
" <td>4999.879</td>\n",
" <td>Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz</td>\n",
" <td>16</td>\n",
" <td>11025.88</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>++4.09a</td>\n",
" <td>i9-9900k, 16GB DDR4-3000, Arch Linux</td>\n",
" <td>clang version 15.0.7</td>\n",
" <td>x86_64-pc-linux-gnu</td>\n",
" <td>4998.794</td>\n",
" <td>Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz</td>\n",
" <td>16</td>\n",
" <td>21139.64</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>++4.09a</td>\n",
" <td>i9-9900k, 16GB DDR4-3000, Arch Linux</td>\n",
" <td>clang version 15.0.7</td>\n",
" <td>x86_64-pc-linux-gnu</td>\n",
" <td>4998.859</td>\n",
" <td>Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz</td>\n",
" <td>16</td>\n",
" <td>30618.28</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>++4.09a</td>\n",
" <td>i9-9900k, 16GB DDR4-3000, Arch Linux</td>\n",
" <td>clang version 15.0.7</td>\n",
" <td>x86_64-pc-linux-gnu</td>\n",
" <td>5000.078</td>\n",
" <td>Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz</td>\n",
" <td>16</td>\n",
" <td>39125.92</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>++4.09a</td>\n",
" <td>i9-9900k, 16GB DDR4-3000, Arch Linux</td>\n",
" <td>clang version 15.0.7</td>\n",
" <td>x86_64-pc-linux-gnu</td>\n",
" <td>4996.885</td>\n",
" <td>Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz</td>\n",
" <td>16</td>\n",
" <td>47861.04</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>5 rows × 37 columns</p>\n",
"</div>"
],
"text/plain": [
" config.afl_persistent_config config.afl_system_config config.afl_version \\\n",
"0 True True ++4.09a \n",
"1 True True ++4.09a \n",
"2 True True ++4.09a \n",
"3 True True ++4.09a \n",
"4 True True ++4.09a \n",
"\n",
" config.comment config.compiler \\\n",
"0 i9-9900k, 16GB DDR4-3000, Arch Linux clang version 15.0.7 \n",
"1 i9-9900k, 16GB DDR4-3000, Arch Linux clang version 15.0.7 \n",
"2 i9-9900k, 16GB DDR4-3000, Arch Linux clang version 15.0.7 \n",
"3 i9-9900k, 16GB DDR4-3000, Arch Linux clang version 15.0.7 \n",
"4 i9-9900k, 16GB DDR4-3000, Arch Linux clang version 15.0.7 \n",
"\n",
" config.target_arch hardware.cpu_fastest_core_mhz \\\n",
"0 x86_64-pc-linux-gnu 4999.879 \n",
"1 x86_64-pc-linux-gnu 4998.794 \n",
"2 x86_64-pc-linux-gnu 4998.859 \n",
"3 x86_64-pc-linux-gnu 5000.078 \n",
"4 x86_64-pc-linux-gnu 4996.885 \n",
"\n",
" hardware.cpu_model hardware.cpu_threads \\\n",
"0 Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz 16 \n",
"1 Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz 16 \n",
"2 Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz 16 \n",
"3 Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz 16 \n",
"4 Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz 16 \n",
"\n",
" targets.test-instr.multicore.afl_execs_per_sec ... \\\n",
"0 11025.88 ... \n",
"1 21139.64 ... \n",
"2 30618.28 ... \n",
"3 39125.92 ... \n",
"4 47861.04 ... \n",
"\n",
" targets.test-instr.singlecore.run_start \\\n",
"0 NaN \n",
"1 NaN \n",
"2 NaN \n",
"3 NaN \n",
"4 NaN \n",
"\n",
" targets.test-instr.singlecore.total_execs_per_sec \\\n",
"0 NaN \n",
"1 NaN \n",
"2 NaN \n",
"3 NaN \n",
"4 NaN \n",
"\n",
" targets.test-instr.singlecore.total_run_time \\\n",
"0 NaN \n",
"1 NaN \n",
"2 NaN \n",
"3 NaN \n",
"4 NaN \n",
"\n",
" targets.test-instr-persist-shmem.singlecore.afl_execs_per_sec \\\n",
"0 NaN \n",
"1 NaN \n",
"2 NaN \n",
"3 NaN \n",
"4 NaN \n",
"\n",
" targets.test-instr-persist-shmem.singlecore.afl_execs_total \\\n",
"0 NaN \n",
"1 NaN \n",
"2 NaN \n",
"3 NaN \n",
"4 NaN \n",
"\n",
" targets.test-instr-persist-shmem.singlecore.fuzzers_used \\\n",
"0 NaN \n",
"1 NaN \n",
"2 NaN \n",
"3 NaN \n",
"4 NaN \n",
"\n",
" targets.test-instr-persist-shmem.singlecore.run_end \\\n",
"0 NaN \n",
"1 NaN \n",
"2 NaN \n",
"3 NaN \n",
"4 NaN \n",
"\n",
" targets.test-instr-persist-shmem.singlecore.run_start \\\n",
"0 NaN \n",
"1 NaN \n",
"2 NaN \n",
"3 NaN \n",
"4 NaN \n",
"\n",
" targets.test-instr-persist-shmem.singlecore.total_execs_per_sec \\\n",
"0 NaN \n",
"1 NaN \n",
"2 NaN \n",
"3 NaN \n",
"4 NaN \n",
"\n",
" targets.test-instr-persist-shmem.singlecore.total_run_time \n",
"0 NaN \n",
"1 NaN \n",
"2 NaN \n",
"3 NaN \n",
"4 NaN \n",
"\n",
"[5 rows x 37 columns]"
]
},
"execution_count": 42,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"\n",
"df = pd.json_normalize(json_lines)\n",
"df.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Graph prep\n",
"\n",
"We're looking for a line graph showing lines for each fuzz target, in both singlecore and multicore modes, in each config setting -- where the x-axis is number of cores, and the y-axis is either afl_execs_per_sec or total_execs_per_sec (I'm not yet sure which is a better metric to use).\n",
"\n",
"But first, a mini test harness by checking that the number of rows matched what we'd intuitively expect:"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [],
"source": [
"i7 = df.query(\"`config.comment` == 'i9-9900k, 16GB DDR4-3000, Arch Linux'\")\n",
"assert len(i7) == 148\n",
"multicore = i7.query(\"`targets.test-instr-persist-shmem.multicore.total_execs_per_sec` > 0 or `targets.test-instr.multicore.total_execs_per_sec` > 0\")\n",
"assert len(multicore) == 144 # 36 cores * 4 states * 1 run (containing two targets)\n",
"singlecore = i7.query(\"`targets.test-instr-persist-shmem.singlecore.total_execs_per_sec` > 0 or `targets.test-instr.singlecore.total_execs_per_sec` > 0\")\n",
"assert len(singlecore) == 4 # 1 core * 4 states * 1 run (containing two targets)"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [],
"source": [
"def build_graphdf_from_query(query: pd.DataFrame):\n",
" \"\"\"Build a table suitable for graphing from a subset of the dataframe.\"\"\"\n",
" graphdata = []\n",
" max_fuzzers = int(query[[\"targets.test-instr-persist-shmem.multicore.fuzzers_used\", \"targets.test-instr.multicore.fuzzers_used\"]].max(axis=1).max(axis=0))\n",
" for _, row in query.iterrows():\n",
" for target in [\"test-instr-persist-shmem\", \"test-instr\"]:\n",
" for mode in [\"multicore\", \"singlecore\"]:\n",
" label = \"\"\n",
" if not row[f\"targets.{target}.{mode}.total_execs_per_sec\"] > 0:\n",
" continue\n",
" execs_per_sec = row[f\"targets.{target}.{mode}.total_execs_per_sec\"]\n",
" afl_execs_per_sec = row[f\"targets.{target}.{mode}.afl_execs_per_sec\"]\n",
" parallel_fuzzers = row[f\"targets.{target}.{mode}.fuzzers_used\"]\n",
" afl_persistent_config = row[\"config.afl_persistent_config\"]\n",
" afl_system_config = row[\"config.afl_system_config\"]\n",
" if target == \"test-instr-persist-shmem\":\n",
" label += \"shmem\"\n",
" else:\n",
" label += \"base\"\n",
" if mode == \"multicore\":\n",
" label += \"-multicore\"\n",
" else:\n",
" label += \"-singlecore\"\n",
" if afl_persistent_config:\n",
" label += \"+persist-conf\"\n",
" if afl_system_config:\n",
" label += \"+system-conf\"\n",
" \n",
" if label == \"shmem-multicore+persist-conf+system-conf\":\n",
" graphdata.append({\"execs_per_sec\": execs_per_sec, \"parallel_fuzzers\": parallel_fuzzers, \"afl_persistent_config\": afl_persistent_config, \"afl_system_config\": afl_system_config, \"label\": \"Multicore: Persistent mode/shared memory + kernel config\"})\n",
" graphdata.append({\"execs_per_sec\": afl_execs_per_sec, \"parallel_fuzzers\": parallel_fuzzers, \"afl_persistent_config\": afl_persistent_config, \"afl_system_config\": afl_system_config, \"label\": \"Multicore: afl_execs: Persistent mode/shared memory + kernel config\"})\n",
" if label == \"shmem-multicore\":\n",
" graphdata.append({\"execs_per_sec\": execs_per_sec, \"parallel_fuzzers\": parallel_fuzzers, \"afl_persistent_config\": afl_persistent_config, \"afl_system_config\": afl_system_config, \"label\": \"Multicore: Persistent mode/shared memory without kernel config\"})\n",
" if label == \"base-multicore+persist-conf+system-conf\":\n",
" graphdata.append({\"execs_per_sec\": execs_per_sec, \"parallel_fuzzers\": parallel_fuzzers, \"afl_persistent_config\": afl_persistent_config, \"afl_system_config\": afl_system_config, \"label\": \"Multicore: Non-persistent mode + kernel config\"})\n",
" if label == \"shmem-singlecore+persist-conf+system-conf\":\n",
" for i in range(1, max_fuzzers + 1):\n",
" graphdata.append({\"execs_per_sec\": execs_per_sec, \"parallel_fuzzers\": float(i), \"afl_persistent_config\": afl_persistent_config, \"afl_system_config\": afl_system_config, \"label\": \"Singlecore: Persistent mode/shared memory + kernel config\"})\n",
