about summary refs log tree commit diff
path: root/unicorn_mode/samples/speedtest/c/harness.c
blob: 184934b965f4f15efcb0e79f17b159310e579bcb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
/*
   Simple test harness for AFL++'s unicornafl c mode.

   This loads the simple_target_x86_64 binary into
   Unicorn's memory map for emulation, places the specified input into
   argv[1], sets up argv, and argc and executes 'main()'.
   If run inside AFL, afl_fuzz automatically does the "right thing"

   Run under AFL as follows:

   $ cd <afl_path>/unicorn_mode/samples/speedtest/c
   $ make
   $ ../../../../afl-fuzz -i ../sample_inputs -o out -U -- ./harness @@
*/

// This is not your everyday Unicorn.
#define UNICORN_AFL

#include <string.h>
#include <inttypes.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <unistd.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/mman.h>

#include <unicorn/unicorn.h>
#include <unicornafl/unicornafl.h>

// Path to the file containing the binary to emulate
#define BINARY_FILE ("../target")

// Memory map for the code to be tested
// Arbitrary address where code to test will be loaded
static const int64_t BASE_ADDRESS = 0x0;
// Max size for the code (64kb)
static const int64_t CODE_SIZE_MAX = 0x00010000;
// Location where the input will be placed (make sure the emulated program knows this somehow, too ;) )
static const int64_t INPUT_ADDRESS = 0x00100000;
// Maximum size for our input
static const int64_t INPUT_MAX = 0x00100000;
// Where our pseudo-heap is at
static const int64_t HEAP_ADDRESS = 0x00200000;
// Maximum allowable size for the heap
static const int64_t HEAP_SIZE_MAX = 0x000F0000;
// Address of the stack (Some random address again)
static const int64_t STACK_ADDRESS = 0x00400000;
// Size of the stack (arbitrarily chosen, just make it big enough)
static const int64_t STACK_SIZE = 0x000F0000;

// Alignment for unicorn mappings (seems to be needed)
static const int64_t ALIGNMENT = 0x1000;

static void hook_block(uc_engine *uc, uint64_t address, uint32_t size, void *user_data) {
    printf(">>> Tracing basic block at 0x%"PRIx64 ", block size = 0x%x\n", address, size);
}

static void hook_code(uc_engine *uc, uint64_t address, uint32_t size, void *user_data) {
    printf(">>> Tracing instruction at 0x%"PRIx64 ", instruction size = 0x%x\n", address, size);
}

/* Unicorn page needs to be 0x1000 aligned, apparently */
static uint64_t pad(uint64_t size) {
    if (size % ALIGNMENT == 0) { return size; }
    return ((size / ALIGNMENT) + 1) * ALIGNMENT;
} 

/* returns the filesize in bytes, -1 or error. */
static off_t afl_mmap_file(char *filename, char **buf_ptr) {

    off_t ret = -1;

    int fd = open(filename, O_RDONLY);

    struct stat st = {0};
    if (fstat(fd, &st)) goto exit;

    off_t in_len = st.st_size;
    if (in_len == -1) {
        /* This can only ever happen on 32 bit if the file is exactly 4gb. */
        fprintf(stderr, "Filesize of %s too large\n", filename);
        goto exit;
    }

    *buf_ptr = mmap(0, in_len, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);

    if (*buf_ptr != MAP_FAILED) ret = in_len;

exit:
    close(fd);
    return ret;

}

/* Place the input at the right spot inside unicorn.
   This code path is *HOT*, do as little work as possible! */
static bool place_input_callback(
    uc_engine *uc, 
    char *input, 
    size_t input_len, 
    uint32_t persistent_round, 
    void *data
){
    // printf("Placing input with len %ld to %x\n", input_len, DATA_ADDRESS);
    if (input_len >= INPUT_MAX) {
        // Test input too short or too long, ignore this testcase
        return false;
    }

    // We need a valid c string, make sure it never goes out of bounds.
    input[input_len-1] = '\0';

    // Write the testcase to unicorn.
    uc_mem_write(uc, INPUT_ADDRESS, input, input_len);

    return true;
}

// exit in case the unicorn-internal mmap fails.
static void mem_map_checked(uc_engine *uc, uint64_t addr, size_t size, uint32_t mode) {
    size = pad(size);
    //printf("SIZE %llx, align: %llx\n", size, ALIGNMENT);
    uc_err err = uc_mem_map(uc, addr, size, mode);
    if (err != UC_ERR_OK) {
        printf("Error mapping %ld bytes at 0x%llx: %s (mode: %d)\n", (unsigned long) size, (unsigned long long) addr, uc_strerror(err), (int) mode);
        exit(1);
    }
}

// allocates an array, reads all addrs to the given array ptr, returns a size
ssize_t read_all_addrs(char *path, uint64_t *addrs, size_t max_count) {

