#include "Quaternions.h"
// Functions
quaternion Quat_Mult(quaternion q1, quaternion q2)
{
quaternion QResult;
float a, b, c, d, e, f, g, h;
a = (q1.w + q1.x) * (q2.w + q2.x);
b = (q1.z - q1.y) * (q2.y - q2.z);
c = (q1.w - q1.x) * (q2.y + q2.z);
d = (q1.y + q1.z) * (q2.w - q2.x);
e = (q1.x + q1.z) * (q2.x + q2.y);
f = (q1.x - q1.z) * (q2.x - q2.y);
g = (q1.w + q1.y) * (q2.w - q2.z);
h = (q1.w - q1.y) * (q2.w + q2.z);
QResult.w = b + (-e - f + g + h) / 2;
QResult.x = a - (e + f + g + h) / 2;
QResult.y = c + (e - f + g - h) / 2;
QResult.z = d + (e - f - g + h) / 2;
return QResult;
}
XYZ XYZ::operator+(XYZ add){
XYZ ne;
ne=add;
ne.x+=x;
ne.y+=y;
ne.z+=z;
return ne;
}
XYZ XYZ::operator-(XYZ add){
XYZ ne;
ne=add;
ne.x=x-ne.x;
ne.y=y-ne.y;
ne.z=z-ne.z;
return ne;
}
XYZ XYZ::operator*(float add){
XYZ ne;
ne.x=x*add;
ne.y=y*add;
ne.z=z*add;
return ne;
}
XYZ XYZ::operator*(XYZ add){
XYZ ne;
ne.x=x*add.x;
ne.y=y*add.y;
ne.z=z*add.z;
return ne;
}
XYZ XYZ::operator/(float add){
XYZ ne;
ne.x=x/add;
ne.y=y/add;
ne.z=z/add;
return ne;
}
void XYZ::operator+=(XYZ add){
x+=add.x;
y+=add.y;
z+=add.z;
}
void XYZ::operator-=(XYZ add){
x=x-add.x;
y=y-add.y;
z=z-add.z;
}
void XYZ::operator*=(float add){
x=x*add;
y=y*add;
z=z*add;
}
void XYZ::operator*=(XYZ add){
x=x*add.x;
y=y*add.y;
z=z*add.z;
}
void XYZ::operator/=(float add){
x=x/add;
y=y/add;
z=z/add;
}
void XYZ::operator=(float add){
x=add;
y=add;
z=add;
}
void XYZ::vec(Vector add){
x=add.x;
y=add.y;
z=add.z;
}
bool XYZ::operator==(XYZ add){
if(x==add.x&&y==add.y&&z==add.z)return 1;
return 0;
}
quaternion To_Quat(Matrix_t m)
{
// From Jason Shankel, (C) 2000.
quaternion Quat;
double Tr = m[0][0] + m[1][1] + m[2][2] + 1.0, fourD;
double q[4];
int i,j,k;
if (Tr >= 1.0)
{
fourD = 2.0 * sqrt(Tr);
q[3] = fourD/4.0;
q[0] = (m[2][1] - m[1][2]) / fourD;
q[1] = (m[0][2] - m[2][0]) / fourD;
q[2] = (m[1][0] - m[0][1]) / fourD;
}
else
{
if (m[0][0] > m[1][1])
{
i = 0;
}
else
{
i = 1;
}
if (m[2][2] > m[i][i])
{
i = 2;
}
j = (i+1)%3;
k = (j+1)%3;
fourD = 2.0 * sqrt(m[i][i] - m[j][j] - m[k][k] + 1.0);
q[i] = fourD / 4.0;
q[j] = (m[j][i] + m[i][j]) / fourD;
q[k] = (m[k][i] + m[i][k]) / fourD;
q[3] = (m[j][k] - m[k][j]) / fourD;
}
Quat.x = q[0];
Quat.y = q[1];
Quat.z = q[2];
Quat.w = q[3];
return Quat;
}
void Quat_2_Matrix(quaternion Quat, Matrix_t m)
{
// From the GLVelocity site (http://glvelocity.gamedev.net)
float fW = Quat.w;
float fX = Quat.x;
float fY = Quat.y;
float fZ = Quat.z;
float fXX = fX * fX;
float fYY = fY * fY;
float fZZ = fZ * fZ;
m[0][0] = 1.0f - 2.0f * (fYY + fZZ);
m[1][0] = 2.0f * (fX * fY + fW * fZ);