" if label == \"base-singlecore+persist-conf+system-conf\":\n",
" for i in range(1, max_fuzzers + 1):\n",
" graphdata.append({\"execs_per_sec\": execs_per_sec, \"parallel_fuzzers\": float(i), \"afl_persistent_config\": afl_persistent_config, \"afl_system_config\": afl_system_config, \"label\": \"Singlecore: Non-persistent mode + kernel config\"})\n",
" return pd.DataFrame.from_records(graphdata).sort_values(\"label\", ascending=False)\n",
"\n",
"graphdf = build_graphdf_from_query(i7)"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [
{
"data": {
"image/svg+xml": [
"<svg class=\"main-svg\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\" width=\"1200\" height=\"400\" style=\"\" viewBox=\"0 0 1200 400\"><rect x=\"0\" y=\"0\" width=\"1200\" height=\"400\" style=\"fill: rgb(255, 255, 255); fill-opacity: 1;\"/><defs id=\"defs-183d53\"><g class=\"clips\"><clipPath id=\"clip183d53xyplot\" class=\"plotclip\"><rect width=\"632\" height=\"220\"/></clipPath><clipPath class=\"axesclip\" id=\"clip183d53x\"><rect x=\"80\" y=\"0\" width=\"632\" height=\"400\"/></clipPath><clipPath class=\"axesclip\" id=\"clip183d53y\"><rect x=\"0\" y=\"100\" width=\"1200\" height=\"220\"/></clipPath><clipPath class=\"axesclip\" id=\"clip183d53xy\"><rect x=\"80\" y=\"100\" width=\"632\" height=\"220\"/></clipPath></g><g class=\"gradients\"/><g class=\"patterns\"/></defs><g class=\"bglayer\"><rect class=\"bg\" x=\"80\" y=\"100\" width=\"632\" height=\"220\" style=\"fill: rgb(229, 236, 246); fill-opacity: 1; stroke-width: 0;\"/></g><g class=\"layer-below\"><g class=\"imagelayer\"/><g class=\"shapelayer\"/></g><g class=\"cartesianlayer\"><g class=\"subplot xy\"><g class=\"layer-subplot\"><g class=\"shapelayer\"/><g class=\"imagelayer\"/></g><g class=\"minor-gridlayer\"><g class=\"x\"/><g class=\"y\"/></g><g class=\"gridlayer\"><g class=\"x\"><path class=\"xgrid crisp\" transform=\"translate(98.06,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(116.11,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(134.17000000000002,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(152.23000000000002,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(170.29000000000002,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(188.34,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(206.4,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(224.46,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(242.51,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(260.57,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(278.63,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(296.69,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(314.74,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(332.8,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(350.86,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(368.91,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(386.97,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(405.03,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(423.09,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(441.14,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(459.2,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(477.26,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(495.31,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(513.37,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(531.4300000000001,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(549.49,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(567.54,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(585.6,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(603.66,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(621.71,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(639.77,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(657.83,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(675.89,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(693.94,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/></g><g class=\"y\"><path class=\"ygrid crisp\" transform=\"translate(0,309)\" d=\"M80,0h632\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"ygrid crisp\" transform=\"translate(0,269.4)\" d=\"M80,0h632\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"ygrid crisp\" transform=\"translate(0,229.8)\" d=\"M80,0h632\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"ygrid crisp\" transform=\"translate(0,190.2)\" d=\"M80,0h632\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"ygrid crisp\" transform=\"translate(0,150.6)\" d=\"M80,0h632\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"ygrid crisp\" transform=\"translate(0,111)\" d=\"M80,0h632\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/></g></g><g class=\"zerolinelayer\"><path class=\"yzl zl crisp\" transform=\"translate(0,310.6)\" d=\"M80,0h632\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 2px;\"/></g><path class=\"xlines-below\"/><path class=\"ylines-below\"/><g class=\"overlines-below\"/><g class=\"xaxislayer-below\"/><g class=\"yaxislayer-below\"/><g class=\"overaxes-below\"/><g class=\"plot\" transform=\"translate(80,100)\" clip-path=\"url(#clip183d53xyplot)\"><g class=\"scatterlayer mlayer\"><g class=\"trace scatter trace67f048\" style=\"stroke-miterlimit: 2; opacity: 1;\"><g class=\"fills\"/><g class=\"errorbars\"/><g class=\"lines\"><path class=\"js-line\" d=\"M0,209L72.23,203.68L90.29,202.52L126.4,200.14L144.46,201.72L270.86,195.56L288.91,198.34L397.26,197.15L415.31,197.09L632,197.16\" style=\"vector-effect: none; fill: none; stroke: rgb(99, 110, 250); stroke-opacity: 1; stroke-width: 2px; opacity: 1;\"/></g><g class=\"points\"/><g class=\"text\"/></g><g class=\"trace scatter trace6a42b9\" style=\"stroke-miterlimit: 2; opacity: 1;\"><g class=\"fills\"/><g class=\"errorbars\"/><g class=\"lines\"><path class=\"js-line\" d=\"M0,191.23L36.11,155.48L54.17,139.54L72.23,123.82L90.29,106.7L108.34,91.04L126.4,73.95L144.46,107.73L162.51,97.67L180.57,87.11L198.63,78.06L216.69,67.02L234.74,56.87L270.86,36.19L288.91,62.39L306.97,57.22L325.03,54.53L343.09,52.35L361.14,56.58L379.2,53.82L397.26,46.38L415.31,46.25L433.37,49.1L487.54,45.95L505.6,45.74L541.71,44.05L559.77,45.05L595.89,48.71L613.94,48.56L632,47.54\" style=\"vector-effect: none; fill: none; stroke: rgb(239, 85, 59); stroke-opacity: 1; stroke-width: 2px; opacity: 1;\"/></g><g class=\"points\"/><g class=\"text\"/></g><g class=\"trace scatter trace9061df\" style=\"stroke-miterlimit: 2; opacity: 1;\"><g class=\"fills\"/><g class=\"errorbars\"/><g class=\"lines\"><path class=\"js-line\" d=\"M0,197.43L36.11,172.87L54.17,161.84L108.34,128.6L126.4,117.75L144.46,139.39L162.51,132.22L216.69,110.88L234.74,104.08L270.86,89.59L288.91,107.08L306.97,104.09L325.03,103.23L343.09,101.83L361.14,101.51L379.2,100.34L397.26,100.67L415.31,99.28L433.37,96.75L487.54,94.9L505.6,95.69L541.71,96.19L559.77,97.91L577.83,99.28L595.89,98.12L613.94,99.73L632,99.19\" style=\"vector-effect: none; fill: none; stroke: rgb(0, 204, 150); stroke-opacity: 1; stroke-width: 2px; opacity: 1;\"/></g><g class=\"points\"/><g class=\"text\"/></g><g class=\"trace scatter trace245d7c\" style=\"stroke-miterlimit: 2; opacity: 1;\"><g class=\"fills\"/><g class=\"errorbars\"/><g class=\"lines\"><path class=\"js-line\" d=\"M0,191.11L36.11,154.97L54.17,138.67L126.4,71.04L144.46,66.03L198.63,50.54L216.69,46.64L270.86,32.66L288.91,26.18L325.03,20.08L343.09,18.02L361.14,15.98L379.2,12.9L397.26,11L415.31,11.18L433.37,13.23L451.43,12.07L469.49,11.23L487.54,14.98L505.6,19.03L523.66,21.9L541.71,25.51L559.77,30.36L577.83,30.29L595.89,31.67L632,29.35\" style=\"vector-effect: none; fill: none; stroke: rgb(171, 99, 250); stroke-opacity: 1; stroke-width: 2px; opacity: 1;\"/></g><g class=\"points\"/><g class=\"text\"/></g><g class=\"trace scatter traceab90ea\" style=\"stroke-miterlimit: 2; opacity: 1;\"><g class=\"fills\"/><g class=\"errorbars\"/><g class=\"lines\"><path class=\"js-line\" d=\"M0,209L632,209\" style=\"vector-effect: none; fill: none; stroke: rgb(255, 161, 90); stroke-opacity: 1; stroke-width: 2px; opacity: 1;\"/></g><g class=\"points\"/><g class=\"text\"/></g><g class=\"trace scatter trace34dbf2\" style=\"stroke-miterlimit: 2; opacity: 1;\"><g class=\"fills\"/><g class=\"errorbars\"/><g class=\"lines\"><path class=\"js-line\" d=\"M0,190.94L632,190.94\" style=\"vector-effect: none; fill: none; stroke: rgb(25, 211, 243); stroke-opacity: 1; stroke-width: 2px; opacity: 1;\"/></g><g class=\"points\"/><g class=\"text\"/></g></g></g><g class=\"overplot\"/><path class=\"xlines-above crisp\" d=\"M0,0\" style=\"fill: none;\"/><path class=\"ylines-above crisp\" d=\"M0,0\" style=\"fill: none;\"/><g class=\"overlines-above\"/><g class=\"xaxislayer-above\"><g class=\"xtick\"><text text-anchor=\"middle\" x=\"0\" y=\"333\" transform=\"translate(80,0)\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\">1</text></g><g class=\"xtick\"><text text-anchor=\"middle\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(98.06,0)\">2</text></g><g class=\"xtick\"><text text-anchor=\"middle\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(116.11,0)\">3</text></g><g class=\"xtick\"><text text-anchor=\"middle\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(134.17000000000002,0)\">4</text></g><g class=\"xtick\"><text text-anchor=\"middle\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(152.23000000000002,0)\">5</text></g><g class=\"xtick\"><text text-anchor=\"middle\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(170.29000000000002,0)\">6</text></g><g class=\"xtick\"><text text-anchor=\"middle\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(188.34,0)\">7</text></g><g class=\"xtick\"><text text-anchor=\"middle\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(206.4,0)\">8</text></g><g class=\"xtick\"><text text-anchor=\"middle\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(224.46,0)\">9</text></g><g class=\"xtick\"><text text-anchor=\"middle\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(242.51,0)\">10</text></g><g class=\"xtick\"><text text-anchor=\"middle\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(260.57,0)\">11</text></g><g class=\"xtick\"><text text-anchor=\"middle\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(278.63,0)\">12</text></g><g class=\"xtick\"><text text-anchor=\"middle\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(296.69,0)\">13</text></g><g class=\"xtick\"><text text-anchor=\"middle\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(314.74,0)\">14</text></g><g class=\"xtick\"><text text-anchor=\"middle\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(332.8,0)\">15</text></g><g class=\"xtick\"><text text-anchor=\"middle\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(350.86,0)\">16</text></g><g class=\"xtick\"><text text-anchor=\"middle\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(368.91,0)\">17</text></g><g class=\"xtick\"><text text-anchor=\"middle\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(386.97,0)\">18</text></g><g class=\"xtick\"><text text-anchor=\"middle\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(405.03,0)\">19</text></g><g class=\"xtick\"><text text-anchor=\"middle\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(423.09,0)\">20</text></g><g class=\"xtick\"><text text-anchor=\"middle\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(441.14,0)\">21</text></g><g class=\"xtick\"><text text-anchor=\"middle\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(459.2,0)\">22</text></g><g class=\"xtick\"><text text-anchor=\"middle\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(477.26,0)\">23</text></g><g class=\"xtick\"><text text-anchor=\"middle\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(495.31,0)\">24</text></g><g class=\"xtick\"><text text-anchor=\"middle\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(513.37,0)\">25</text></g><g class=\"xtick\"><text text-anchor=\"middle\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(531.4300000000001,0)\">26</text></g><g class=\"xtick\"><text text-anchor=\"middle\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(549.49,0)\">27</text></g><g class=\"xtick\"><text text-anchor=\"middle\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(567.54,0)\">28</text></g><g class=\"xtick\"><text text-anchor=\"middle\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(585.6,0)\">29</text></g><g class=\"xtick\"><text text-anchor=\"middle\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(603.66,0)\">30</text></g><g class=\"xtick\"><text text-anchor=\"middle\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(621.71,0)\">31</text></g><g class=\"xtick\"><text text-anchor=\"middle\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(639.77,0)\">32</text></g><g class=\"xtick\"><text text-anchor=\"middle\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(657.83,0)\">33</text></g><g class=\"xtick\"><text text-anchor=\"middle\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(675.89,0)\">34</text></g><g class=\"xtick\"><text text-anchor=\"middle\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(693.94,0)\">35</text></g><g class=\"xtick\"><text text-anchor=\"middle\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(712,0)\">36</text></g></g><g class=\"yaxislayer-above\"><g class=\"ytick\"><text text-anchor=\"end\" x=\"79\" y=\"4.199999999999999\" transform=\"translate(0,309)\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\">1x</text></g><g class=\"ytick\"><text text-anchor=\"end\" x=\"79\" y=\"4.199999999999999\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(0,269.4)\">26x</text></g><g class=\"ytick\"><text text-anchor=\"end\" x=\"79\" y=\"4.199999999999999\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(0,229.8)\">51x</text></g><g class=\"ytick\"><text text-anchor=\"end\" x=\"79\" y=\"4.199999999999999\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(0,190.2)\">75x</text></g><g class=\"ytick\"><text text-anchor=\"end\" x=\"79\" y=\"4.199999999999999\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(0,150.6)\">100x</text></g><g class=\"ytick\"><text text-anchor=\"end\" x=\"79\" y=\"4.199999999999999\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(0,111)\">125x</text></g></g><g class=\"overaxes-above\"/></g></g><g class=\"polarlayer\"/><g class=\"smithlayer\"/><g class=\"ternarylayer\"/><g class=\"geolayer\"/><g class=\"funnelarealayer\"/><g class=\"pielayer\"/><g class=\"iciclelayer\"/><g class=\"treemaplayer\"/><g class=\"sunburstlayer\"/><g class=\"glimages\"/><defs id=\"topdefs-183d53\"><g class=\"clips\"/><clipPath id=\"legend183d53\"><rect width=\"463\" height=\"143\" x=\"0\" y=\"0\"/></clipPath></defs><g class=\"layer-above\"><g class=\"imagelayer\"/><g class=\"shapelayer\"/></g><g class=\"infolayer\"><g class=\"legend\" pointer-events=\"all\" transform=\"translate(724.64,100)\"><rect class=\"bg\" shape-rendering=\"crispEdges\" width=\"463\" height=\"143\" x=\"0\" y=\"0\" style=\"stroke: rgb(68, 68, 68); stroke-opacity: 1; fill: rgb(255, 255, 255); fill-opacity: 1; stroke-width: 0px;\"/><g class=\"scrollbox\" transform=\"\" clip-path=\"url(#legend183d53)\"><text class=\"legendtitletext\" text-anchor=\"start\" x=\"2\" y=\"18.2\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 14px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre;\">Configuration</text><g class=\"groups\" transform=\"\"><g class=\"traces\" transform=\"translate(0,32.7)\" style=\"opacity: 1;\"><text class=\"legendtext\" text-anchor=\"start\" x=\"40\" y=\"4.680000000000001\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre;\">Multicore: Non-persistent mode + kernel config</text><g class=\"layers\" style=\"opacity: 1;\"><g class=\"legendfill\"/><g class=\"legendlines\"><path class=\"js-line\" d=\"M5,0h30\" style=\"fill: none; stroke: rgb(99, 110, 250); stroke-opacity: 1; stroke-width: 2px;\"/></g><g class=\"legendsymbols\"><g class=\"legendpoints\"/></g></g><rect class=\"legendtoggle\" x=\"0\" y=\"-9.5\" width=\"457.34375\" height=\"19\" style=\"fill: rgb(0, 0, 0); fill-opacity: 0;\"/></g></g><g class=\"groups\" transform=\"\"><g class=\"traces\" transform=\"translate(0,51.7)\" style=\"opacity: 1;\"><text class=\"legendtext\" text-anchor=\"start\" x=\"40\" y=\"4.680000000000001\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre;\">Multicore: Persistent mode/shared memory + kernel config</text><g class=\"layers\" style=\"opacity: 1;\"><g class=\"legendfill\"/><g class=\"legendlines\"><path class=\"js-line\" d=\"M5,0h30\" style=\"fill: none; stroke: rgb(239, 85, 59); stroke-opacity: 1; stroke-width: 2px;\"/></g><g class=\"legendsymbols\"><g class=\"legendpoints\"/></g></g><rect class=\"legendtoggle\" x=\"0\" y=\"-9.5\" width=\"457.34375\" height=\"19\" style=\"fill: rgb(0, 0, 0); fill-opacity: 0;\"/></g></g><g class=\"groups\" transform=\"\"><g class=\"traces\" transform=\"translate(0,70.7)\" style=\"opacity: 1;\"><text class=\"legendtext\" text-anchor=\"start\" x=\"40\" y=\"4.680000000000001\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre;\">Multicore: Persistent mode/shared memory without kernel config</text><g class=\"layers\" style=\"opacity: 1;\"><g class=\"legendfill\"/><g class=\"legendlines\"><path class=\"js-line\" d=\"M5,0h30\" style=\"fill: none; stroke: rgb(0, 204, 150); stroke-opacity: 1; stroke-width: 2px;\"/></g><g class=\"legendsymbols\"><g class=\"legendpoints\"/></g></g><rect class=\"legendtoggle\" x=\"0\" y=\"-9.5\" width=\"457.34375\" height=\"19\" style=\"fill: rgb(0, 0, 0); fill-opacity: 0;\"/></g></g><g class=\"groups\" transform=\"\"><g class=\"traces\" transform=\"translate(0,89.7)\" style=\"opacity: 1;\"><text class=\"legendtext\" text-anchor=\"start\" x=\"40\" y=\"4.680000000000001\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre;\">Multicore: afl_execs: Persistent mode/shared memory + kernel config</text><g class=\"layers\" style=\"opacity: 1;\"><g class=\"legendfill\"/><g class=\"legendlines\"><path class=\"js-line\" d=\"M5,0h30\" style=\"fill: none; stroke: rgb(171, 99, 250); stroke-opacity: 1; stroke-width: 2px;\"/></g><g class=\"legendsymbols\"><g class=\"legendpoints\"/></g></g><rect class=\"legendtoggle\" x=\"0\" y=\"-9.5\" width=\"457.34375\" height=\"19\" style=\"fill: rgb(0, 0, 0); fill-opacity: 0;\"/></g></g><g class=\"groups\" transform=\"\"><g class=\"traces\" transform=\"translate(0,108.7)\" style=\"opacity: 1;\"><text class=\"legendtext\" text-anchor=\"start\" x=\"40\" y=\"4.680000000000001\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre;\">Singlecore: Non-persistent mode + kernel config</text><g class=\"layers\" style=\"opacity: 1;\"><g class=\"legendfill\"/><g class=\"legendlines\"><path class=\"js-line\" d=\"M5,0h30\" style=\"fill: none; stroke: rgb(255, 161, 90); stroke-opacity: 1; stroke-width: 2px;\"/></g><g class=\"legendsymbols\"><g class=\"legendpoints\"/></g></g><rect class=\"legendtoggle\" x=\"0\" y=\"-9.5\" width=\"457.34375\" height=\"19\" style=\"fill: rgb(0, 0, 0); fill-opacity: 0;\"/></g></g><g class=\"groups\" transform=\"\"><g class=\"traces\" transform=\"translate(0,127.7)\" style=\"opacity: 1;\"><text class=\"legendtext\" text-anchor=\"start\" x=\"40\" y=\"4.680000000000001\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre;\">Singlecore: Persistent mode/shared memory + kernel config</text><g class=\"layers\" style=\"opacity: 1;\"><g class=\"legendfill\"/><g class=\"legendlines\"><path class=\"js-line\" d=\"M5,0h30\" style=\"fill: none; stroke: rgb(25, 211, 243); stroke-opacity: 1; stroke-width: 2px;\"/></g><g class=\"legendsymbols\"><g class=\"legendpoints\"/></g></g><rect class=\"legendtoggle\" x=\"0\" y=\"-9.5\" width=\"457.34375\" height=\"19\" style=\"fill: rgb(0, 0, 0); fill-opacity: 0;\"/></g></g></g><rect class=\"scrollbar\" rx=\"20\" ry=\"3\" width=\"0\" height=\"0\" x=\"0\" y=\"0\" style=\"fill: rgb(128, 139, 164); fill-opacity: 1;\"/></g><g class=\"g-gtitle\"><text class=\"gtitle\" x=\"60\" y=\"50\" text-anchor=\"start\" dy=\"0em\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 17px; fill: rgb(42, 63, 95); opacity: 1; font-weight: normal; white-space: pre;\">Fuzzer performance</text></g><g class=\"g-xtitle\"><text class=\"xtitle\" x=\"396\" y=\"360.3\" text-anchor=\"middle\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 14px; fill: rgb(42, 63, 95); opacity: 1; font-weight: normal; white-space: pre;\">Number of parallel fuzzers</text></g><g class=\"g-ytitle\"><text class=\"ytitle\" transform=\"rotate(-90,24.684375000000003,210)\" x=\"24.684375000000003\" y=\"210\" text-anchor=\"middle\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 14px; fill: rgb(42, 63, 95); opacity: 1; font-weight: normal; white-space: pre;\">Fuzz target executions per second</text></g></g></svg>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import numpy as np\n",
"pd.options.plotting.backend = \"plotly\"\n",
"\n",
"# Right now our table has absolute values of execs per sec, but it's more useful\n",
"# to show relative perf (vs 1.0x baseline)\n",
"pivotdf = graphdf.pivot(index=\"parallel_fuzzers\", columns=\"label\", values=\"execs_per_sec\")\n",
"fig = pivotdf.plot(\n",
" title=\"Fuzzer performance\",\n",
" labels={\n",
" \"label\": \"Configuration\",\n",
" \"parallel_fuzzers\": \"Number of parallel fuzzers\",\n",
" \"value\": \"Fuzz target executions per second\"\n",
" }\n",
")\n",
"\n",
"# Compute tick values and their labels for the primary Y-axis\n",
"tickvals = np.linspace(graphdf['execs_per_sec'].min(), graphdf['execs_per_sec'].max(), 6)\n",
"ticktext = [f\"{val:.0f}x\" for val in tickvals / graphdf['execs_per_sec'].min()]\n",
"# Update the primary Y-axis with custom tick labels\n",
"fig.update_yaxes(tickvals=tickvals, ticktext=ticktext)\n",
"fig.update_xaxes(tickvals=list(range(1,36+1)))\n",
"fig.update_layout(width=1200, height=400)\n",
"fig.show(\"svg\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Here's what the table that produced this graph looks like:"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th>label</th>\n",
" <th>Multicore: Non-persistent mode + kernel config</th>\n",
" <th>Multicore: Persistent mode/shared memory + kernel config</th>\n",
" <th>Multicore: Persistent mode/shared memory without kernel config</th>\n",
" <th>Multicore: afl_execs: Persistent mode/shared memory + kernel config</th>\n",
" <th>Singlecore: Non-persistent mode + kernel config</th>\n",
" <th>Singlecore: Persistent mode/shared memory + kernel config</th>\n",
" </tr>\n",
" <tr>\n",
" <th>parallel_fuzzers</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>1.0</th>\n",
" <td>11019.30</td>\n",
" <td>133591.26</td>\n",
" <td>90851.40</td>\n",
" <td>134423.50</td>\n",
" <td>11038.96</td>\n",
" <td>135613.26</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2.0</th>\n",
" <td>21111.92</td>\n",
" <td>255995.07</td>\n",
" <td>176159.32</td>\n",
" <td>258490.04</td>\n",
" <td>11038.96</td>\n",
" <td>135613.26</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3.0</th>\n",
" <td>30568.82</td>\n",
" <td>380246.34</td>\n",
" <td>260268.78</td>\n",
" <td>383777.45</td>\n",
" <td>11038.96</td>\n",
" <td>135613.26</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4.0</th>\n",
" <td>38963.07</td>\n",
" <td>490254.72</td>\n",
" <td>336355.99</td>\n",
" <td>496249.48</td>\n",
" <td>11038.96</td>\n",
" <td>135613.26</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5.0</th>\n",
" <td>47693.65</td>\n",
" <td>598698.16</td>\n",
" <td>413750.00</td>\n",
" <td>613089.31</td>\n",
" <td>11038.96</td>\n",
" <td>135613.26</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
"label Multicore: Non-persistent mode + kernel config \\\n",
"parallel_fuzzers \n",
"1.0 11019.30 \n",
"2.0 21111.92 \n",
"3.0 30568.82 \n",
"4.0 38963.07 \n",
"5.0 47693.65 \n",
"\n",
"label Multicore: Persistent mode/shared memory + kernel config \\\n",
"parallel_fuzzers \n",
"1.0 133591.26 \n",
"2.0 255995.07 \n",
"3.0 380246.34 \n",
"4.0 490254.72 \n",
"5.0 598698.16 \n",
"\n",
"label Multicore: Persistent mode/shared memory without kernel config \\\n",
"parallel_fuzzers \n",
"1.0 90851.40 \n",
"2.0 176159.32 \n",
"3.0 260268.78 \n",
"4.0 336355.99 \n",
"5.0 413750.00 \n",
"\n",
"label Multicore: afl_execs: Persistent mode/shared memory + kernel config \\\n",
"parallel_fuzzers \n",
"1.0 134423.50 \n",
"2.0 258490.04 \n",
"3.0 383777.45 \n",
"4.0 496249.48 \n",
"5.0 613089.31 \n",
"\n",
"label Singlecore: Non-persistent mode + kernel config \\\n",
"parallel_fuzzers \n",
"1.0 11038.96 \n",
"2.0 11038.96 \n",
"3.0 11038.96 \n",
"4.0 11038.96 \n",
"5.0 11038.96 \n",
"\n",
"label Singlecore: Persistent mode/shared memory + kernel config \n",
"parallel_fuzzers \n",
"1.0 135613.26 \n",
"2.0 135613.26 \n",
"3.0 135613.26 \n",
"4.0 135613.26 \n",
"5.0 135613.26 "
]
},
"execution_count": 46,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pivotdf.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can totally ignore the code cell directly below (unless you're curious). It's just preparing Markdown for the block below it to render. Jupyter Notebooks aren't able to use code variables inside Markdown blocks, so I have to do this instead."
