aboutsummaryrefslogtreecommitdiff
path: root/src/Quaternions.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/Quaternions.cpp')
-rw-r--r--src/Quaternions.cpp747
1 files changed, 747 insertions, 0 deletions
diff --git a/src/Quaternions.cpp b/src/Quaternions.cpp
new file mode 100644
index 0000000..464c0f2
--- /dev/null
+++ b/src/Quaternions.cpp
@@ -0,0 +1,747 @@
+#include "Quaternions.h"
+
+// Functions
+quaternion Quat_Mult(quaternion q1, quaternion q2)
+{
+ quaternion QResult;
+ float a, b, c, d, e, f, g, h;
+ a = (q1.w + q1.x) * (q2.w + q2.x);
+ b = (q1.z - q1.y) * (q2.y - q2.z);
+ c = (q1.w - q1.x) * (q2.y + q2.z);
+ d = (q1.y + q1.z) * (q2.w - q2.x);
+ e = (q1.x + q1.z) * (q2.x + q2.y);
+ f = (q1.x - q1.z) * (q2.x - q2.y);
+ g = (q1.w + q1.y) * (q2.w - q2.z);
+ h = (q1.w - q1.y) * (q2.w + q2.z);
+ QResult.w = b + (-e - f + g + h) / 2;
+ QResult.x = a - (e + f + g + h) / 2;
+ QResult.y = c + (e - f + g - h) / 2;
+ QResult.z = d + (e - f - g + h) / 2;
+ return QResult;
+}
+
+XYZ XYZ::operator+(XYZ add){
+ XYZ ne;
+ ne=add;
+ ne.x+=x;
+ ne.y+=y;
+ ne.z+=z;
+ return ne;
+}
+
+XYZ XYZ::operator-(XYZ add){
+ XYZ ne;
+ ne=add;
+ ne.x=x-ne.x;
+ ne.y=y-ne.y;
+ ne.z=z-ne.z;
+ return ne;
+}
+
+XYZ XYZ::operator*(float add){
+ XYZ ne;
+ ne.x=x*add;
+ ne.y=y*add;
+ ne.z=z*add;
+ return ne;
+}
+
+XYZ XYZ::operator*(XYZ add){
+ XYZ ne;
+ ne.x=x*add.x;
+ ne.y=y*add.y;
+ ne.z=z*add.z;
+ return ne;
+}
+
+XYZ XYZ::operator/(float add){
+ XYZ ne;
+ ne.x=x/add;
+ ne.y=y/add;
+ ne.z=z/add;
+ return ne;
+}
+
+void XYZ::operator+=(XYZ add){
+ x+=add.x;
+ y+=add.y;
+ z+=add.z;
+}
+
+void XYZ::operator-=(XYZ add){
+ x=x-add.x;
+ y=y-add.y;
+ z=z-add.z;
+}
+
+void XYZ::operator*=(float add){
+ x=x*add;
+ y=y*add;
+ z=z*add;
+}
+
+void XYZ::operator*=(XYZ add){
+ x=x*add.x;
+ y=y*add.y;
+ z=z*add.z;
+}
+
+void XYZ::operator/=(float add){
+ x=x/add;
+ y=y/add;
+ z=z/add;
+}
+
+void XYZ::operator=(float add){
+ x=add;
+ y=add;
+ z=add;
+}
+
+void XYZ::vec(Vector add){
+ x=add.x;
+ y=add.y;
+ z=add.z;
+}
+
+bool XYZ::operator==(XYZ add){
+ if(x==add.x&&y==add.y&&z==add.z)return 1;
+ return 0;
+}
+
+quaternion To_Quat(Matrix_t m)
+{
+ // From Jason Shankel, (C) 2000.
