1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
|
#include <stdint.h>
#include "afl-fuzz.h"
#include "types.h"
#ifdef _HAVE_AVX2
#define T1HA0_AESNI_AVAILABLE 1
#define T1HA_USE_FAST_ONESHOT_READ 1
#define T1HA_USE_INDIRECT_FUNCTIONS 1
#define T1HA_IA32AES_NAME XXH3_64bits
#include "t1ha0_ia32aes_b.h"
#else
#define XXH_INLINE_ALL
#include "xxhash.h"
#undef XXH_INLINE_ALL
#endif
void rand_set_seed(afl_state_t *afl, s64 init_seed) {
afl->init_seed = init_seed;
afl->rand_seed[0] =
hash64((u8 *)&afl->init_seed, sizeof(afl->init_seed), HASH_CONST);
afl->rand_seed[1] = afl->rand_seed[0] ^ 0x1234567890abcdef;
afl->rand_seed[2] = (afl->rand_seed[0] & 0x1234567890abcdef) ^
(afl->rand_seed[1] | 0xfedcba9876543210);
}
#define ROTL(d, lrot) ((d << (lrot)) | (d >> (8 * sizeof(d) - (lrot))))
#ifdef WORD_SIZE_64
// romuDuoJr
inline AFL_RAND_RETURN rand_next(afl_state_t *afl) {
AFL_RAND_RETURN xp = afl->rand_seed[0];
afl->rand_seed[0] = 15241094284759029579u * afl->rand_seed[1];
afl->rand_seed[1] = afl->rand_seed[1] - xp;
afl->rand_seed[1] = ROTL(afl->rand_seed[1], 27);
return xp;
}
#else
// RomuTrio32
inline AFL_RAND_RETURN rand_next(afl_state_t *afl) {
AFL_RAND_RETURN xp = afl->rand_seed[0], yp = afl->rand_seed[1],
zp = afl->rand_seed[2];
afl->rand_seed[0] = 3323815723u * zp;
afl->rand_seed[1] = yp - xp;
afl->rand_seed[1] = ROTL(afl->rand_seed[1], 6);
afl->rand_seed[2] = zp - yp;
afl->rand_seed[2] = ROTL(afl->rand_seed[2], 22);
return xp;
}
#endif
#undef ROTL
/* returns a double between 0.000000000 and 1.000000000 */
inline double rand_next_percent(afl_state_t *afl) {
return (double)(((double)rand_next(afl)) / (double)0xffffffffffffffff);
}
/* we switch from afl's murmur implementation to xxh3 as it is 30% faster -
and get 64 bit hashes instead of just 32 bit. Less collisions! :-) */
#ifdef _DEBUG
u32 hash32(u8 *key, u32 len, u32 seed) {
#else
inline u32 hash32(u8 *key, u32 len, u32 seed) {
#endif
(void)seed;
return (u32)XXH3_64bits(key, len);
}
#ifdef _DEBUG
u64 hash64(u8 *key, u32 len, u64 seed) {
#else
inline u64 hash64(u8 *key, u32 len, u64 seed) {
#endif
(void)seed;
return XXH3_64bits(key, len);
}
/* Hash a file */
u64 get_binary_hash(u8 *fn) {
if (!fn) { return 0; }
int fd = open(fn, O_RDONLY);
if (fd < 0) { PFATAL("Unable to open '%s'", fn); }
struct stat st;
if (fstat(fd, &st) < 0) { PFATAL("Unable to fstat '%s'", fn); }
u32 f_len = st.st_size;
if (!f_len) { return 0; }
u8 *f_data = mmap(0, f_len, PROT_READ, MAP_PRIVATE, fd, 0);
if (f_data == MAP_FAILED) { PFATAL("Unable to mmap file '%s'", fn); }
close(fd);
u64 hash = hash64(f_data, f_len, 0);
if (munmap(f_data, f_len)) { PFATAL("unmap() failed"); }
return hash;
}
// Public domain SHA1 implementation copied from:
// https://github.com/x42/liboauth/blob/7001b8256cd654952ec2515b055d2c5b243be600/src/sha1.c
/* This code is public-domain - it is based on libcrypt
* placed in the public domain by Wei Dai and other contributors.