m[2][0] = 2.0f * (fX * fZ - fW * fY);
m[3][0] = 0.0f;
m[0][1] = 2.0f * (fX * fY - fW * fZ);
m[1][1] = 1.0f - 2.0f * (fXX + fZZ);
m[2][1] = 2.0f * (fY * fZ + fW * fX);
m[3][1] = 0.0f;
m[0][2] = 2.0f * (fX * fZ + fW * fY);
m[1][2] = 2.0f * (fX * fZ - fW * fX);
m[2][2] = 1.0f - 2.0f * (fXX + fYY);
m[3][2] = 0.0f;
m[0][3] = 0.0f;
m[1][3] = 0.0f;
m[2][3] = 0.0f;
m[3][3] = 1.0f;
}
quaternion To_Quat(angle_axis Ang_Ax)
{
// From the Quaternion Powers article on gamedev.net
quaternion Quat;
Quat.x = Ang_Ax.x * sin(Ang_Ax.angle / 2);
Quat.y = Ang_Ax.y * sin(Ang_Ax.angle / 2);
Quat.z = Ang_Ax.z * sin(Ang_Ax.angle / 2);
Quat.w = cos(Ang_Ax.angle / 2);
return Quat;
}
angle_axis Quat_2_AA(quaternion Quat)
{
angle_axis Ang_Ax;
float scale, tw;
tw = (float)acos(Quat.w) * 2;
scale = (float)sin(tw / 2.0);
Ang_Ax.x = Quat.x / scale;
Ang_Ax.y = Quat.y / scale;
Ang_Ax.z = Quat.z / scale;
Ang_Ax.angle = 2.0 * acos(Quat.w)/(float)PI*180;
return Ang_Ax;
}
quaternion To_Quat(int In_Degrees, euler Euler)
{
// From the gamasutra quaternion article
quaternion Quat;
float cr, cp, cy, sr, sp, sy, cpcy, spsy;
//If we are in Degree mode, convert to Radians
if (In_Degrees) {
Euler.x = Euler.x * (float)PI / 180;
Euler.y = Euler.y * (float)PI / 180;
Euler.z = Euler.z * (float)PI / 180;
}
//Calculate trig identities
//Formerly roll, pitch, yaw
cr = float(cos(Euler.x/2));
cp = float(cos(Euler.y/2));
cy = float(cos(Euler.z/2));
sr = float(sin(Euler.x/2));
sp = float(sin(Euler.y/2));
sy = float(sin(Euler.z/2));
cpcy = cp * cy;
spsy = sp * sy;
Quat.w = cr * cpcy + sr * spsy;
Quat.x = sr * cpcy - cr * spsy;
Quat.y = cr * sp * cy + sr * cp * sy;
Quat.z = cr * cp * sy - sr * sp * cy;
return Quat;
}
quaternion QNormalize(quaternion Quat)
{
float norm;
norm = Quat.x * Quat.x +
Quat.y * Quat.y +
Quat.z * Quat.z +
Quat.w * Quat.w;
Quat.x = float(Quat.x / norm);
Quat.y = float(Quat.y / norm);
Quat.z = float(Quat.z / norm);
Quat.w = float(Quat.w / norm);
return Quat;
}
XYZ Quat2Vector(quaternion Quat)
{
QNormalize(Quat);
float fW = Quat.w;
float fX = Quat.x;
float fY = Quat.y;
float fZ = Quat.z;
XYZ tempvec;
tempvec.x = 2.0f*(fX*fZ-fW*fY);
tempvec.y = 2.0f*(fY*fZ+fW*fX);
tempvec.z = 1.0f-2.0f*(fX*fX+fY*fY);
return tempvec;
}
void CrossProduct(XYZ P, XYZ Q, XYZ *V){
V->x = P.y * Q.z - P.z * Q.y;
V->y = P.z * Q.x - P.x * Q.z;
V->z = P.x * Q.y - P.y * Q.x;
}
void Normalise(XYZ *vectory) {
float d = sqrt(vectory->x*vectory->x+vectory->y*vectory->y+vectory->z*vectory->z);
if(d==0){return;}
vectory->x /= d;
vectory->y /= d;
vectory->z /= d;
}
float normaldotproduct(XYZ point1, XYZ point2){