+ quaternion Quat;
+
+ double Tr = m[0][0] + m[1][1] + m[2][2] + 1.0, fourD;
+ double q[4];
+
+ int i,j,k;
+ if (Tr >= 1.0)
+ {
+ fourD = 2.0*fast_sqrt(Tr);
+ q[3] = fourD/4.0;
+ q[0] = (m[2][1] - m[1][2]) / fourD;
+ q[1] = (m[0][2] - m[2][0]) / fourD;
+ q[2] = (m[1][0] - m[0][1]) / fourD;
+ }
+ else
+ {
+ if (m[0][0] > m[1][1])
+ {
+ i = 0;
+ }
+ else
+ {
+ i = 1;
+ }
+ if (m[2][2] > m[i][i])
+ {
+ i = 2;
+ }
+ j = (i+1)%3;
+ k = (j+1)%3;
+ fourD = 2.0*fast_sqrt(m[i][i] - m[j][j] - m[k][k] + 1.0);
+ q[i] = fourD / 4.0;
+ q[j] = (m[j][i] + m[i][j]) / fourD;
+ q[k] = (m[k][i] + m[i][k]) / fourD;
+ q[3] = (m[j][k] - m[k][j]) / fourD;
+ }
+
+ Quat.x = q[0];
+ Quat.y = q[1];
+ Quat.z = q[2];
+ Quat.w = q[3];
+ return Quat;
+}
+void Quat_2_Matrix(quaternion Quat, Matrix_t m)
+{
+ // From the GLVelocity site (http://glvelocity.gamedev.net)
+ float fW = Quat.w;
+ float fX = Quat.x;
+ float fY = Quat.y;
+ float fZ = Quat.z;
+ float fXX = fX * fX;
+ float fYY = fY * fY;
+ float fZZ = fZ * fZ;
+ m[0][0] = 1.0f - 2.0f * (fYY + fZZ);
+ m[1][0] = 2.0f * (fX * fY + fW * fZ);
+ m[2][0] = 2.0f * (fX * fZ - fW * fY);
+ m[3][0] = 0.0f;
+ m[0][1] = 2.0f * (fX * fY - fW * fZ);
+ m[1][1] = 1.0f - 2.0f * (fXX + fZZ);
+ m[2][1] = 2.0f * (fY * fZ + fW * fX);
+ m[3][1] = 0.0f;
+ m[0][2] = 2.0f * (fX * fZ + fW * fY);
+ m[1][2] = 2.0f * (fX * fZ - fW * fX);
+ m[2][2] = 1.0f - 2.0f * (fXX + fYY);
+ m[3][2] = 0.0f;
+ m[0][3] = 0.0f;
+ m[1][3] = 0.0f;
+ m[2][3] = 0.0f;
+ m[3][3] = 1.0f;
+}
+quaternion To_Quat(angle_axis Ang_Ax)
+{
+ // From the Quaternion Powers article on gamedev.net
+ quaternion Quat;
+
+ Quat.x = Ang_Ax.x * sin(Ang_Ax.angle / 2);
+ Quat.y = Ang_Ax.y * sin(Ang_Ax.angle / 2);
+ Quat.z = Ang_Ax.z * sin(Ang_Ax.angle / 2);
+ Quat.w = cos(Ang_Ax.angle / 2);
+ return Quat;
+}
+angle_axis Quat_2_AA(quaternion Quat)
+{
+ angle_axis Ang_Ax;
+ float scale, tw;
+ tw = (float)acos(Quat.w) * 2;
+ scale = (float)sin(tw / 2.0);
+ Ang_Ax.x = Quat.x / scale;
+ Ang_Ax.y = Quat.y / scale;
+ Ang_Ax.z = Quat.z / scale;
+
+ Ang_Ax.angle = 2.0 * acos(Quat.w)/(float)PI*180;
+ return Ang_Ax;
+}
+
+quaternion To_Quat(int In_Degrees, euler Euler)
+{
+ // From the gamasutra quaternion article
+ quaternion Quat;
+ float cr, cp, cy, sr, sp, sy, cpcy, spsy;
+ //If we are in Degree mode, convert to Radians
+ if (In_Degrees) {
+ Euler.x = Euler.x * (float)PI / 180;
+ Euler.y = Euler.y * (float)PI / 180;
+ Euler.z = Euler.z * (float)PI / 180;
+ }
+ //Calculate trig identities
+ //Formerly roll, pitch, yaw
+ cr = float(cos(Euler.x/2));
+ cp = float(cos(Euler.y/2));
+ cy = float(cos(Euler.z/2));