*/
// gcc -Wall -DSHA1TEST -o sha1test sha1.c && ./sha1test
#include <stdint.h>
#include <string.h>
#ifdef __BIG_ENDIAN__
#define SHA_BIG_ENDIAN
#elif defined __LITTLE_ENDIAN__
/* override */
#elif defined __BYTE_ORDER
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
#define SHA_BIG_ENDIAN
#endif
#else // ! defined __LITTLE_ENDIAN__
#include <endian.h> // machine/endian.h
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
#define SHA_BIG_ENDIAN
#endif
#endif
/* header */
#define HASH_LENGTH 20
#define BLOCK_LENGTH 64
typedef struct sha1nfo {
uint32_t buffer[BLOCK_LENGTH / 4];
uint32_t state[HASH_LENGTH / 4];
uint32_t byteCount;
uint8_t bufferOffset;
uint8_t keyBuffer[BLOCK_LENGTH];
uint8_t innerHash[HASH_LENGTH];
} sha1nfo;
/* public API - prototypes - TODO: doxygen*/
/**
*/
void sha1_init(sha1nfo *s);
/**
*/
void sha1_writebyte(sha1nfo *s, uint8_t data);
/**
*/
void sha1_write(sha1nfo *s, const char *data, size_t len);
/**
*/
uint8_t *sha1_result(sha1nfo *s);
/**
*/
void sha1_initHmac(sha1nfo *s, const uint8_t *key, int keyLength);
/**
*/
uint8_t *sha1_resultHmac(sha1nfo *s);
/* code */
#define SHA1_K0 0x5a827999
#define SHA1_K20 0x6ed9eba1
#define SHA1_K40 0x8f1bbcdc
#define SHA1_K60 0xca62c1d6
void sha1_init(sha1nfo *s) {
s->state[0] = 0x67452301;
s->state[1] = 0xefcdab89;
s->state[2] = 0x98badcfe;
s->state[3] = 0x10325476;
s->state[4] = 0xc3d2e1f0;
s->byteCount = 0;
s->bufferOffset = 0;
}
uint32_t sha1_rol32(uint32_t number, uint8_t bits) {
return ((number << bits) | (number >> (32 - bits)));
}
void sha1_hashBlock(sha1nfo *s) {
uint8_t i;
uint32_t a, b, c, d, e, t;
a = s->state[0];
b = s->state[1];
c = s->state[2];
d = s->state[3];
e = s->state[4];
for (i = 0; i < 80; i++) {
if (i >= 16) {
t = s->buffer[(i + 13) & 15] ^ s->buffer[(i + 8) & 15] ^
s->buffer[(i + 2) & 15] ^ s->buffer[i & 15];
s->buffer[i & 15] = sha1_rol32(t, 1);
}
if (i < 20) {
t = (d ^ (b & (c ^ d))) + SHA1_K0;
} else if (i < 40) {
t = (b ^ c ^ d) + SHA1_K20;
} else if (i < 60) {
t = ((b & c) | (d & (b | c))) + SHA1_K40;
} else {
t = (b ^ c ^ d) + SHA1_K60;
}
t += sha1_rol32(a, 5) + e + s->buffer[i & 15];
e = d;
d = c;
c = sha1_rol32(b, 30);
b = a;
a = t;
}
s->state[0] += a;
s->state[1] += b;
s->state[2] += c;
s->state[3] += d;
s->state[4] += e;
}
void sha1_addUncounted(sha1nfo *s, uint8_t data) {
uint8_t *const b = (uint8_t *)s->buffer;
#ifdef SHA_BIG_ENDIAN
b[s->bufferOffset] = data;
#else
b[s->bufferOffset ^ 3] = data;
#endif
s->bufferOffset++;
if (s->bufferOffset == BLOCK_LENGTH) {
sha1_hashBlock(s);
s->bufferOffset = 0;
}
}
void sha1_writebyte(sha1nfo *s, uint8_t data) {
++s->byteCount;
sha1_addUncounted(s, data);
}
void sha1_write(sha1nfo *s, const char *data, size_t len) {
for (; len--;)
sha1_writebyte(s, (uint8_t)*data++);
}
void sha1_pad(sha1nfo *s) {
// Implement SHA-1 padding (fips180-2 §5.1.1)
// Pad with 0x80 followed by 0x00 until the end of the block
sha1_addUncounted(s, 0x80);
while (s->bufferOffset != 56)
sha1_addUncounted(s, 0x00);
// Append length in the last 8 bytes
sha1_addUncounted(s, 0); // We're only using 32 bit lengths
sha1_addUncounted(s, 0); // But SHA-1 supports 64 bit lengths
sha1_addUncounted(s, 0); // So zero pad the top bits
sha1_addUncounted(s, s->byteCount >> 29); // Shifting to multiply by 8
sha1_addUncounted(
s, s->byteCount >> 21); // as SHA-1 supports bitstreams as well as
sha1_addUncounted(s, s->byteCount >> 13); // byte.