    FILE *f = fopen(path, "r"); 
    if (!f) {
        perror("fopen");
        fprintf(stderr, "Could not read %s, make sure you ran ./get_offsets.py\n", path);
        exit(-1);
    }
    for (size_t i = 0; i < max_count; i++) {
        bool end = false;
        if(fscanf(f, "%lx", &addrs[i]) == EOF) {
            end = true;
            i--;
        } else if (fgetc(f) == EOF) {
            end = true;
        }
        if (end) {
            printf("Set %ld addrs for %s\n", i + 1, path);
            fclose(f);
            return i + 1;
        }
    }
    return max_count;
}

// Read all addresses from the given file, and set a hook for them.
void set_all_hooks(uc_engine *uc, char *hook_file, void *hook_fn) {

    FILE *f = fopen(hook_file, "r");
    if (!f) {
        fprintf(stderr, "Could not read %s, make sure you ran ./get_offsets.py\n", hook_file);
        exit(-1);
    }
    uint64_t hook_addr;
    for (int hook_count = 0; 1; hook_count++) {
        if(fscanf(f, "%lx", &hook_addr) == EOF) {
            printf("Set %d hooks for %s\n", hook_count, hook_file);
            fclose(f);
            return;
        }
        printf("got new hook addr %lx (count: %d) ohbytw: sizeof %lx\n", hook_addr, hook_count, sizeof(uc_hook));
        hook_addr += BASE_ADDRESS;
        // We'll leek these hooks like a good citizen.
        uc_hook *hook = calloc(1, sizeof(uc_hook));
        if (!hook) {
            perror("calloc");
            exit(-1);
        }
        uc_hook_add(uc, hook, UC_HOOK_CODE, hook_fn, NULL, hook_addr, hook_addr);
        // guzzle up newline
        if (fgetc(f) == EOF) {
            printf("Set %d hooks for %s\n", hook_count, hook_file);
            fclose(f);
            return;
        }
    }

}

// This is a fancy print function that we're just going to skip for fuzzing.
static void hook_magicfn(uc_engine *uc, uint64_t address, uint32_t size, void *user_data) {
    address += size;
    uc_reg_write(uc, UC_X86_REG_RIP, &address);
} 

static bool already_allocated = false;

// We use a very simple malloc/free stub here, that only works for exactly one allocation at a time.
static void hook_malloc(uc_engine *uc, uint64_t address, uint32_t size, void *user_data) {
    if (already_allocated) {
        printf("Double malloc, not supported right now!\n");
        abort();
    }
    // read the first param.
    uint64_t malloc_size;
    uc_reg_read(uc, UC_X86_REG_RDI, &malloc_size);
    if (malloc_size > HEAP_SIZE_MAX) {
        printf("Tried to allocated %ld bytes, but we only support up to %ld\n", malloc_size, HEAP_SIZE_MAX);
        abort();
    }
    uc_reg_write(uc, UC_X86_REG_RAX, &HEAP_ADDRESS);
    address += size;
    uc_reg_write(uc, UC_X86_REG_RIP, &address);
    already_allocated = true;
}

// No real free, just set the "used"-flag to false.
static void hook_free(uc_engine *uc, uint64_t address, uint32_t size, void *user_data) {
    if (!already_allocated) {
        printf("Double free detected. Real bug?\n");
        abort();
    }
    // read the first param.
    uint64_t free_ptr;
    uc_reg_read(uc, UC_X86_REG_RDI, &free_ptr);
    if (free_ptr != HEAP_ADDRESS) {
        printf("Tried to free wrong mem region: 0x%lx at code loc 0x%lx\n", free_ptr, address);
        abort();
    }
    address +=  size;
    uc_reg_write(uc, UC_X86_REG_RIP, &address);
    already_allocated = false;
}

int main(int argc, char **argv, char **envp) {
    if (argc == 1) {
        printf("Test harness to measure speed against Rust and python. Usage: harness [-t] <inputfile>\n");
        exit(1);
    }
    bool tracing = false;
    char *filename = argv[1];
    if (argc > 2 && !strcmp(argv[1], "-t")) {
        tracing = true;
        filename = argv[2];
    }

    uc_engine *uc;
    uc_err err;
    uc_hook hooks[2];
    char *file_contents;

    // Initialize emulator in X86_64 mode
    err = uc_open(UC_ARCH_X86, UC_MODE_64, &uc);
    if (err) {
        printf("Failed on uc_open() with error returned: %u (%s)\n",
                err, uc_strerror(err));
        return -1;
    }

