1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
|
/*
Simple test harness for AFL++'s unicornafl c mode.
This loads the simple_target_x86_64 binary into
Unicorn's memory map for emulation, places the specified input into
argv[1], sets up argv, and argc and executes 'main()'.
If run inside AFL, afl_fuzz automatically does the "right thing"
Run under AFL as follows:
$ cd <afl_path>/unicorn_mode/samples/c
$ make
$ ../../../afl-fuzz -m none -i sample_inputs -o out -- ./harness @@
*/
// This is not your everyday Unicorn.
#define UNICORN_AFL
#include <string.h>
#include <inttypes.h>
#include <stdint.h>
#include <stdbool.h>
#include <unistd.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <unicorn/unicorn.h>
#include <unicornafl/unicornafl.h>
// Path to the file containing the binary to emulate
#define BINARY_FILE ("persistent_target_x86_64")
// Memory map for the code to be tested
// Arbitrary address where code to test will be loaded
static const int64_t BASE_ADDRESS = 0x100000;
static const int64_t CODE_ADDRESS = 0x101139;
static const int64_t END_ADDRESS = 0x10120d;
// Address of the stack (Some random address again)
static const int64_t STACK_ADDRESS = (((int64_t) 0x01) << 58);
// Size of the stack (arbitrarily chosen, just make it big enough)
static const int64_t STACK_SIZE = 0x10000;
// Location where the input will be placed (make sure the emulated program knows this somehow, too ;) )
static const int64_t INPUT_LOCATION = 0x10000;
// Inside the location, we have an ofset in our special case
static const int64_t INPUT_OFFSET = 0x16;
// Maximum allowable size of mutated data from AFL
static const int64_t INPUT_SIZE_MAX = 0x10000;
// Alignment for unicorn mappings (seems to be needed)
static const int64_t ALIGNMENT = 0x1000;
// In our special case, we emulate main(), so argc is needed.
static const uint64_t EMULATED_ARGC = 2;
// The return from our fake strlen
static size_t current_input_len = 0;
static void hook_block(uc_engine *uc, uint64_t address, uint32_t size, void *user_data) {
printf(">>> Tracing basic block at 0x%"PRIx64 ", block size = 0x%x\n", address, size);
}
static void hook_code(uc_engine *uc, uint64_t address, uint32_t size, void *user_data) {
printf(">>> Tracing instruction at 0x%"PRIx64 ", instruction size = 0x%x\n", address, size);
}
/*
The sample uses strlen, since we don't have a loader or libc, we'll fake it.
We know the strlen will return the lenght of argv[1] that we just planted.
It will be a lot faster than an actual strlen for this specific purpose.
*/
static void hook_strlen(uc_engine *uc, uint64_t address, uint32_t size, void *user_data) {
//Hook
//116b: e8 c0 fe ff ff call 1030 <strlen@plt>
// We place the return at RAX
//printf("Strlen hook at addr 0x%llx (size: 0x%x), result: %ld\n", address, size, current_input_len);
uc_reg_write(uc, UC_X86_REG_RAX, ¤t_input_len);
// We skip the actual call by updating RIP
uint64_t next_addr = address + size;
uc_reg_write(uc, UC_X86_REG_RIP, &next_addr);
}
/* Unicorn page needs to be 0x1000 aligned, apparently */
static uint64_t pad(uint64_t size) {
if (size % ALIGNMENT == 0) return size;
return ((size / ALIGNMENT) + 1) * ALIGNMENT;
}
/* returns the filesize in bytes, -1 or error. */
static off_t afl_mmap_file(char *filename, char **buf_ptr) {
off_t ret = -1;
int fd = open(filename, O_RDONLY);
struct stat st = {0};
if (fstat(fd, &st)) goto exit;
off_t in_len = st.st_size;
if (in_len == -1) {
/* This can only ever happen on 32 bit if the file is exactly 4gb. */
fprintf(stderr, "Filesize of %s too large", filename);
goto exit;
}
*buf_ptr = mmap(0, in_len, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
if (*buf_ptr != MAP_FAILED) ret = in_len;
exit:
close(fd);
return ret;
}
/* Place the input at the right spot inside unicorn */
static bool place_input_callback(
uc_engine *uc,
char *input,
size_t input_len,
uint32_t persistent_round,
void *data
){
// printf("Placing input with len %ld to %x\n", input_len, DATA_ADDRESS);
if (input_len < 1 || input_len >= INPUT_SIZE_MAX - INPUT_OFFSET) {
// Test input too short or too long, ignore this testcase
return false;
}
// We need a valid c string, make sure it never goes out of bounds.
input[input_len-1] = '\0';
// Write the testcase to unicorn.