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {},
"outputs": [
{
"data": {
"text/markdown": [
"\n",
"### Line graph analysis\n",
"Here are a few things that jump out from the graph above. Let's start at the bottom of the graph.\n",
"\n",
"#### test-instr vs. test-instr-persist-shmem\n",
"\n",
"This graph is scaled so that the single-core, non-persistent-mode performance (11038 execs per second) is\n",
"represented as **1.0x**. If you build and run a fuzzer without creating a persistent mode harness for it, and without running fuzzers in parallel, this is the performance\n",
"you get on this machine.\n",
"\n",
"#### Multicore test-instr\n",
"\n",
"By running as many parallel fuzzers are there are CPU threads, we can reach 103765 execs per second, which is **9.4x** that base speed.\n",
"\n",
"#### Persistent mode + shared memory\n",
"\n",
"##### Singlecore\n",
"\n",
"By modifying the harness to use persistent mode with shared memory as described [here](https://github.com/AFLplusplus/AFLplusplus/blob/stable/instrumentation/README.persistent_mode.md#4-persistent-mode),\n",
"we end up with **12.3x** base speed. So -- perhaps counter-intuively -- if you have a choice between switching to using multiple cores or rewriting\n",
"the harness to use persistent mode on a single core, it is better (at least on this machine) to use persistent mode on a single core, than to use non-persistent mode on all cores.\n",
"\n",
"##### Multicore\n",
"\n",
"By scaling up that persistent mode with shared memory harness across cores, and with kernel mitigations still turned on (see next section), we get to\n",
"**75.6x** base speed.\n",
"\n",
"#### Kernel config\n",
"\n",
"By \"kernel config\", I'm referring to booting the Linux kernel with `mitigations=off`, which is a meta-parameter for disabling *all* hardware vulnerability meltdowns (such as Spectre,\n",
"Meltdown, Retbleed, etc) introduced in Linux v5.2. Disabling these results in a `total_execs_per_sec` increase of 368476 execs -- the difference between\n",
"109.0x (mitigations off) and 75.6x (mitigations on) base speed. Turning on mitigations\n",
"reduced the overall performance by 31%!\n",
"\n",
"One way to think about this is that the mitigations turn this 16-thread CPU into a 7-thread CPU, since the number of execs reached with 16 threads and mitigations on is around the same\n",
"number of execs reached with 7 threads and mitigations off.\n",
"\n",
"Or if we want to think in terms of cores, then the average number of execs gained per core in the initial eight is 115588 execs per sec, but the loss due to\n",
"mitigations is 368476 execs per sec, which is the averaged performance of 3.2 cores.\n",
"\n",
"With kernel mitigations turned off, we reach our highest available total_execs_per_sec speed on this machine, which is **109.0x** higher\n",
"than where we started from.\n",
"\n",
"#### afl_execs_per_sec vs. total_execs_per_sec\n",
"\n",
"* The purple line at the top is measuring `afl_execs_per_sec`. This is afl's own measurement of the speed of each fuzzer process, from the `out/fuzzer/fuzzer_stats` file.\n",
" * It peaks at 23 fuzzers running in parallel, on this 8-core (16-thread) CPU.\n",
" * In contrast, `total_execs_per_sec` shows large drops in performance as we pass 8 (cores) and 16 (threads) fuzzers.\n",
" * I'm inclined to trust `total_execs_per_sec` `(total_execs / (end time - start time))` more, so we'll use that from now on.\n",
"\n",
"#### How many parallel fuzzers should we use on this machine?\n",
"\n",
"* The drops in performance after 8/16 fuzzers are profound.\n",
" * Using 9-12 fuzzers is *worse* than using 8 fuzzers on this 8C/16T system, but using 13-16 is better than 8.\n",
" * And using >16 is worse than using 16. Makes sense.\n",
" * We should use the number of CPUs in /proc/cpuinfo (threads) to get the best performance. But if we did halve the number of\n",
" fuzzers, we would surprisingly only lose 21%\n",
" of performance. This could be a good tradeoff in terms of cost.\n"
],
"text/plain": [
"<IPython.core.display.Markdown object>"
]
},
"execution_count": 47,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# (Ignore this code cell.)\n",
"from IPython.display import Markdown as md\n",
"singlecore_base_execs = pivotdf.iloc[0][\"Singlecore: Non-persistent mode + kernel config\"]\n",
"singlecore_persist_execs = pivotdf.iloc[0][\"Singlecore: Persistent mode/shared memory + kernel config\"]\n",
"multicore_fuzzers_with_afl_max_execs = int(pivotdf[\"Multicore: afl_execs: Persistent mode/shared memory + kernel config\"].idxmax())\n",
"multicore_fuzzers_with_total_max_execs = int(pivotdf[\"Multicore: Persistent mode/shared memory + kernel config\"].idxmax())\n",
"multicore_base_max_execs = pivotdf[\"Multicore: Non-persistent mode + kernel config\"].max()\n",
"factor_for_execs = lambda execs: round(execs / singlecore_base_execs, 1)\n",
"\n",
"multicore_persistent_without_mitigations_label = \"Multicore: Persistent mode/shared memory + kernel config\"\n",
"multicore_max_execs_mitigations_off = pivotdf[multicore_persistent_without_mitigations_label].max()\n",
"multicore_max_execs_mitigations_off_only_cores = pivotdf.loc[multicore_fuzzers_with_total_max_execs / 2][multicore_persistent_without_mitigations_label]\n",
"multicore_max_execs_mitigations_on = pivotdf[\"Multicore: Persistent mode/shared memory without kernel config\"].max()\n",
"multicore_avg_gain_per_core = pivotdf.loc[pivotdf.index <= 8][\"Multicore: Persistent mode/shared memory + kernel config\"].diff().dropna().mean()\n",
"mitigations_off_increase = int(multicore_max_execs_mitigations_off - multicore_max_execs_mitigations_on)\n",
"\n",
"md(f\"\"\"\n",
"### Line graph analysis\n",
"Here are a few things that jump out from the graph above. Let's start at the bottom of the graph.\n",
"\n",
"#### test-instr vs. test-instr-persist-shmem\n",
"\n",
"This graph is scaled so that the single-core, non-persistent-mode performance ({int(singlecore_base_execs)} execs per second) is\n",
"represented as **1.0x**. If you build and run a fuzzer without creating a persistent mode harness for it, and without running fuzzers in parallel, this is the performance\n",
"you get on this machine.\n",
"\n",
"#### Multicore test-instr\n",
"\n",
"By running as many parallel fuzzers are there are CPU threads, we can reach {int(multicore_base_max_execs)} execs per second, which is **{factor_for_execs(multicore_base_max_execs)}x** that base speed.\n",
"\n",
"#### Persistent mode + shared memory\n",
"\n",
"##### Singlecore\n",
"\n",
"By modifying the harness to use persistent mode with shared memory as described [here](https://github.com/AFLplusplus/AFLplusplus/blob/stable/instrumentation/README.persistent_mode.md#4-persistent-mode),\n",
"we end up with **{factor_for_execs(singlecore_persist_execs)}x** base speed. So -- perhaps counter-intuively -- if you have a choice between switching to using multiple cores or rewriting\n",
"the harness to use persistent mode on a single core, it is better (at least on this machine) to use persistent mode on a single core, than to use non-persistent mode on all cores.\n",
"\n",
"##### Multicore\n",
"\n",
"By scaling up that persistent mode with shared memory harness across cores, and with kernel mitigations still turned on (see next section), we get to\n",
"**{factor_for_execs(multicore_max_execs_mitigations_on)}x** base speed.\n",
"\n",
"#### Kernel config\n",
"\n",
"By \"kernel config\", I'm referring to booting the Linux kernel with `mitigations=off`, which is a meta-parameter for disabling *all* hardware vulnerability meltdowns (such as Spectre,\n",
"Meltdown, Retbleed, etc) introduced in Linux v5.2. Disabling these results in a `total_execs_per_sec` increase of {mitigations_off_increase} execs -- the difference between\n",
"{factor_for_execs(multicore_max_execs_mitigations_off)}x (mitigations off) and {factor_for_execs(multicore_max_execs_mitigations_on)}x (mitigations on) base speed. Turning on mitigations\n",
"reduced the overall performance by {abs(round(((multicore_max_execs_mitigations_on - multicore_max_execs_mitigations_off) / multicore_max_execs_mitigations_off) * 100))}%!\n",
"\n",
"One way to think about this is that the mitigations turn this 16-thread CPU into a 7-thread CPU, since the number of execs reached with 16 threads and mitigations on is around the same\n",
"number of execs reached with 7 threads and mitigations off.\n",
"\n",
"Or if we want to think in terms of cores, then the average number of execs gained per core in the initial eight is {int(multicore_avg_gain_per_core)} execs per sec, but the loss due to\n",
"mitigations is {mitigations_off_increase} execs per sec, which is the averaged performance of {round(mitigations_off_increase / multicore_avg_gain_per_core, 1)} cores.\n",
"\n",
"With kernel mitigations turned off, we reach our highest available total_execs_per_sec speed on this machine, which is **{factor_for_execs(multicore_max_execs_mitigations_off)}x** higher\n",