+ sr = float(sin(Euler.x/2));
+ sp = float(sin(Euler.y/2));
+ sy = float(sin(Euler.z/2));
+
+ cpcy = cp * cy;
+ spsy = sp * sy;
+ Quat.w = cr * cpcy + sr * spsy;
+ Quat.x = sr * cpcy - cr * spsy;
+ Quat.y = cr * sp * cy + sr * cp * sy;
+ Quat.z = cr * cp * sy - sr * sp * cy;
+
+ return Quat;
+}
+
+quaternion QNormalize(quaternion Quat)
+{
+ float norm;
+ norm = Quat.x * Quat.x +
+ Quat.y * Quat.y +
+ Quat.z * Quat.z +
+ Quat.w * Quat.w;
+ Quat.x = float(Quat.x / norm);
+ Quat.y = float(Quat.y / norm);
+ Quat.z = float(Quat.z / norm);
+ Quat.w = float(Quat.w / norm);
+ return Quat;
+}
+
+XYZ Quat2Vector(quaternion Quat)
+{
+ QNormalize(Quat);
+
+ float fW = Quat.w;
+ float fX = Quat.x;
+ float fY = Quat.y;
+ float fZ = Quat.z;
+
+ XYZ tempvec;
+
+ tempvec.x = 2.0f*(fX*fZ-fW*fY);
+ tempvec.y = 2.0f*(fY*fZ+fW*fX);
+ tempvec.z = 1.0f-2.0f*(fX*fX+fY*fY);
+
+ return tempvec;
+}
+
+void CrossProduct(XYZ P, XYZ Q, XYZ *V){
+ V->x = P.y * Q.z - P.z * Q.y;
+ V->y = P.z * Q.x - P.x * Q.z;
+ V->z = P.x * Q.y - P.y * Q.x;
+}
+
+void Normalise(XYZ *vectory) {
+ float d = fast_sqrt(vectory->x*vectory->x+vectory->y*vectory->y+vectory->z*vectory->z);
+ if(d==0){return;}
+ vectory->x /= d;
+ vectory->y /= d;
+ vectory->z /= d;
+}
+
+float fast_sqrt (register float arg)
+{
+#ifdef OS9
+ // Can replace with slower return std::sqrt(arg);
+ register float result;
+
+ if (arg == 0.0) return 0.0;
+
+ asm {
+ frsqrte result,arg // Calculate Square root
+ }
+
+ // Newton Rhapson iterations.
+ result = result + 0.5 * result * (1.0 - arg * result * result);
+ result = result + 0.5 * result * (1.0 - arg * result * result);
+
+ return result * arg;
+#else
+ return sqrt(arg);
+#endif
+}
+
+float normaldotproduct(XYZ point1, XYZ point2){
+ GLfloat returnvalue;
+ Normalise(&point1);
+ Normalise(&point2);
+ returnvalue=(point1.x*point2.x+point1.y*point2.y+point1.z*point2.z);
+ return returnvalue;
+}
+
+extern float u0, u1, u2;
+extern float v0, v1, v2;
+extern float a, b;
+extern int i, j;
+extern bool bInter;
+extern float pointv[3];
+extern float p1v[3];
+extern float p2v[3];
+extern float p3v[3];
+extern float normalv[3];
+
+bool PointInTriangle(Vector *p, Vector normal, float p11, float p12, float p13, float p21, float p22, float p23, float p31, float p32, float p33)
+{
+ bInter=0;
+
+ pointv[0]=p->x;
+ pointv[1]=p->y;
+ pointv[2]=p->z;
+
+
+ p1v[0]=p11;
+ p1v[1]=p12;
+ p1v[2]=p13;
+
+ p2v[0]=p21;
+ p2v[1]=p22;
+ p2v[2]=p23;
+
+ p3v[0]=p31;
+ p3v[1]=p32;
+ p3v[2]=p33;
+
+ normalv[0]=normal.x;
+ normalv[1]=normal.y;
+ normalv[2]=normal.z;
+
+#define ABS(X) (((X)<0.f)?-(X):(X) )
