about summary refs log tree commit diff
path: root/custom_mutators/gramatron/gramfuzz-mutators.c
blob: 0fc9c3078a6fd3490775c408aa95788961dfaf08 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <assert.h>
#include "afl-fuzz.h"
#include "gramfuzz.h"

Array *performRandomMutation(state *pda, Array *input) {

  terminal *term_ptr;
  // terminal *prev_ptr;
  Array *mutated;
  Array *sliced;

  // Get offset at which to generate new input and slice it
  int idx = rand_below(global_afl, input->used);
  sliced = slice(input, idx);
  // print_repr(sliced, "Slice");

  // prev_ptr = & input->start[idx - 1];
  // printf("\nState:%s Symbol:%s", prev_ptr->state, prev_ptr->symbol);
  // Reset current state to that of the slice's last member
  term_ptr = &input->start[idx];
  curr_state = term_ptr->state;
  // printf("\nState:%s Symbol:%s", curr_state, term_ptr->symbol);

  // Set the next available cell to the one adjacent to this chosen point
  mutated = gen_input(pda, sliced);
  return mutated;

}

// Tries to perform splice operation between two automaton walks
UT_icd intpair_icd = {sizeof(intpair_t), NULL, NULL, NULL};

Array *performSpliceOne(Array *originput, IdxMap_new *statemap_orig,
                        Array *splicecand) {

  UT_array * stateptr, *pairs;
  intpair_t  ip;
  intpair_t *cand;

  terminal *term_ptr;
  Array *   prefix;
  int       state;

  // Initialize the dynamic holding the splice indice pairs
  utarray_new(pairs, &intpair_icd);
  // print_repr(originput, "Orig");
  // print_repr(splicecand, "SpliceCand");

  // Iterate through the splice candidate identifying potential splice points
  // and pushing pair (orig_idx, splice_idx) to a dynamic array
  for (int x = 0; x < splicecand->used; x++) {

    term_ptr = &splicecand->start[x];
    stateptr = statemap_orig[term_ptr->state].nums;
    int length = utarray_len(stateptr);
    if (length) {

      int *splice_idx = (int *)utarray_eltptr(stateptr, rand_below(global_afl, length));
      ip.orig_idx = *splice_idx;
      ip.splice_idx = x;
      utarray_push_back(pairs, &ip);

    }

  }

  // Pick a random pair
  int length = utarray_len(pairs);
  cand = (intpair_t *)utarray_eltptr(pairs, rand_below(global_afl, length));
  // printf("\n Orig_idx:%d Splice_idx:%d", cand->orig_idx, cand->splice_idx);

  // Perform the splicing
  prefix = slice(originput, cand->orig_idx);
  Array *spliced = spliceGF(prefix, splicecand, cand->splice_idx);
  // print_repr(spliced, "Spliced");
  //
  utarray_free(pairs);

  return spliced;

}

UT_array **get_dupes(Array *input, int *recur_len) {

  // Variables related to finding duplicates
  int         offset = 0;
  int         state;
  terminal *  term_ptr;
  IdxMap_new *idxMapPtr;
  UT_array ** recurIdx;

  // Declare the Recursive Map Table
  IdxMap_new *idxmapStart =
      (IdxMap_new *)malloc(sizeof(IdxMap_new) * numstates);
  //
  // UT_array *(recurIdx[numstates]);
  recurIdx = malloc(sizeof(UT_array *) * numstates);

  for (int x = 0; x < numstates; x++) {

    idxMapPtr = &idxmapStart[x];
    utarray_new(idxMapPtr->nums, &ut_int_icd);

  }

  // Obtain frequency distribution of states
  while (offset < input->used) {

    term_ptr = &input->start[offset];
    state = term_ptr->state;
    // int num = atoi(state + 1);
    idxMapPtr = &idxmapStart[state];
    utarray_push_back(idxMapPtr->nums, &offset);
    offset += 1;

  }

  // Retrieve the duplicated states
  offset = 0;
  while (offset < numstates) {

    idxMapPtr = &idxmapStart[offset];
    int length = utarray_len(idxMapPtr->nums);
    if (length >= 2) {

      recurIdx[*recur_len] = idxMapPtr->nums;
      *recur_len += 1;

    }

    // else {

    //     utarray_free(idxMapPtr->nums);
    // }
    offset += 1;

  }

  if (*recur_len) {

    // Declare the return struct
    // We use this struct so that we save the reference to IdxMap_new and free
    // it after we have used it in doMult
    // Get_Dupes_Ret* getdupesret =
    // (Get_Dupes_Ret*)malloc(sizeof(Get_Dupes_Ret));
    return recurIdx;
    // getdupesret->idxmap = idxmapStart;
    // getdupesret->recurIdx = recurIdx;
    // return getdupesret;

  } else {

    return NULL;

  }

}

Array *doMult(Array *input, UT_array **recur, int recurlen) {

  int       offset = 0;
  int       idx = rand_below(global_afl, recurlen);
  UT_array *recurMap = recur[idx];
  UT_array *recurPtr;
  Array *   prefix;
  Array *   postfix;
  Array *   feature;

  // Choose two indices to get the recursive feature
  int recurIndices = utarray_len(recurMap);
  int firstIdx = 0;
  int secondIdx = 0;
  getTwoIndices(recurMap, recurIndices, &firstIdx, &secondIdx);

  // Perform the recursive mut
  // print_repr(input, "Orig");
  prefix = slice(input, firstIdx);
  // print_repr(prefix, "Prefix");
  if (firstIdx < secondIdx) {

    feature = carve(input, firstIdx, secondIdx);

  } else {

    feature = carve(input, secondIdx, firstIdx);

  }

  // print_repr(feature, "Feature");
  concatPrefixFeature(prefix, feature);

  // GC allocated structures
  free(feature->start);
  free(feature);
  // for(int x = 0; x < recurlen; x++) {

  //     utarray_free(recur[x]);
  // }
  // free(recur);
  // print_repr(prefix, "Concat");
  return spliceGF(prefix, input, secondIdx);

}

void getTwoIndices(UT_array *recur, int recurlen, int *firstIdx,
                   int *secondIdx) {

  int ArrayRecurIndices[recurlen];
  int offset = 0, *p;
  // Unroll into an array
  for (p = (int *)utarray_front(recur); p != NULL;
       p = (int *)utarray_next(recur, p)) {

    ArrayRecurIndices[offset] = *p;
    offset += 1;

  }

  /*Source:
   * https://www.geeksforgeeks.org/shuffle-a-given-array-using-fisher-yates-shuffle-algorithm/
   */
  for (int i = offset - 1; i > 0; i--) {

    // Pick a random index from 0 to i
    int j = rand_below(global_afl, i + 1);

    // Swap arr[i] with the element at random index
    swap(&ArrayRecurIndices[i], &ArrayRecurIndices[j]);

  }

  *firstIdx = ArrayRecurIndices[0];
  *secondIdx = ArrayRecurIndices[1];

}

void swap(int *a, int *b) {

  int temp = *a;
  *a = *b;
  *b = temp;

}