"than where we started from.\n",
"\n",
"#### afl_execs_per_sec vs. total_execs_per_sec\n",
"\n",
"* The purple line at the top is measuring `afl_execs_per_sec`. This is afl's own measurement of the speed of each fuzzer process, from the `out/fuzzer/fuzzer_stats` file.\n",
" * It peaks at {multicore_fuzzers_with_afl_max_execs} fuzzers running in parallel, on this 8-core (16-thread) CPU.\n",
" * In contrast, `total_execs_per_sec` shows large drops in performance as we pass 8 (cores) and 16 (threads) fuzzers.\n",
" * I'm inclined to trust `total_execs_per_sec` `(total_execs / (end time - start time))` more, so we'll use that from now on.\n",
"\n",
"#### How many parallel fuzzers should we use on this machine?\n",
"\n",
"* The drops in performance after 8/16 fuzzers are profound.\n",
" * Using 9-12 fuzzers is *worse* than using 8 fuzzers on this 8C/16T system, but using 13-16 is better than 8.\n",
" * And using >16 is worse than using 16. Makes sense.\n",
" * We should use the number of CPUs in /proc/cpuinfo (threads) to get the best performance. But if we did halve the number of\n",
" fuzzers, we would surprisingly only lose {abs(int(((multicore_max_execs_mitigations_off_only_cores - multicore_max_execs_mitigations_off) / multicore_max_execs_mitigations_off) * 100))}%\n",
" of performance. This could be a good tradeoff in terms of cost.\n",
"\"\"\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example with more cores\n",
"\n",
"While there was some nuance here, the answer was pretty straightforward -- use the number of CPU threads you have access to. What if there were more threads? Here the experiment is repeated on an AWS EC2 \"r6a.48xlarge\" spot instance with 192 vCPUs, and the answer calls the conclusion we just made above into question:"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>config.afl_persistent_config</th>\n",
" <th>config.afl_system_config</th>\n",
" <th>config.afl_version</th>\n",
" <th>config.comment</th>\n",
" <th>config.compiler</th>\n",
" <th>config.target_arch</th>\n",
" <th>hardware.cpu_fastest_core_mhz</th>\n",
" <th>hardware.cpu_model</th>\n",
" <th>hardware.cpu_threads</th>\n",
" <th>targets.test-instr-persist-shmem.multicore.afl_execs_per_sec</th>\n",
" <th>targets.test-instr-persist-shmem.multicore.afl_execs_total</th>\n",
" <th>targets.test-instr-persist-shmem.multicore.fuzzers_used</th>\n",
" <th>targets.test-instr-persist-shmem.multicore.run_end</th>\n",
" <th>targets.test-instr-persist-shmem.multicore.run_start</th>\n",
" <th>targets.test-instr-persist-shmem.multicore.total_execs_per_sec</th>\n",
" <th>targets.test-instr-persist-shmem.multicore.total_run_time</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>148</th>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" <td>++4.09a</td>\n",
" <td>AWS EC2 r6a.48xlarge spot instance</td>\n",
" <td>clang version 15.0.7 (Amazon Linux 15.0.7-3.am...</td>\n",
" <td>x86_64-amazon-linux-gnu</td>\n",
" <td>3599.314</td>\n",
" <td>AMD EPYC 7R13 Processor</td>\n",
" <td>192</td>\n",
" <td>85586.47</td>\n",
" <td>519670.0</td>\n",
" <td>1.0</td>\n",
" <td>2023-09-30 07:42:00.479418</td>\n",
" <td>2023-09-30 07:41:57.396293</td>\n",
" <td>84636.81</td>\n",
" <td>6.14</td>\n",
" </tr>\n",
" <tr>\n",
" <th>149</th>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" <td>++4.09a</td>\n",
" <td>AWS EC2 r6a.48xlarge spot instance</td>\n",
" <td>clang version 15.0.7 (Amazon Linux 15.0.7-3.am...</td>\n",
" <td>x86_64-amazon-linux-gnu</td>\n",
" <td>3599.425</td>\n",
" <td>AMD EPYC 7R13 Processor</td>\n",
" <td>192</td>\n",
" <td>171655.96</td>\n",
" <td>1039340.0</td>\n",
" <td>2.0</td>\n",
" <td>2023-09-30 07:42:06.853436</td>\n",
" <td>2023-09-30 07:42:03.776562</td>\n",
" <td>168998.37</td>\n",
" <td>6.15</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" config.afl_persistent_config config.afl_system_config \\\n",
"148 False True \n",
"149 False True \n",
"\n",
" config.afl_version config.comment \\\n",
"148 ++4.09a AWS EC2 r6a.48xlarge spot instance \n",
"149 ++4.09a AWS EC2 r6a.48xlarge spot instance \n",
"\n",
" config.compiler \\\n",
"148 clang version 15.0.7 (Amazon Linux 15.0.7-3.am... \n",
"149 clang version 15.0.7 (Amazon Linux 15.0.7-3.am... \n",
"\n",
" config.target_arch hardware.cpu_fastest_core_mhz \\\n",
"148 x86_64-amazon-linux-gnu 3599.314 \n",
"149 x86_64-amazon-linux-gnu 3599.425 \n",
"\n",
" hardware.cpu_model hardware.cpu_threads \\\n",
"148 AMD EPYC 7R13 Processor 192 \n",
"149 AMD EPYC 7R13 Processor 192 \n",
"\n",
" targets.test-instr-persist-shmem.multicore.afl_execs_per_sec \\\n",
"148 85586.47 \n",
"149 171655.96 \n",
"\n",
" targets.test-instr-persist-shmem.multicore.afl_execs_total \\\n",
"148 519670.0 \n",
"149 1039340.0 \n",
"\n",
" targets.test-instr-persist-shmem.multicore.fuzzers_used \\\n",
"148 1.0 \n",
"149 2.0 \n",
"\n",
" targets.test-instr-persist-shmem.multicore.run_end \\\n",
"148 2023-09-30 07:42:00.479418 \n",
"149 2023-09-30 07:42:06.853436 \n",
"\n",
" targets.test-instr-persist-shmem.multicore.run_start \\\n",
"148 2023-09-30 07:41:57.396293 \n",
"149 2023-09-30 07:42:03.776562 \n",
"\n",
" targets.test-instr-persist-shmem.multicore.total_execs_per_sec \\\n",
"148 84636.81 \n",
"149 168998.37 \n",
"\n",
" targets.test-instr-persist-shmem.multicore.total_run_time \n",
"148 6.14 \n",
"149 6.15 "
]
},
"execution_count": 48,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"r6a = df.query(\"`config.comment` == 'AWS EC2 r6a.48xlarge spot instance'\")\n",
"r6a.head(2).dropna(axis=1)"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>execs_per_sec</th>\n",
" <th>parallel_fuzzers</th>\n",
" <th>afl_persistent_config</th>\n",
" <th>afl_system_config</th>\n",
" <th>label</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>399</th>\n",
" <td>331957.22</td>\n",
" <td>200.0</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>Multicore: afl_execs: Persistent mode/shared m...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>153</th>\n",
" <td>1026766.44</td>\n",
" <td>77.0</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>Multicore: afl_execs: Persistent mode/shared m...</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" execs_per_sec parallel_fuzzers afl_persistent_config \\\n",
"399 331957.22 200.0 True \n",
"153 1026766.44 77.0 True \n",
"\n",
" afl_system_config label \n",
"399 True Multicore: afl_execs: Persistent mode/shared m... \n",
"153 True Multicore: afl_execs: Persistent mode/shared m... "
]
},
"execution_count": 49,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"r6a_graphdf = build_graphdf_from_query(r6a)\n",
"r6a_graphdf.head(2)"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {},
"outputs": [
{
"data": {
"image/svg+xml": [
"<svg class=\"main-svg\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\" width=\"1200\" height=\"400\" style=\"\" viewBox=\"0 0 1200 400\"><rect x=\"0\" y=\"0\" width=\"1200\" height=\"400\" style=\"fill: rgb(255, 255, 255); fill-opacity: 1;\"/><defs id=\"defs-c8b011\"><g class=\"clips\"><clipPath id=\"clipc8b011xyplot\" class=\"plotclip\"><rect width=\"632\" height=\"220\"/></clipPath><clipPath class=\"axesclip\" id=\"clipc8b011x\"><rect x=\"80\" y=\"0\" width=\"632\" height=\"400\"/></clipPath><clipPath class=\"axesclip\" id=\"clipc8b011y\"><rect x=\"0\" y=\"100\" width=\"1200\" height=\"220\"/></clipPath><clipPath class=\"axesclip\" id=\"clipc8b011xy\"><rect x=\"80\" y=\"100\" width=\"632\" height=\"220\"/></clipPath></g><g class=\"gradients\"/><g class=\"patterns\"/></defs><g class=\"bglayer\"><rect class=\"bg\" x=\"80\" y=\"100\" width=\"632\" height=\"220\" style=\"fill: rgb(229, 236, 246); fill-opacity: 1; stroke-width: 0;\"/></g><g class=\"layer-below\"><g class=\"imagelayer\"/><g class=\"shapelayer\"/></g><g class=\"cartesianlayer\"><g class=\"subplot xy\"><g class=\"layer-subplot\"><g class=\"shapelayer\"/><g class=\"imagelayer\"/></g><g class=\"minor-gridlayer\"><g class=\"x\"/><g class=\"y\"/></g><g class=\"gridlayer\"><g class=\"x\"><path class=\"xgrid