1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
|
#include "config.h"
#include "types.h"
u32 skim(const u32 *virgin, const u32 *current, const u32 *current_end);
u32 classify_word(u32 word);
inline u32 classify_word(u32 word) {
u16 mem16[2];
memcpy(mem16, &word, sizeof(mem16));
mem16[0] = count_class_lookup16[mem16[0]];
mem16[1] = count_class_lookup16[mem16[1]];
memcpy(&word, mem16, sizeof(mem16));
return word;
}
void simplify_trace(afl_state_t *afl, u8 *bytes) {
u32 *mem = (u32 *)bytes;
u32 i = (afl->fsrv.map_size >> 2);
while (i--) {
/* Optimize for sparse bitmaps. */
if (unlikely(*mem)) {
u8 *mem8 = (u8 *)mem;
mem8[0] = simplify_lookup[mem8[0]];
mem8[1] = simplify_lookup[mem8[1]];
mem8[2] = simplify_lookup[mem8[2]];
mem8[3] = simplify_lookup[mem8[3]];
} else
*mem = 0x01010101;
mem++;
}
}
inline void classify_counts(afl_forkserver_t *fsrv) {
u32 *mem = (u32 *)fsrv->trace_bits;
u32 i = (fsrv->map_size >> 2);
while (i--) {
/* Optimize for sparse bitmaps. */
if (unlikely(*mem)) { *mem = classify_word(*mem); }
mem++;
}
}
inline void classify_counts_off(afl_forkserver_t *fsrv, u32 off) {
u32 *mem = (u32 *)(fsrv->trace_bits + off);
u32 i = ((fsrv->map_size - off) >> 2);
while (i--) {
/* Optimize for sparse bitmaps. */
if (unlikely(*mem)) { *mem = classify_word(*mem); }
mem++;
}
}
/* Updates the virgin bits, then reflects whether a new count or a new tuple is
* seen in ret. */
inline void discover_word(u8 *ret, u32 *current, u32 *virgin) {
/* Optimize for (*current & *virgin) == 0 - i.e., no bits in current bitmap
that have not been already cleared from the virgin map - since this will
almost always be the case. */
if (unlikely(*current & *virgin)) {
if (likely(*ret < 2)) {
u8 *cur = (u8 *)current;
u8 *vir = (u8 *)virgin;
/* Looks like we have not found any new bytes yet; see if any non-zero
bytes in current[] are pristine in virgin[]. */
if (unlikely((cur[0] && vir[0] == 0xff) || (cur[1] && vir[1] == 0xff) ||
(cur[2] && vir[2] == 0xff) || (cur[3] && vir[3] == 0xff)))
*ret = 2;
else
*ret = 1;
}
*virgin &= ~*current;
}
}
#define PACK_SIZE 16
inline u32 skim(const u32 *virgin, const u32 *current, const u32 *current_end) {
u32 *save = (u32*) current;
for (; current < current_end; virgin += 4, current += 4) {
if (unlikely(current[0] && classify_word(current[0]) & virgin[0])) return (u32)(¤t[1] - save);
if (unlikely(current[1] && classify_word(current[1]) & virgin[1])) return (u32)(¤t[2] - save);
if (unlikely(current[2] && classify_word(current[2]) & virgin[2])) return (u32)(¤t[3] - save);
if (unlikely(current[3] && classify_word(current[3]) & virgin[3])) return (u32)(¤t[4] - save);
}
return 0;
}
|