    // If we want tracing output, set the callbacks here
    if (tracing) {
        // tracing all basic blocks with customized callback
        uc_hook_add(uc, &hooks[0], UC_HOOK_BLOCK, hook_block, NULL, 1, 0);
        uc_hook_add(uc, &hooks[1], UC_HOOK_CODE, hook_code, NULL, 1, 0);
    }

    printf("The input testcase is set to %s\n", filename);


    printf("Loading target from %s\n", BINARY_FILE);
    off_t len = afl_mmap_file(BINARY_FILE, &file_contents);
    printf("Binary file size: %lx\n", len);
    if (len < 0) {
        perror("Could not read binary to emulate");
        return -2;
    }
    if (len == 0) {
        fprintf(stderr, "File at '%s' is empty\n", BINARY_FILE);
        return -3;
    }
    if (len > CODE_SIZE_MAX) {
        fprintf(stderr, "Binary too large, increase CODE_SIZE_MAX\n");
        return -4;
    }

    // Map memory.
    mem_map_checked(uc, BASE_ADDRESS, len, UC_PROT_ALL);
    fflush(stdout);

    // write machine code to be emulated to memory
    if (uc_mem_write(uc, BASE_ADDRESS, file_contents, len) != UC_ERR_OK) {
        puts("Error writing to CODE");
        exit(-1);
    }

    // Release copied contents
    munmap(file_contents, len);

    // Set the program counter to the start of the code
    FILE *f = fopen("../target.offsets.main", "r");
    if (!f) {
        perror("fopen");
        puts("Could not read offset to main function, make sure you ran ./get_offsets.py");
        exit(-1);
    }
    uint64_t start_address;
    if(fscanf(f, "%llx", (unsigned long long) &start_address) == EOF) {
        puts("Start address not found in target.offests.main");
        exit(-1);
    }
    fclose(f);
    start_address += BASE_ADDRESS;
    printf("Execution will start at 0x%lx", start_address);
    // Set the program counter to the start of the code
    uc_reg_write(uc, UC_X86_REG_RIP, &start_address); // address of entry point of main()

    // Setup the Stack
    mem_map_checked(uc, STACK_ADDRESS, STACK_SIZE, UC_PROT_READ | UC_PROT_WRITE);
    // Setup the stack pointer, but allocate two pointers for the pointers to input
    uint64_t val = STACK_ADDRESS + STACK_SIZE - 16;
    //printf("Stack at %lu\n", stack_val);
    uc_reg_write(uc, UC_X86_REG_RSP, &val);

    // reserve some space for our input data
    mem_map_checked(uc, INPUT_ADDRESS, INPUT_MAX, UC_PROT_READ);

    // argc = 2
    val = 2;
    uc_reg_write(uc, UC_X86_REG_RDI, &val);
    //RSI points to our little 2 QWORD space at the beginning of the stack...
    val = STACK_ADDRESS + STACK_SIZE - 16;
    uc_reg_write(uc, UC_X86_REG_RSI, &val);

    //... which points to the Input. Write the ptr to mem in little endian.
    uint32_t addr_little = STACK_ADDRESS;
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
    // The chances you are on a big_endian system aren't too high, but still...
    __builtin_bswap32(addr_little);
#endif

    uc_mem_write(uc, STACK_ADDRESS + STACK_SIZE - 16, (char *)&addr_little, 4);

    set_all_hooks(uc, "../target.offsets.malloc", hook_malloc);
    set_all_hooks(uc, "../target.offsets.magicfn", hook_magicfn);
    set_all_hooks(uc, "../target.offsets.free", hook_free);

    int exit_count_max = 100;
    // we don't need more exits for now.
    uint64_t exits[exit_count_max];

    ssize_t exit_count = read_all_addrs("../target.offsets.main_ends", exits, exit_count_max);
    if (exit_count < 1) {
        printf("Could not find exits! aborting.\n");
        abort();
    }

    printf("Starting to fuzz. Running from addr %ld to one of these %ld exits:\n", start_address, exit_count);
    for (ssize_t i = 0; i < exit_count; i++) {
        printf("    exit %ld: %ld\n", i, exits[i]);
    }

    fflush(stdout);

    // let's gooo
    uc_afl_ret afl_ret = uc_afl_fuzz(
        uc, // The unicorn instance we prepared
        filename, // Filename of the input to process. In AFL this is usually the '@@' placeholder, outside it's any input file.
        place_input_callback, // Callback that places the input (automatically loaded from the file at filename) in the unicorninstance
        exits, // Where to exit (this is an array)
        exit_count,  // Count of end addresses
        NULL, // Optional calback to run after each exec
        false, // true, if the optional callback should be run also for non-crashes
        1000, // For persistent mode: How many rounds to run
        NULL // additional data pointer
    );
    switch(afl_ret) {
        case UC_AFL_RET_ERROR:
            printf("Error starting to fuzz");
            return -3;
            break;
        case UC_AFL_RET_NO_AFL:
            printf("No AFL attached - We are done with a single run.");
            break;
        default:
            break;
    } 
    return 0;
}