crisp\" transform=\"translate(92.7,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(108.58,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(124.46000000000001,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(140.34,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(156.22,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(172.1,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(187.98000000000002,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(203.86,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(219.74,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(235.62,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(251.5,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(267.38,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(283.26,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(299.14,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(315.02,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(330.89,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(346.77,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(362.65,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(378.53,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(394.41,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(410.29,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(426.17,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(442.05,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(457.93,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(473.81,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(489.69,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(505.57,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(521.45,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(537.3299999999999,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(553.21,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(569.0899999999999,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(584.96,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(600.84,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(616.72,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(632.6,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(648.48,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(664.36,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(680.24,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"xgrid crisp\" transform=\"translate(696.12,0)\" d=\"M0,100v220\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/></g><g class=\"y\"><path class=\"ygrid crisp\" transform=\"translate(0,309)\" d=\"M80,0h632\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"ygrid crisp\" transform=\"translate(0,269.4)\" d=\"M80,0h632\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"ygrid crisp\" transform=\"translate(0,229.8)\" d=\"M80,0h632\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"ygrid crisp\" transform=\"translate(0,190.2)\" d=\"M80,0h632\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"ygrid crisp\" transform=\"translate(0,150.6)\" d=\"M80,0h632\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/><path class=\"ygrid crisp\" transform=\"translate(0,111)\" d=\"M80,0h632\" style=\"stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;\"/></g></g><g class=\"zerolinelayer\"/><path class=\"xlines-below\"/><path class=\"ylines-below\"/><g class=\"overlines-below\"/><g class=\"xaxislayer-below\"/><g class=\"yaxislayer-below\"/><g class=\"overaxes-below\"/><g class=\"plot\" transform=\"translate(80,100)\" clip-path=\"url(#clipc8b011xyplot)\"><g class=\"scatterlayer mlayer\"><g class=\"trace scatter trace191f9e\" style=\"stroke-miterlimit: 2; opacity: 1;\"><g class=\"fills\"/><g class=\"errorbars\"/><g class=\"lines\"><path class=\"js-line\" d=\"M0,209L15.88,138.83L19.06,127.58L22.23,113.68L25.41,107.79L34.93,71.44L38.11,64.72L44.46,39.67L47.64,29.43L50.81,33.83L53.99,41.03L57.17,38.56L60.34,40.38L63.52,50.43L66.69,55.82L73.05,70.89L76.22,83.25L85.75,89.15L88.92,91.06L95.28,95.44L98.45,98.65L101.63,100.75L104.8,101.08L111.16,101.08L114.33,102.21L127.04,110.1L130.21,109.64L136.56,109.95L139.74,111.4L146.09,114.77L149.27,117.01L152.44,134.46L155.62,133.58L168.32,130.56L171.5,130.15L174.67,130.11L177.85,135.7L184.2,132.8L187.38,132.15L193.73,130.32L196.9,129.56L200.08,128.57L203.26,134.19L212.78,131.41L215.96,131.34L225.49,130.94L228.66,135.59L238.19,134.66L241.37,133.93L250.89,133.27L254.07,136.54L263.6,135.79L266.77,135.51L276.3,135.37L279.48,138.32L285.83,137.83L289.01,137.21L301.71,136.57L304.88,137.76L314.41,141.2L317.59,143.28L327.12,149.2L330.29,149.99L342.99,153.71L346.17,154.94L352.52,157.95L355.7,158.56L368.4,161.4L371.58,162.48L381.11,165.53L384.28,166.27L393.81,168.27L396.98,169.35L406.51,171.87L409.69,172.36L419.22,174.04L422.39,174.92L431.92,177.05L435.1,177.31L444.62,178.52L447.8,179.35L457.33,180.91L460.5,181.06L558.95,185.63L562.13,185.62L632,186.77\" style=\"vector-effect: none; fill: none; stroke: rgb(99, 110, 250); stroke-opacity: 1; stroke-width: 2px; opacity: 1;\"/></g><g class=\"points\"/><g class=\"text\"/></g><g class=\"trace scatter trace33f043\" style=\"stroke-miterlimit: 2; opacity: 1;\"><g class=\"fills\"/><g class=\"errorbars\"/><g class=\"lines\"><path class=\"js-line\" d=\"M0,208.82L22.23,107.1L25.41,100.84L44.46,24.61L47.64,12.26L50.81,11L53.99,18.91L57.17,21.33L60.34,26.58L73.05,59.78L76.22,71.39L85.75,71.6L88.92,72.63L95.28,76.98L98.45,81.71L101.63,81.62L104.8,79.34L111.16,74.81L114.33,75.42L120.68,81.84L123.86,86.76L127.04,85.3L130.21,81.61L133.39,78.72L136.56,77.47L139.74,79.89L142.91,83.43L146.09,86.83L149.27,92.41L152.44,96.72L155.62,95.62L165.15,90.49L168.32,90.2L174.67,88.97L177.85,93.81L193.73,86.92L196.9,86L200.08,85.13L203.26,90.01L215.96,84.74L219.14,84.15L225.49,83.14L228.66,88.38L241.37,83.29L244.54,82.51L250.89,81.8L254.07,86.73L257.25,85.77L260.42,83.65L263.6,82.41L266.77,82.11L273.13,80.47L276.3,80.99L279.48,85.01L282.65,84.29L285.83,82.34L289.01,81.42L298.53,80.06L301.71,80.07L314.41,87.46L317.59,90.57L320.76,92.27L323.94,94.9L327.12,96.88L330.29,97.9L336.64,100.8L339.82,102L349.35,108.87L352.52,110.41L365.23,115.66L368.4,118.37L387.46,131.42L390.63,132.22L400.16,139.56L403.34,141.78L412.86,148.69L416.04,149.63L428.74,160.84L431.92,161.6L444.62,165.82L447.8,168.38L454.15,172.3L457.33,172.57L539.9,176.75L543.08,176.85L568.48,177.46L571.66,177.53L628.82,178L632,178.13\" style=\"vector-effect: none; fill: none; stroke: rgb(239, 85, 59); stroke-opacity: 1; stroke-width: 2px; opacity: 1;\"/></g><g class=\"points\"/><g class=\"text\"/></g></g></g><g class=\"overplot\"/><path class=\"xlines-above crisp\" d=\"M0,0\" style=\"fill: none;\"/><path class=\"ylines-above crisp\" d=\"M0,0\" style=\"fill: none;\"/><g class=\"overlines-above\"/><g class=\"xaxislayer-above\"><g class=\"xtick\"><text text-anchor=\"start\" x=\"0\" y=\"333\" transform=\"translate(92.7,0) rotate(90,0,327)\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\">5</text></g><g class=\"xtick\"><text text-anchor=\"start\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(108.58,0) rotate(90,0,327)\">10</text></g><g class=\"xtick\"><text text-anchor=\"start\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(124.46000000000001,0) rotate(90,0,327)\">15</text></g><g class=\"xtick\"><text text-anchor=\"start\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(140.34,0) rotate(90,0,327)\">20</text></g><g class=\"xtick\"><text text-anchor=\"start\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(156.22,0) rotate(90,0,327)\">25</text></g><g class=\"xtick\"><text text-anchor=\"start\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(172.1,0) rotate(90,0,327)\">30</text></g><g class=\"xtick\"><text text-anchor=\"start\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(187.98000000000002,0) rotate(90,0,327)\">35</text></g><g class=\"xtick\"><text text-anchor=\"start\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(203.86,0) rotate(90,0,327)\">40</text></g><g class=\"xtick\"><text text-anchor=\"start\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(219.74,0) rotate(90,0,327)\">45</text></g><g class=\"xtick\"><text text-anchor=\"start\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(235.62,0) rotate(90,0,327)\">50</text></g><g class=\"xtick\"><text text-anchor=\"start\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(251.5,0) rotate(90,0,327)\">55</text></g><g class=\"xtick\"><text text-anchor=\"start\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(267.38,0) rotate(90,0,327)\">60</text></g><g class=\"xtick\"><text text-anchor=\"start\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(283.26,0) rotate(90,0,327)\">65</text></g><g class=\"xtick\"><text text-anchor=\"start\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(299.14,0) rotate(90,0,327)\">70</text></g><g class=\"xtick\"><text text-anchor=\"start\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(315.02,0) rotate(90,0,327)\">75</text></g><g class=\"xtick\"><text text-anchor=\"start\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(330.89,0) rotate(90,0,327)\">80</text></g><g class=\"xtick\"><text text-anchor=\"start\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(346.77,0) rotate(90,0,327)\">85</text></g><g class=\"xtick\"><text text-anchor=\"start\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(362.65,0) rotate(90,0,327)\">90</text></g><g class=\"xtick\"><text text-anchor=\"start\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(378.53,0) rotate(90,0,327)\">95</text></g><g class=\"xtick\"><text text-anchor=\"start\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(394.41,0) rotate(90,0,327)\">100</text></g><g class=\"xtick\"><text text-anchor=\"start\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(410.29,0) rotate(90,0,327)\">105</text></g><g class=\"xtick\"><text text-anchor=\"start\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(426.17,0) rotate(90,0,327)\">110</text></g><g class=\"xtick\"><text