GLfloat returnvalue;
Normalise(&point1);
Normalise(&point2);
returnvalue=(point1.x*point2.x+point1.y*point2.y+point1.z*point2.z);
return returnvalue;
}
extern float u0, u1, u2;
extern float v0, v1, v2;
extern float a, b;
extern int i, j;
extern bool bInter;
extern float pointv[3];
extern float p1v[3];
extern float p2v[3];
extern float p3v[3];
extern float normalv[3];
bool PointInTriangle(Vector *p, Vector normal, float p11, float p12, float p13, float p21, float p22, float p23, float p31, float p32, float p33)
{
bInter=0;
pointv[0]=p->x;
pointv[1]=p->y;
pointv[2]=p->z;
p1v[0]=p11;
p1v[1]=p12;
p1v[2]=p13;
p2v[0]=p21;
p2v[1]=p22;
p2v[2]=p23;
p3v[0]=p31;
p3v[1]=p32;
p3v[2]=p33;
normalv[0]=normal.x;
normalv[1]=normal.y;
normalv[2]=normal.z;
#define ABS(X) (((X)<0.f)?-(X):(X) )
#define MAX(A, B) (((A)<(B))?(B):(A))
float max = MAX(MAX(ABS(normalv[0]), ABS(normalv[1])), ABS(normalv[2]));
#undef MAX
if (max == ABS(normalv[0])) {i = 1; j = 2;} // y, z
if (max == ABS(normalv[1])) {i = 0; j = 2;} // x, z
if (max == ABS(normalv[2])) {i = 0; j = 1;} // x, y
#undef ABS
u0 = pointv[i] - p1v[i];
v0 = pointv[j] - p1v[j];
u1 = p2v[i] - p1v[i];
v1 = p2v[j] - p1v[j];
u2 = p3v[i] - p1v[i];
v2 = p3v[j] - p1v[j];
if (u1 > -1.0e-05f && u1 < 1.0e-05f)// == 0.0f)
{
b = u0 / u2;
if (0.0f <= b && b <= 1.0f)
{
a = (v0 - b * v2) / v1;
if ((a >= 0.0f) && (( a + b ) <= 1.0f))
bInter = 1;
}
}
else
{
b = (v0 * u1 - u0 * v1) / (v2 * u1 - u2 * v1);
if (0.0f <= b && b <= 1.0f)
{
a = (u0 - b * u2) / u1;
if ((a >= 0.0f) && (( a + b ) <= 1.0f ))
bInter = 1;
}
}
return bInter;
}
bool LineFacet(Vector p1,Vector p2,Vector pa,Vector pb,Vector pc,Vector *p)
{
float d;
float denom, mu;
Vector n, pa1, pa2, pa3;
//Calculate the parameters for the plane
n.x = (pb.y - pa.y)*(pc.z - pa.z) - (pb.z - pa.z)*(pc.y - pa.y);
n.y = (pb.z - pa.z)*(pc.x - pa.x) - (pb.x - pa.x)*(pc.z - pa.z);
n.z = (pb.x - pa.x)*(pc.y - pa.y) - (pb.y - pa.y)*(pc.x - pa.x);
n.Normalize();
d = - n.x * pa.x - n.y * pa.y - n.z * pa.z;
//Calculate the position on the line that intersects the plane
denom = n.x * (p2.x - p1.x) + n.y * (p2.y - p1.y) + n.z * (p2.z - p1.z);
if (abs(denom) < 0.0000001) // Line and plane don't intersect
return 0;
mu = - (d + n.x * p1.x + n.y * p1.y + n.z * p1.z) / denom;
p->x = p1.x + mu * (p2.x - p1.x);
p->y = p1.y + mu * (p2.y - p1.y);
p->z = p1.z + mu * (p2.z - p1.z);
if (mu < 0 || mu > 1) // Intersection not along line segment
return 0;
if(!PointInTriangle( p, n, pa.x, pa.y, pa.z, pb.x, pb.y, pb.z, pc.x, pc.y, pc.z)){return 0;}
return 1;
}