+#define MAX(A, B) (((A)<(B))?(B):(A))
+ float max = MAX(MAX(ABS(normalv[0]), ABS(normalv[1])), ABS(normalv[2]));
+#undef MAX
+ if (max == ABS(normalv[0])) {i = 1; j = 2;} // y, z
+ if (max == ABS(normalv[1])) {i = 0; j = 2;} // x, z
+ if (max == ABS(normalv[2])) {i = 0; j = 1;} // x, y
+#undef ABS
+
+ u0 = pointv[i] - p1v[i];
+ v0 = pointv[j] - p1v[j];
+ u1 = p2v[i] - p1v[i];
+ v1 = p2v[j] - p1v[j];
+ u2 = p3v[i] - p1v[i];
+ v2 = p3v[j] - p1v[j];
+
+ if (u1 > -1.0e-05f && u1 < 1.0e-05f)// == 0.0f)
+ {
+ b = u0 / u2;
+ if (0.0f <= b && b <= 1.0f)
+ {
+ a = (v0 - b * v2) / v1;
+ if ((a >= 0.0f) && (( a + b ) <= 1.0f))
+ bInter = 1;
+ }
+ }
+ else
+ {
+ b = (v0 * u1 - u0 * v1) / (v2 * u1 - u2 * v1);
+ if (0.0f <= b && b <= 1.0f)
+ {
+ a = (u0 - b * u2) / u1;
+ if ((a >= 0.0f) && (( a + b ) <= 1.0f ))
+ bInter = 1;
+ }
+ }
+
+ return bInter;
+}
+
+bool LineFacet(Vector p1,Vector p2,Vector pa,Vector pb,Vector pc,Vector *p)
+{
+ float d;
+ float a1,a2,a3;
+ float total,denom,mu;
+ Vector n,pa1,pa2,pa3;
+
+ //Calculate the parameters for the plane
+ n.x = (pb.y - pa.y)*(pc.z - pa.z) - (pb.z - pa.z)*(pc.y - pa.y);
+ n.y = (pb.z - pa.z)*(pc.x - pa.x) - (pb.x - pa.x)*(pc.z - pa.z);
+ n.z = (pb.x - pa.x)*(pc.y - pa.y) - (pb.y - pa.y)*(pc.x - pa.x);
+ n.Normalize();
+ d = - n.x * pa.x - n.y * pa.y - n.z * pa.z;
+
+ //Calculate the position on the line that intersects the plane
+ denom = n.x * (p2.x - p1.x) + n.y * (p2.y - p1.y) + n.z * (p2.z - p1.z);
+ if (abs(denom) < 0.0000001) // Line and plane don't intersect
+ return 0;
+ mu = - (d + n.x * p1.x + n.y * p1.y + n.z * p1.z) / denom;
+ p->x = p1.x + mu * (p2.x - p1.x);
+ p->y = p1.y + mu * (p2.y - p1.y);
+ p->z = p1.z + mu * (p2.z - p1.z);
+ if (mu < 0 || mu > 1) // Intersection not along line segment
+ return 0;
+
+ if(!PointInTriangle( p, n, pa.x, pa.y, pa.z, pb.x, pb.y, pb.z, pc.x, pc.y, pc.z)){return 0;}
+
+ return 1;
+}
+
+bool PointInTriangle(XYZ *p, XYZ normal, XYZ *p1, XYZ *p2, XYZ *p3)
+{
+ bInter=0;
+
+ pointv[0]=p->x;
+ pointv[1]=p->y;
+ pointv[2]=p->z;
+
+
+ p1v[0]=p1->x;
+ p1v[1]=p1->y;
+ p1v[2]=p1->z;
+
+ p2v[0]=p2->x;
+ p2v[1]=p2->y;
+ p2v[2]=p2->z;
+
+ p3v[0]=p3->x;
+ p3v[1]=p3->y;
+ p3v[2]=p3->z;
+
+ normalv[0]=normal.x;
+ normalv[1]=normal.y;
+ normalv[2]=normal.z;
+
+#define ABS(X) (((X)<0.f)?-(X):(X) )
+#define MAX(A, B) (((A)<(B))?(B):(A))
+ float max = MAX(MAX(ABS(normalv[0]), ABS(normalv[1])), ABS(normalv[2]));
+#undef MAX
+ if (max == ABS(normalv[0])) {i = 1; j = 2;} // y, z
+ if (max == ABS(normalv[1])) {i = 0; j = 2;} // x, z
+ if (max == ABS(normalv[2])) {i = 0; j = 1;} // x, y