text-anchor=\"start\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(442.05,0) rotate(90,0,327)\">115</text></g><g class=\"xtick\"><text text-anchor=\"start\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(457.93,0) rotate(90,0,327)\">120</text></g><g class=\"xtick\"><text text-anchor=\"start\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(473.81,0) rotate(90,0,327)\">125</text></g><g class=\"xtick\"><text text-anchor=\"start\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(489.69,0) rotate(90,0,327)\">130</text></g><g class=\"xtick\"><text text-anchor=\"start\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(505.57,0) rotate(90,0,327)\">135</text></g><g class=\"xtick\"><text text-anchor=\"start\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(521.45,0) rotate(90,0,327)\">140</text></g><g class=\"xtick\"><text text-anchor=\"start\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(537.3299999999999,0) rotate(90,0,327)\">145</text></g><g class=\"xtick\"><text text-anchor=\"start\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(553.21,0) rotate(90,0,327)\">150</text></g><g class=\"xtick\"><text text-anchor=\"start\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(569.0899999999999,0) rotate(90,0,327)\">155</text></g><g class=\"xtick\"><text text-anchor=\"start\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(584.96,0) rotate(90,0,327)\">160</text></g><g class=\"xtick\"><text text-anchor=\"start\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(600.84,0) rotate(90,0,327)\">165</text></g><g class=\"xtick\"><text text-anchor=\"start\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(616.72,0) rotate(90,0,327)\">170</text></g><g class=\"xtick\"><text text-anchor=\"start\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(632.6,0) rotate(90,0,327)\">175</text></g><g class=\"xtick\"><text text-anchor=\"start\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(648.48,0) rotate(90,0,327)\">180</text></g><g class=\"xtick\"><text text-anchor=\"start\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(664.36,0) rotate(90,0,327)\">185</text></g><g class=\"xtick\"><text text-anchor=\"start\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(680.24,0) rotate(90,0,327)\">190</text></g><g class=\"xtick\"><text text-anchor=\"start\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(696.12,0) rotate(90,0,327)\">195</text></g><g class=\"xtick\"><text text-anchor=\"start\" x=\"0\" y=\"333\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(712,0) rotate(90,0,327)\">200</text></g></g><g class=\"yaxislayer-above\"><g class=\"ytick\"><text text-anchor=\"end\" x=\"79\" y=\"4.199999999999999\" transform=\"translate(0,309)\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\">10x</text></g><g class=\"ytick\"><text text-anchor=\"end\" x=\"79\" y=\"4.199999999999999\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(0,269.4)\">36x</text></g><g class=\"ytick\"><text text-anchor=\"end\" x=\"79\" y=\"4.199999999999999\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(0,229.8)\">62x</text></g><g class=\"ytick\"><text text-anchor=\"end\" x=\"79\" y=\"4.199999999999999\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(0,190.2)\">89x</text></g><g class=\"ytick\"><text text-anchor=\"end\" x=\"79\" y=\"4.199999999999999\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(0,150.6)\">115x</text></g><g class=\"ytick\"><text text-anchor=\"end\" x=\"79\" y=\"4.199999999999999\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;\" transform=\"translate(0,111)\">141x</text></g></g><g class=\"overaxes-above\"/></g></g><g class=\"polarlayer\"/><g class=\"smithlayer\"/><g class=\"ternarylayer\"/><g class=\"geolayer\"/><g class=\"funnelarealayer\"/><g class=\"pielayer\"/><g class=\"iciclelayer\"/><g class=\"treemaplayer\"/><g class=\"sunburstlayer\"/><g class=\"glimages\"/><defs id=\"topdefs-c8b011\"><g class=\"clips\"/><clipPath id=\"legendc8b011\"><rect width=\"463\" height=\"67\" x=\"0\" y=\"0\"/></clipPath></defs><g class=\"layer-above\"><g class=\"imagelayer\"/><g class=\"shapelayer\"/></g><g class=\"infolayer\"><g class=\"legend\" pointer-events=\"all\" transform=\"translate(724.64,100)\"><rect class=\"bg\" shape-rendering=\"crispEdges\" width=\"463\" height=\"67\" x=\"0\" y=\"0\" style=\"stroke: rgb(68, 68, 68); stroke-opacity: 1; fill: rgb(255, 255, 255); fill-opacity: 1; stroke-width: 0px;\"/><g class=\"scrollbox\" transform=\"\" clip-path=\"url(#legendc8b011)\"><text class=\"legendtitletext\" text-anchor=\"start\" x=\"2\" y=\"18.2\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 14px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre;\">Configuration</text><g class=\"groups\" transform=\"\"><g class=\"traces\" transform=\"translate(0,32.7)\" style=\"opacity: 1;\"><text class=\"legendtext\" text-anchor=\"start\" x=\"40\" y=\"4.680000000000001\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre;\">Multicore: Persistent mode/shared memory + kernel config</text><g class=\"layers\" style=\"opacity: 1;\"><g class=\"legendfill\"/><g class=\"legendlines\"><path class=\"js-line\" d=\"M5,0h30\" style=\"fill: none; stroke: rgb(99, 110, 250); stroke-opacity: 1; stroke-width: 2px;\"/></g><g class=\"legendsymbols\"><g class=\"legendpoints\"/></g></g><rect class=\"legendtoggle\" x=\"0\" y=\"-9.5\" width=\"457.34375\" height=\"19\" style=\"fill: rgb(0, 0, 0); fill-opacity: 0;\"/></g></g><g class=\"groups\" transform=\"\"><g class=\"traces\" transform=\"translate(0,51.7)\" style=\"opacity: 1;\"><text class=\"legendtext\" text-anchor=\"start\" x=\"40\" y=\"4.680000000000001\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre;\">Multicore: afl_execs: Persistent mode/shared memory + kernel config</text><g class=\"layers\" style=\"opacity: 1;\"><g class=\"legendfill\"/><g class=\"legendlines\"><path class=\"js-line\" d=\"M5,0h30\" style=\"fill: none; stroke: rgb(239, 85, 59); stroke-opacity: 1; stroke-width: 2px;\"/></g><g class=\"legendsymbols\"><g class=\"legendpoints\"/></g></g><rect class=\"legendtoggle\" x=\"0\" y=\"-9.5\" width=\"457.34375\" height=\"19\" style=\"fill: rgb(0, 0, 0); fill-opacity: 0;\"/></g></g></g><rect class=\"scrollbar\" rx=\"20\" ry=\"3\" width=\"0\" height=\"0\" x=\"0\" y=\"0\" style=\"fill: rgb(128, 139, 164); fill-opacity: 1;\"/></g><g class=\"g-gtitle\"><text class=\"gtitle\" x=\"60\" y=\"50\" text-anchor=\"start\" dy=\"0em\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 17px; fill: rgb(42, 63, 95); opacity: 1; font-weight: normal; white-space: pre;\">Fuzzer performance</text></g><g class=\"g-xtitle\"><text class=\"xtitle\" x=\"396\" y=\"374.20625\" text-anchor=\"middle\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 14px; fill: rgb(42, 63, 95); opacity: 1; font-weight: normal; white-space: pre;\">Number of parallel fuzzers</text></g><g class=\"g-ytitle\"><text class=\"ytitle\" transform=\"rotate(-90,24.684375000000003,210)\" x=\"24.684375000000003\" y=\"210\" text-anchor=\"middle\" style=\"font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 14px; fill: rgb(42, 63, 95); opacity: 1; font-weight: normal; white-space: pre;\">Fuzz target executions per second</text></g></g></svg>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"r6a_pivotdf = r6a_graphdf.pivot(index=\"parallel_fuzzers\", columns=\"label\", values=\"execs_per_sec\")\n",
"r6a_fig = r6a_pivotdf.plot(\n",
" title=\"Fuzzer performance\",\n",
" labels={\n",
" \"label\": \"Configuration\",\n",
" \"parallel_fuzzers\": \"Number of parallel fuzzers\",\n",
" \"value\": \"Fuzz target executions per second\"\n",
" }\n",
")\n",
"\n",
"# Compute tick values and their labels for the primary Y-axis\n",
"tickvals = np.linspace(r6a_graphdf['execs_per_sec'].min(), r6a_graphdf['execs_per_sec'].max(), 6)\n",
"ticktext = [f\"{val:.0f}x\" for val in tickvals / graphdf['execs_per_sec'].min()]\n",
"# Update the primary Y-axis with custom tick labels\n",
"r6a_fig.update_yaxes(tickvals=tickvals, ticktext=ticktext)\n",
"r6a_fig.update_xaxes(tickvals=list(range(0,200+1, 5)))\n",
"r6a_fig.update_layout(width=1200, height=400)\n",
"r6a_fig.show(\"svg\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Line graph analysis\n",
"\n",
"This is a shocking result for a 192 vCPU machine -- whether you count `afl_execs` or `total_execs`, our optimal number of parallel fuzzers was 16!\n",
"\n",
"Does this mean that AFL++ is a bad fuzzer, or that AWS tricked us and gave us a 16-thread machine instead of a 192-thread one?\n",
"\n",
"No, probably not -- the most likely causes here are a problem with our Python harness, or potentially that we're already saturating the Linux kernel's ability to service system calls, although we're definitely hitting such a limit way earlier than expected. A good way to test this theory would be to run more system-call-servicers (read: kernels!) at once on this machine; one way to do that is to use hardware virtualization with KVM. "
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
|