| 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
 | #include "config.h"
#include "types.h"
u32 skim(const u32 *virgin, const u32 *current, const u32 *current_end);
u32 classify_word(u32 word);
inline u32 classify_word(u32 word) {
  u16 mem16[2];
  memcpy(mem16, &word, sizeof(mem16));
  mem16[0] = count_class_lookup16[mem16[0]];
  mem16[1] = count_class_lookup16[mem16[1]];
  memcpy(&word, mem16, sizeof(mem16));
  return word;
}
void simplify_trace(afl_state_t *afl, u8 *bytes) {
  u32 *mem = (u32 *)bytes;
  u32  i = (afl->fsrv.map_size >> 2);
  while (i--) {
    /* Optimize for sparse bitmaps. */
    if (unlikely(*mem)) {
      u8 *mem8 = (u8 *)mem;
      mem8[0] = simplify_lookup[mem8[0]];
      mem8[1] = simplify_lookup[mem8[1]];
      mem8[2] = simplify_lookup[mem8[2]];
      mem8[3] = simplify_lookup[mem8[3]];
    } else
      *mem = 0x01010101;
    mem++;
  }
}
inline void classify_counts(afl_forkserver_t *fsrv) {
  u32 *mem = (u32 *)fsrv->trace_bits;
  u32  i = (fsrv->map_size >> 2);
  while (i--) {
    /* Optimize for sparse bitmaps. */
    if (unlikely(*mem)) { *mem = classify_word(*mem); }
    mem++;
  }
}
/* Updates the virgin bits, then reflects whether a new count or a new tuple is
 * seen in ret. */
inline void discover_word(u8 *ret, u32 *current, u32 *virgin) {
  /* Optimize for (*current & *virgin) == 0 - i.e., no bits in current bitmap
     that have not been already cleared from the virgin map - since this will
     almost always be the case. */
  if (unlikely(*current & *virgin)) {
    if (likely(*ret < 2)) {
      u8 *cur = (u8 *)current;
      u8 *vir = (u8 *)virgin;
      /* Looks like we have not found any new bytes yet; see if any non-zero
         bytes in current[] are pristine in virgin[]. */
      if (unlikely((cur[0] && vir[0] == 0xff) || (cur[1] && vir[1] == 0xff) ||
                   (cur[2] && vir[2] == 0xff) || (cur[3] && vir[3] == 0xff)))
        *ret = 2;
      else
        *ret = 1;
    }
    *virgin &= ~*current;
  }
}
#define PACK_SIZE 16
inline u32 skim(const u32 *virgin, const u32 *current, const u32 *current_end) {
  for (; current < current_end; virgin += 4, current += 4) {
    if (unlikely(current[0] && classify_word(current[0]) & virgin[0])) return 1;
    if (unlikely(current[1] && classify_word(current[1]) & virgin[1])) return 1;
    if (unlikely(current[2] && classify_word(current[2]) & virgin[2])) return 1;
    if (unlikely(current[3] && classify_word(current[3]) & virgin[3])) return 1;
  }
  return 0;
}
 |