+#undef ABS
+
+ u0 = pointv[i] - p1v[i];
+ v0 = pointv[j] - p1v[j];
+ u1 = p2v[i] - p1v[i];
+ v1 = p2v[j] - p1v[j];
+ u2 = p3v[i] - p1v[i];
+ v2 = p3v[j] - p1v[j];
+
+ if (u1 > -1.0e-05f && u1 < 1.0e-05f)// == 0.0f)
+ {
+ b = u0 / u2;
+ if (0.0f <= b && b <= 1.0f)
+ {
+ a = (v0 - b * v2) / v1;
+ if ((a >= 0.0f) && (( a + b ) <= 1.0f))
+ bInter = 1;
+ }
+ }
+ else
+ {
+ b = (v0 * u1 - u0 * v1) / (v2 * u1 - u2 * v1);
+ if (0.0f <= b && b <= 1.0f)
+ {
+ a = (u0 - b * u2) / u1;
+ if ((a >= 0.0f) && (( a + b ) <= 1.0f ))
+ bInter = 1;
+ }
+ }
+
+ return bInter;
+}
+
+bool LineFacet(XYZ p1,XYZ p2,XYZ pa,XYZ pb,XYZ pc,XYZ *p)
+{
+ float d;
+ float a1,a2,a3;
+ float total,denom,mu;
+ XYZ n,pa1,pa2,pa3;
+
+ //Calculate the parameters for the plane
+ n.x = (pb.y - pa.y)*(pc.z - pa.z) - (pb.z - pa.z)*(pc.y - pa.y);
+ n.y = (pb.z - pa.z)*(pc.x - pa.x) - (pb.x - pa.x)*(pc.z - pa.z);
+ n.z = (pb.x - pa.x)*(pc.y - pa.y) - (pb.y - pa.y)*(pc.x - pa.x);
+ Normalise(&n);
+ d = - n.x * pa.x - n.y * pa.y - n.z * pa.z;
+
+ //Calculate the position on the line that intersects the plane
+ denom = n.x * (p2.x - p1.x) + n.y * (p2.y - p1.y) + n.z * (p2.z - p1.z);
+ if (abs(denom) < 0.0000001) // Line and plane don't intersect
+ return 0;
+ mu = - (d + n.x * p1.x + n.y * p1.y + n.z * p1.z) / denom;
+ p->x = p1.x + mu * (p2.x - p1.x);
+ p->y = p1.y + mu * (p2.y - p1.y);
+ p->z = p1.z + mu * (p2.z - p1.z);
+ if (mu < 0 || mu > 1) // Intersection not along line segment
+ return 0;
+
+ if(!PointInTriangle( p, n, &pa, &pb, &pc)){return 0;}
+
+ return 1;
+}
+
+extern float d;
+extern float a1,a2,a3;
+extern float total,denom,mu;
+extern XYZ pa1,pa2,pa3,n;
+
+float LineFacetd(XYZ p1,XYZ p2,XYZ pa,XYZ pb,XYZ pc,XYZ *p)
+{
+
+ //Calculate the parameters for the plane
+ n.x = (pb.y - pa.y)*(pc.z - pa.z) - (pb.z - pa.z)*(pc.y - pa.y);
+ n.y = (pb.z - pa.z)*(pc.x - pa.x) - (pb.x - pa.x)*(pc.z - pa.z);
+ n.z = (pb.x - pa.x)*(pc.y - pa.y) - (pb.y - pa.y)*(pc.x - pa.x);
+ Normalise(&n);
+ d = - n.x * pa.x - n.y * pa.y - n.z * pa.z;
+
+ //Calculate the position on the line that intersects the plane
+ denom = n.x * (p2.x - p1.x) + n.y * (p2.y - p1.y) + n.z * (p2.z - p1.z);
+ if (abs(denom) < 0.0000001) // Line and plane don't intersect
+ return 0;
+ mu = - (d + n.x * p1.x + n.y * p1.y + n.z * p1.z) / denom;
+ p->x = p1.x + mu * (p2.x - p1.x);
+ p->y = p1.y + mu * (p2.y - p1.y);
+ p->z = p1.z + mu * (p2.z - p1.z);
+ if (mu < 0 || mu > 1) // Intersection not along line segment
+ return 0;
+
+ if(!PointInTriangle( p, n, &pa, &pb, &pc)){return 0;}
+
+ return 1;
+}
+