bool PointInTriangle(XYZ *p, XYZ normal, XYZ *p1, XYZ *p2, XYZ *p3)
{
bInter=0;
pointv[0]=p->x;
pointv[1]=p->y;
pointv[2]=p->z;
p1v[0]=p1->x;
p1v[1]=p1->y;
p1v[2]=p1->z;
p2v[0]=p2->x;
p2v[1]=p2->y;
p2v[2]=p2->z;
p3v[0]=p3->x;
p3v[1]=p3->y;
p3v[2]=p3->z;
normalv[0]=normal.x;
normalv[1]=normal.y;
normalv[2]=normal.z;
#define ABS(X) (((X)<0.f)?-(X):(X) )
#define MAX(A, B) (((A)<(B))?(B):(A))
float max = MAX(MAX(ABS(normalv[0]), ABS(normalv[1])), ABS(normalv[2]));
#undef MAX
if (max == ABS(normalv[0])) {i = 1; j = 2;} // y, z
if (max == ABS(normalv[1])) {i = 0; j = 2;} // x, z
if (max == ABS(normalv[2])) {i = 0; j = 1;} // x, y
#undef ABS
u0 = pointv[i] - p1v[i];
v0 = pointv[j] - p1v[j];
u1 = p2v[i] - p1v[i];
v1 = p2v[j] - p1v[j];
u2 = p3v[i] - p1v[i];
v2 = p3v[j] - p1v[j];
if (u1 > -1.0e-05f && u1 < 1.0e-05f)// == 0.0f)
{
b = u0 / u2;
if (0.0f <= b && b <= 1.0f)
{
a = (v0 - b * v2) / v1;
if ((a >= 0.0f) && (( a + b ) <= 1.0f))
bInter = 1;
}
}
else
{
b = (v0 * u1 - u0 * v1) / (v2 * u1 - u2 * v1);
if (0.0f <= b && b <= 1.0f)
{
a = (u0 - b * u2) / u1;
if ((a >= 0.0f) && (( a + b ) <= 1.0f ))
bInter = 1;
}
}
return bInter;
}
bool LineFacet(XYZ p1,XYZ p2,XYZ pa,XYZ pb,XYZ pc,XYZ *p)
{
float d;
float denom, mu;
XYZ n;
//Calculate the parameters for the plane
n.x = (pb.y - pa.y)*(pc.z - pa.z) - (pb.z - pa.z)*(pc.y - pa.y);
n.y = (pb.z - pa.z)*(pc.x - pa.x) - (pb.x - pa.x)*(pc.z - pa.z);
n.z = (pb.x - pa.x)*(pc.y - pa.y) - (pb.y - pa.y)*(pc.x - pa.x);
Normalise(&n);
d = - n.x * pa.x - n.y * pa.y - n.z * pa.z;
//Calculate the position on the line that intersects the plane
denom = n.x * (p2.x - p1.x) + n.y * (p2.y - p1.y) + n.z * (p2.z - p1.z);
if (abs(denom) < 0.0000001) // Line and plane don't intersect
return 0;
mu = - (d + n.x * p1.x + n.y * p1.y + n.z * p1.z) / denom;
p->x = p1.x + mu * (p2.x - p1.x);
p->y = p1.y + mu * (p2.y - p1.y);
p->z = p1.z + mu * (p2.z - p1.z);
if (mu < 0 || mu > 1) // Intersection not along line segment
return 0;
if(!PointInTriangle( p, n, &pa, &pb, &pc)){return 0;}
return 1;
}
extern float d;
extern float a1,a2,a3;
extern float total,denom,mu;
extern XYZ pa1,pa2,pa3,n;
float LineFacetd(XYZ p1,XYZ p2,XYZ pa,XYZ pb,XYZ pc,XYZ *p)
{
//Calculate the parameters for the plane
n.x = (pb.y - pa.y)*(pc.z - pa.z) - (pb.z - pa.z)*(pc.y - pa.y);
n.y = (pb.z - pa.z)*(pc.x - pa.x) - (pb.x - pa.x)*(pc.z - pa.z);
n.z = (pb.x - pa.x)*(pc.y - pa.y) - (pb.y - pa.y)*(pc.x - pa.x);
Normalise(&n);
d = - n.x * pa.x - n.y * pa.y - n.z * pa.z;
//Calculate the position on the line that intersects the plane
denom = n.x * (p2.x - p1.x) + n.y * (p2.y - p1.y) + n.z * (p2.z - p1.z);