sha1_addUncounted(s, s->byteCount >> 5);
sha1_addUncounted(s, s->byteCount << 3);
}
uint8_t *sha1_result(sha1nfo *s) {
// Pad to complete the last block
sha1_pad(s);
#ifndef SHA_BIG_ENDIAN
// Swap byte order back
int i;
for (i = 0; i < 5; i++) {
s->state[i] = (((s->state[i]) << 24) & 0xff000000) |
(((s->state[i]) << 8) & 0x00ff0000) |
(((s->state[i]) >> 8) & 0x0000ff00) |
(((s->state[i]) >> 24) & 0x000000ff);
}
#endif
// Return pointer to hash (20 characters)
return (uint8_t *)s->state;
}
#define HMAC_IPAD 0x36
#define HMAC_OPAD 0x5c
void sha1_initHmac(sha1nfo *s, const uint8_t *key, int keyLength) {
uint8_t i;
memset(s->keyBuffer, 0, BLOCK_LENGTH);
if (keyLength > BLOCK_LENGTH) {
// Hash long keys
sha1_init(s);
for (; keyLength--;)
sha1_writebyte(s, *key++);
memcpy(s->keyBuffer, sha1_result(s), HASH_LENGTH);
} else {
// Block length keys are used as is
memcpy(s->keyBuffer, key, keyLength);
}
// Start inner hash
sha1_init(s);
for (i = 0; i < BLOCK_LENGTH; i++) {
sha1_writebyte(s, s->keyBuffer[i] ^ HMAC_IPAD);
}
}
uint8_t *sha1_resultHmac(sha1nfo *s) {
uint8_t i;
// Complete inner hash
memcpy(s->innerHash, sha1_result(s), HASH_LENGTH);
// Calculate outer hash
sha1_init(s);
for (i = 0; i < BLOCK_LENGTH; i++)
sha1_writebyte(s, s->keyBuffer[i] ^ HMAC_OPAD);
for (i = 0; i < HASH_LENGTH; i++)
sha1_writebyte(s, s->innerHash[i]);
return sha1_result(s);
}
// End public domain SHA1 implementation
void sha1(const u8 *data, size_t len, u8 *out) {
sha1nfo s;
sha1_init(&s);
sha1_write(&s, (const char *)data, len);
memcpy(out, sha1_result(&s), HASH_LENGTH);
}
char *sha1_hex(const u8 *data, size_t len) {
u8 digest[HASH_LENGTH];
sha1(data, len, digest);
u8 *hex = ck_alloc(HASH_LENGTH * 2 + 1);
for (size_t i = 0; i < HASH_LENGTH; ++i) {
sprintf((char *)(hex + i * 2), "%02x", digest[i]);
}
return hex;
}
char *sha1_hex_for_file(const char *fname, u32 len) {
int fd = open(fname, O_RDONLY);
if (fd < 0) { PFATAL("Unable to open '%s'", fname); }
u32 read_len = MIN(len, (u32)MAX_FILE);
u8 *tmp = ck_alloc(read_len);
ck_read(fd, tmp, read_len, fname);
close(fd);
char *hex = sha1_hex(tmp, read_len);
ck_free(tmp);
return hex;
}
|