uc_mem_write(uc, INPUT_LOCATION + INPUT_OFFSET, input, input_len);
// store input_len for the faux strlen hook
current_input_len = input_len;
return true;
}
static void mem_map_checked(uc_engine *uc, uint64_t addr, size_t size, uint32_t mode) {
size = pad(size);
//printf("SIZE %llx, align: %llx\n", size, ALIGNMENT);
uc_err err = uc_mem_map(uc, addr, size, mode);
if (err != UC_ERR_OK) {
printf("Error mapping %ld bytes at 0x%llx: %s (mode: %d)\n", size, (unsigned long long) addr, uc_strerror(err), (int) mode);
exit(1);
}
}
int main(int argc, char **argv, char **envp) {
if (argc == 1) {
printf("Test harness for simple_target.bin. Usage: harness [-t] <inputfile>\n");
exit(1);
}
bool tracing = false;
char *filename = argv[1];
if (argc > 2 && !strcmp(argv[1], "-t")) {
tracing = true;
filename = argv[2];
}
uc_engine *uc;
uc_err err;
uc_hook hooks[2];
char *file_contents;
// Initialize emulator in X86_64 mode
err = uc_open(UC_ARCH_X86, UC_MODE_64, &uc);
if (err) {
printf("Failed on uc_open() with error returned: %u (%s)\n",
err, uc_strerror(err));
return -1;
}
printf("Loading data input from %s\n", BINARY_FILE);
off_t len = afl_mmap_file(BINARY_FILE, &file_contents);
if (len < 0) {
perror("Could not read binary to emulate");
return -2;
}
if (len == 0) {
fprintf(stderr, "File at '%s' is empty\n", BINARY_FILE);
return -3;
}
// Map memory.
mem_map_checked(uc, BASE_ADDRESS, len, UC_PROT_ALL);
printf("Len: %lx\n", (unsigned long) len);
fflush(stdout);
// write machine code to be emulated to memory
if (uc_mem_write(uc, BASE_ADDRESS, file_contents, len) != UC_ERR_OK) {
printf("Error writing to CODE");
}
// Release copied contents
munmap(file_contents, len);
// Set the program counter to the start of the code
uint64_t start_address = CODE_ADDRESS; // address of entry point of main()
uint64_t end_address = END_ADDRESS; // Address of last instruction in main()
uc_reg_write(uc, UC_X86_REG_RIP, &start_address); // address of entry point of main()
// Setup the Stack
mem_map_checked(uc, STACK_ADDRESS - STACK_SIZE, STACK_SIZE, UC_PROT_READ | UC_PROT_WRITE);
uint64_t stack_val = STACK_ADDRESS;
//printf("Stack at %lu\n", stack_val);
uc_reg_write(uc, UC_X86_REG_RSP, &stack_val);
// reserve some space for our input data
mem_map_checked(uc, INPUT_LOCATION, INPUT_SIZE_MAX, UC_PROT_READ);
// build a "dummy" argv with length 2 at 0x10000:
// 0x10000 argv[0] NULL
// 0x10008 argv[1] (char *)0x10016 --. points to the next offset.
// 0x10016 argv[1][0], ... <-^ contains the actual input data. (INPUT_LOCATION + INPUT_OFFSET)
uc_mem_write(uc, 0x10008, "\x16\x00\x01", 3); // little endian of 0x10016, see above
// If we want tracing output, set the callbacks here
if (tracing) {
// tracing all basic blocks with customized callback
uc_hook_add(uc, &hooks[0], UC_HOOK_BLOCK, hook_block, NULL, 1, 0);
uc_hook_add(uc, &hooks[1], UC_HOOK_CODE, hook_code, NULL, BASE_ADDRESS, BASE_ADDRESS + len - 1);
}
// Add our strlen hook (for this specific testcase only)
int strlen_hook_pos = BASE_ADDRESS + 0x116b;
uc_hook strlen_hook;
uc_hook_add(uc, &strlen_hook, UC_HOOK_CODE, hook_strlen, NULL, strlen_hook_pos, strlen_hook_pos);
// For persistent-iters=1, we don't need to reset this as it's restarted/reforked for each run.
uc_reg_write(uc, UC_X86_REG_RIP, &CODE_ADDRESS); // Set the instruction pointer back
// Set up the function parameters accordingly RSI, RDI (see calling convention/disassembly)
uc_reg_write(uc, UC_X86_REG_RSI, &INPUT_LOCATION); // argv
uc_reg_write(uc, UC_X86_REG_RDI, &EMULATED_ARGC); // argc == 2
printf("Starting to fuzz :)\n");
fflush(stdout);
// let's gooo
uc_afl_ret afl_ret = uc_afl_fuzz(
uc, // The unicorn instance we prepared
filename, // Filename of the input to process. In AFL this is usually the '@@' placeholder, outside it's any input file.
place_input_callback, // Callback that places the input (automatically loaded from the file at filename) in the unicorninstance
&end_address, // Where to exit (this is an array)
1, // Count of end addresses
NULL, // Optional calback to run after each exec
false, // true, if the optional callback should be run also for non-crashes
1, // For persistent mode: How many rounds to run
NULL // additional data pointer
);
switch(afl_ret) {
case UC_AFL_RET_ERROR:
printf("Error starting to fuzz");
return -3;
break;
case UC_AFL_RET_NO_AFL:
printf("No AFL attached - We are done with a single run.");
break;
default:
break;
}
return 0;
}
|