if (abs(denom) < 0.0000001) // Line and plane don't intersect
return 0;
mu = - (d + n.x * p1.x + n.y * p1.y + n.z * p1.z) / denom;
p->x = p1.x + mu * (p2.x - p1.x);
p->y = p1.y + mu * (p2.y - p1.y);
p->z = p1.z + mu * (p2.z - p1.z);
if (mu < 0 || mu > 1) // Intersection not along line segment
return 0;
if(!PointInTriangle( p, n, &pa, &pb, &pc)){return 0;}
return 1;
}
float LineFacetd(XYZ p1,XYZ p2,XYZ pa,XYZ pb,XYZ pc, XYZ n, XYZ *p)
{
//Calculate the parameters for the plane
d = - n.x * pa.x - n.y * pa.y - n.z * pa.z;
//Calculate the position on the line that intersects the plane
denom = n.x * (p2.x - p1.x) + n.y * (p2.y - p1.y) + n.z * (p2.z - p1.z);
if (abs(denom) < 0.0000001) // Line and plane don't intersect
return 0;
mu = - (d + n.x * p1.x + n.y * p1.y + n.z * p1.z) / denom;
p->x = p1.x + mu * (p2.x - p1.x);
p->y = p1.y + mu * (p2.y - p1.y);
p->z = p1.z + mu * (p2.z - p1.z);
if (mu < 0 || mu > 1) // Intersection not along line segment
return 0;
if(!PointInTriangle( p, n, &pa, &pb, &pc)){return 0;}
return 1;
}
float LineFacetd(XYZ *p1,XYZ *p2,XYZ *pa,XYZ *pb,XYZ *pc, XYZ *n, XYZ *p)
{
//Calculate the parameters for the plane
d = - n->x * pa->x - n->y * pa->y - n->z * pa->z;
//Calculate the position on the line that intersects the plane
denom = n->x * (p2->x - p1->x) + n->y * (p2->y - p1->y) + n->z * (p2->z - p1->z);
if (abs(denom) < 0.0000001) // Line and plane don't intersect
return 0;
mu = - (d + n->x * p1->x + n->y * p1->y + n->z * p1->z) / denom;
p->x = p1->x + mu * (p2->x - p1->x);
p->y = p1->y + mu * (p2->y - p1->y);
p->z = p1->z + mu * (p2->z - p1->z);
if (mu < 0 || mu > 1) // Intersection not along line segment
return 0;
if(!PointInTriangle( p, *n, pa, pb, pc)){return 0;}
return 1;
}
void ReflectVector(XYZ *vel, XYZ *n)
{
XYZ vn;
XYZ vt;
float dotprod;
dotprod=dotproduct(*n,*vel);
vn.x=n->x*dotprod;
vn.y=n->y*dotprod;
vn.z=n->z*dotprod;
vt.x=vel->x-vn.x;
vt.y=vel->y-vn.y;
vt.z=vel->z-vn.z;
vel->x = vt.x - vn.x;
vel->y = vt.y - vn.y;
vel->z = vt.z - vn.z;
}
float dotproduct(XYZ point1, XYZ point2){
GLfloat returnvalue;
returnvalue=(point1.x*point2.x+point1.y*point2.y+point1.z*point2.z);
return returnvalue;
}
float findDistance(XYZ point1, XYZ point2){
return sqrt((point1.x-point2.x)*(point1.x-point2.x)+(point1.y-point2.y)*(point1.y-point2.y)+(point1.z-point2.z)*(point1.z-point2.z));
}
float findLength(XYZ point1){
return sqrt((point1.x)*(point1.x)+(point1.y)*(point1.y)+(point1.z)*(point1.z));
}
float findLengthfast(XYZ point1){
return((point1.x)*(point1.x)+(point1.y)*(point1.y)+(point1.z)*(point1.z));