+float LineFacetd(XYZ p1,XYZ p2,XYZ pa,XYZ pb,XYZ pc, XYZ n, XYZ *p)
+{
+
+ //Calculate the parameters for the plane
+ d = - n.x * pa.x - n.y * pa.y - n.z * pa.z;
+
+ //Calculate the position on the line that intersects the plane
+ denom = n.x * (p2.x - p1.x) + n.y * (p2.y - p1.y) + n.z * (p2.z - p1.z);
+ if (abs(denom) < 0.0000001) // Line and plane don't intersect
+ return 0;
+ mu = - (d + n.x * p1.x + n.y * p1.y + n.z * p1.z) / denom;
+ p->x = p1.x + mu * (p2.x - p1.x);
+ p->y = p1.y + mu * (p2.y - p1.y);
+ p->z = p1.z + mu * (p2.z - p1.z);
+ if (mu < 0 || mu > 1) // Intersection not along line segment
+ return 0;
+
+ if(!PointInTriangle( p, n, &pa, &pb, &pc)){return 0;}
+ return 1;
+}
+
+float LineFacetd(XYZ *p1,XYZ *p2,XYZ *pa,XYZ *pb,XYZ *pc, XYZ *n, XYZ *p)
+{
+
+ //Calculate the parameters for the plane
+ d = - n->x * pa->x - n->y * pa->y - n->z * pa->z;
+
+ //Calculate the position on the line that intersects the plane
+ denom = n->x * (p2->x - p1->x) + n->y * (p2->y - p1->y) + n->z * (p2->z - p1->z);
+ if (abs(denom) < 0.0000001) // Line and plane don't intersect
+ return 0;
+ mu = - (d + n->x * p1->x + n->y * p1->y + n->z * p1->z) / denom;
+ p->x = p1->x + mu * (p2->x - p1->x);
+ p->y = p1->y + mu * (p2->y - p1->y);
+ p->z = p1->z + mu * (p2->z - p1->z);
+ if (mu < 0 || mu > 1) // Intersection not along line segment
+ return 0;
+
+ if(!PointInTriangle( p, *n, pa, pb, pc)){return 0;}
+ return 1;
+}
+
+void ReflectVector(XYZ *vel, XYZ *n)
+{
+ XYZ vn;
+ XYZ vt;
+ float dotprod;
+
+ dotprod=dotproduct(*n,*vel);
+ vn.x=n->x*dotprod;
+ vn.y=n->y*dotprod;
+ vn.z=n->z*dotprod;
+
+ vt.x=vel->x-vn.x;
+ vt.y=vel->y-vn.y;
+ vt.z=vel->z-vn.z;
+
+ vel->x = vt.x - vn.x;
+ vel->y = vt.y - vn.y;
+ vel->z = vt.z - vn.z;
+}
+
+float dotproduct(XYZ point1, XYZ point2){
+ GLfloat returnvalue;
+ returnvalue=(point1.x*point2.x+point1.y*point2.y+point1.z*point2.z);
+ return returnvalue;
+}
+
+float findDistance(XYZ point1, XYZ point2){
+ return(fast_sqrt((point1.x-point2.x)*(point1.x-point2.x)+(point1.y-point2.y)*(point1.y-point2.y)+(point1.z-point2.z)*(point1.z-point2.z)));
+}
+
+float findLength(XYZ point1){
+ return(fast_sqrt((point1.x)*(point1.x)+(point1.y)*(point1.y)+(point1.z)*(point1.z)));
+}
+
+
+float findLengthfast(XYZ point1){
+ return((point1.x)*(point1.x)+(point1.y)*(point1.y)+(point1.z)*(point1.z));
+}
+
+float findDistancefast(XYZ point1, XYZ point2){
+ return((point1.x-point2.x)*(point1.x-point2.x)+(point1.y-point2.y)*(point1.y-point2.y)+(point1.z-point2.z)*(point1.z-point2.z));
+}
+
+XYZ DoRotation(XYZ thePoint, float xang, float yang, float zang){