}
float findDistancefast(XYZ point1, XYZ point2){
return((point1.x-point2.x)*(point1.x-point2.x)+(point1.y-point2.y)*(point1.y-point2.y)+(point1.z-point2.z)*(point1.z-point2.z));
}
XYZ DoRotation(XYZ thePoint, float xang, float yang, float zang){
XYZ newpoint;
if(xang){
xang*=6.283185;
xang/=360;
}
if(yang){
yang*=6.283185;
yang/=360;
}
if(zang){
zang*=6.283185;
zang/=360;
}
if(yang){
newpoint.z=thePoint.z*cos(yang)-thePoint.x*sin(yang);
newpoint.x=thePoint.z*sin(yang)+thePoint.x*cos(yang);
thePoint.z=newpoint.z;
thePoint.x=newpoint.x;
}
if(zang){
newpoint.x=thePoint.x*cos(zang)-thePoint.y*sin(zang);
newpoint.y=thePoint.y*cos(zang)+thePoint.x*sin(zang);
thePoint.x=newpoint.x;
thePoint.y=newpoint.y;
}
if(xang){
newpoint.y=thePoint.y*cos(xang)-thePoint.z*sin(xang);
newpoint.z=thePoint.y*sin(xang)+thePoint.z*cos(xang);
thePoint.z=newpoint.z;
thePoint.y=newpoint.y;
}
return thePoint;
}
float square( float f ) { return (f*f) ;}
bool sphere_line_intersection (
float x1, float y1 , float z1,
float x2, float y2 , float z2,
float x3, float y3 , float z3, float r )
{
// x1,y1,z1 P1 coordinates (point of line)
// x2,y2,z2 P2 coordinates (point of line)
// x3,y3,z3, r P3 coordinates and radius (sphere)
// x,y,z intersection coordinates
//
// This function returns a pointer array which first index indicates
// the number of intersection point, followed by coordinate pairs.
float a, b, c, i;
if(x1>x3+r&&x2>x3+r)return(0);
if(x1<x3-r&&x2<x3-r)return(0);
if(y1>y3+r&&y2>y3+r)return(0);
if(y1<y3-r&&y2<y3-r)return(0);
if(z1>z3+r&&z2>z3+r)return(0);
if(z1<z3-r&&z2<z3-r)return(0);
a = square(x2 - x1) + square(y2 - y1) + square(z2 - z1);
b = 2* ( (x2 - x1)*(x1 - x3)
+ (y2 - y1)*(y1 - y3)
+ (z2 - z1)*(z1 - z3) ) ;
c = square(x3) + square(y3) +
square(z3) + square(x1) +
square(y1) + square(z1) -
2* ( x3*x1 + y3*y1 + z3*z1 ) - square(r) ;
i = b * b - 4 * a * c ;
if ( i < 0.0 )
{
// no intersection
return(0);
}
return(1);
}
XYZ DoRotationRadian(XYZ thePoint, float xang, float yang, float zang){
XYZ newpoint;
XYZ oldpoint;
oldpoint=thePoint;
if(yang!=0){
newpoint.z=oldpoint.z*cos(yang)-oldpoint.x*sin(yang);
newpoint.x=oldpoint.z*sin(yang)+oldpoint.x*cos(yang);
oldpoint.z=newpoint.z;
oldpoint.x=newpoint.x;
}
if(zang!=0){
newpoint.x=oldpoint.x*cos(zang)-oldpoint.y*sin(zang);
newpoint.y=oldpoint.y*cos(zang)+oldpoint.x*sin(zang);
oldpoint.x=newpoint.x;
oldpoint.y=newpoint.y;
}
if(xang!=0){
newpoint.y=oldpoint.y*cos(xang)-oldpoint.z*sin(xang);
newpoint.z=oldpoint.y*sin(xang)+oldpoint.z*cos(xang);
oldpoint.z=newpoint.z;
oldpoint.y=newpoint.y;
}
return oldpoint;
}