+ XYZ newpoint;
+ if(xang){
+ xang*=6.283185;
+ xang/=360;
+ }
+ if(yang){
+ yang*=6.283185;
+ yang/=360;
+ }
+ if(zang){
+ zang*=6.283185;
+ zang/=360;
+ }
+
+
+ if(yang){
+ newpoint.z=thePoint.z*cos(yang)-thePoint.x*sin(yang);
+ newpoint.x=thePoint.z*sin(yang)+thePoint.x*cos(yang);
+ thePoint.z=newpoint.z;
+ thePoint.x=newpoint.x;
+ }
+
+ if(zang){
+ newpoint.x=thePoint.x*cos(zang)-thePoint.y*sin(zang);
+ newpoint.y=thePoint.y*cos(zang)+thePoint.x*sin(zang);
+ thePoint.x=newpoint.x;
+ thePoint.y=newpoint.y;
+ }
+
+ if(xang){
+ newpoint.y=thePoint.y*cos(xang)-thePoint.z*sin(xang);
+ newpoint.z=thePoint.y*sin(xang)+thePoint.z*cos(xang);
+ thePoint.z=newpoint.z;
+ thePoint.y=newpoint.y;
+ }
+
+ return thePoint;
+}
+
+float square( float f ) { return (f*f) ;}
+
+bool sphere_line_intersection (
+ float x1, float y1 , float z1,
+ float x2, float y2 , float z2,
+ float x3, float y3 , float z3, float r )
+{
+
+ // x1,y1,z1 P1 coordinates (point of line)
+ // x2,y2,z2 P2 coordinates (point of line)
+ // x3,y3,z3, r P3 coordinates and radius (sphere)
+ // x,y,z intersection coordinates
+ //
+ // This function returns a pointer array which first index indicates
+ // the number of intersection point, followed by coordinate pairs.
+
+ float x , y , z;
+ float a, b, c, mu, i ;
+
+ if(x1>x3+r&&x2>x3+r)return(0);
+ if(x1<x3-r&&x2<x3-r)return(0);
+ if(y1>y3+r&&y2>y3+r)return(0);
+ if(y1<y3-r&&y2<y3-r)return(0);
+ if(z1>z3+r&&z2>z3+r)return(0);
+ if(z1<z3-r&&z2<z3-r)return(0);
+ a = square(x2 - x1) + square(y2 - y1) + square(z2 - z1);
+ b = 2* ( (x2 - x1)*(x1 - x3)
+ + (y2 - y1)*(y1 - y3)
+ + (z2 - z1)*(z1 - z3) ) ;
+ c = square(x3) + square(y3) +
+ square(z3) + square(x1) +
+ square(y1) + square(z1) -
+ 2* ( x3*x1 + y3*y1 + z3*z1 ) - square(r) ;
+ i = b * b - 4 * a * c ;
+
+ if ( i < 0.0 )
+ {
+ // no intersection
+ return(0);
+ }
+
+ return(1);
+}
+
+XYZ DoRotationRadian(XYZ thePoint, float xang, float yang, float zang){
+ XYZ newpoint;
+ XYZ oldpoint;
+
+ oldpoint=thePoint;
+
+ if(yang!=0){
+ newpoint.z=oldpoint.z*cos(yang)-oldpoint.x*sin(yang);
+ newpoint.x=oldpoint.z*sin(yang)+oldpoint.x*cos(yang);
+ oldpoint.z=newpoint.z;
+ oldpoint.x=newpoint.x;
+ }
+
+ if(zang!=0){
+ newpoint.x=oldpoint.x*cos(zang)-oldpoint.y*sin(zang);
+ newpoint.y=oldpoint.y*cos(zang)+oldpoint.x*sin(zang);
+ oldpoint.x=newpoint.x;
+ oldpoint.y=newpoint.y;
+ }
+
+ if(xang!=0){
+ newpoint.y=oldpoint.y*cos(xang)-oldpoint.z*sin(xang);
+ newpoint.z=oldpoint.y*sin(xang)+oldpoint.z*cos(xang);
+ oldpoint.z=newpoint.z;
+ oldpoint.y=newpoint.y;
+ }
+
+ return oldpoint;
+
+}
+