aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorNguyễn Gia Phong <mcsinyx@disroot.org>2020-04-18 16:20:12 +0700
committerNguyễn Gia Phong <mcsinyx@disroot.org>2020-04-18 16:20:21 +0700
commit743056f7631e1af196f040ca2099eb95bb44b83c (patch)
tree1770e5590d3492ad79dc45018cbd4b2bfefacfe1
parent1c93aaaad812dd63cc6e43a59f3f35979176ebfe (diff)
downloadcp-743056f7631e1af196f040ca2099eb95bb44b83c.tar.gz
[usth/ICT2.10] Communicate mobile networks
-rw-r--r--usth/ICT2.10/homework/solutions.pdfbin0 -> 190401 bytes
-rw-r--r--usth/ICT2.10/homework/solutions.tex405
-rw-r--r--usth/ICT2.10/midterm/A-GPS.pngbin0 -> 185117 bytes
-rw-r--r--usth/ICT2.10/midterm/BY.pngbin0 -> 34691 bytes
-rw-r--r--usth/ICT2.10/midterm/CC.pngbin0 -> 32442 bytes
-rw-r--r--usth/ICT2.10/midterm/SA.pngbin0 -> 33152 bytes
-rw-r--r--usth/ICT2.10/midterm/USTH.jpgbin0 -> 375099 bytes
-rw-r--r--usth/ICT2.10/midterm/lobes.pngbin0 -> 320391 bytes
-rw-r--r--usth/ICT2.10/midterm/main.pdfbin0 -> 1628832 bytes
-rw-r--r--usth/ICT2.10/midterm/main.tex439
-rw-r--r--usth/ICT2.10/midterm/one-way-to-earth.pngbin0 -> 149364 bytes
-rw-r--r--usth/ICT2.10/midterm/two-way.pngbin0 -> 292038 bytes
12 files changed, 844 insertions, 0 deletions
diff --git a/usth/ICT2.10/homework/solutions.pdf b/usth/ICT2.10/homework/solutions.pdf
new file mode 100644
index 0000000..2cde2c5
--- /dev/null
+++ b/usth/ICT2.10/homework/solutions.pdf
Binary files differ
diff --git a/usth/ICT2.10/homework/solutions.tex b/usth/ICT2.10/homework/solutions.tex
new file mode 100644
index 0000000..1dbdf4f
--- /dev/null
+++ b/usth/ICT2.10/homework/solutions.tex
@@ -0,0 +1,405 @@
+\documentclass[a4paper,12pt]{article}
+\usepackage[english,vietnamese]{babel}
+\usepackage{amsmath}
+\usepackage{booktabs}
+\usepackage{circuitikz}
+\usepackage{enumerate}
+\usepackage{lmodern}
+\usepackage{mathtools}
+\usepackage{pgfplots}
+\usepackage{siunitx}
+\usepackage{textcomp}
+\usepackage{tikz}
+\usetikzlibrary{arrows,automata}
+
+\newcommand{\N}{\mathcal N}
+\newcommand{\ud}{\,\mathrm{d}}
+\newcommand{\SIR}{\mathrm{SIR}}
+\newcommand{\baud}{\mathrm{Bd}}
+\newcommand{\bit}{\mathrm{b}}
+\newcommand{\chip}{\mathrm{c}}
+\newcommand{\problem}[1]{\noindent\textbf{#1.}}
+
+\title{Mobile Wireless Communication}
+\author{Nguyễn Gia Phong}
+\date{Spring 2020}
+
+\begin{document}
+\maketitle
+\setcounter{section}{1}
+\section{Characteristics of Radio Environment}
+\subsection{Propagation Models}
+\problem 1 Consider radio waves propagating by two-slope model over the
+distance under \SI{200}{\metre} in Orlando. The average receive power is given by
+\[\bar P_R = g(d) P_T G_T G_R\]
+
+Assume the attenna gains are both 1 and apply the inverse variation of power
+with distance for two-slope model we get
+\begin{align*}
+ &\bar P_R = d^{-n_1}\left(1 + \frac{d}{d_b}\right)^{-n_2} P_T\\
+ \iff &P_T = d^{n_1}\left(1 + \frac{d}{d_b}\right)^{n_2}\bar P_R
+\end{align*}
+
+Substituting $d_b = \SI{90}{\metre}$, $n_1 = 1.3$ and $n_2 = 3.5$ gives us
+\[P_T = d^{1.3}\left(1 + \frac{d}{90}\right)^{3.5}\bar P_R\]
+
+With average power effect experienced, $P_{R,\si{\deci\bel}} = 10\lg P_R
+= 10\lg \bar P_R$ and $P_{T,\si{\deci\bel}} = 10\lg P_T$ and thus
+\begin{align*}
+ &P_{T,\si{\deci\bel}} - P_{R,\si{\deci\bel}}
+ = 13\lg d + 35\lg\frac{d + 90}{90}\\
+ \iff &P_{R,\si{\deci\bel}} - P_{T,\si{\deci\bel}}
+ = 35\lg\frac{90}{d + 90} - 13\lg d
+\end{align*}
+\pagebreak
+
+This is plotted in the figure below
+\begin{center}
+ \begin{tikzpicture}
+ \begin{axis}[
+ xlabel={$d$ (\si{\metre})},
+ ylabel={$P_{R,\si{\deci\bel}}-P_{T,\si{\deci\bel}}$ (\si{\deci\bel})}]
+ \addplot[domain=0:200]{35*ln(90/(x+90))/ln(10) - 13*ln(x)/ln(10)};
+ \end{axis}
+ \end{tikzpicture}
+\end{center}
+
+\problem 2 Consider a log-normal shadow fading propagation, the receive power
+is given by \[P_R = \sqrt[10]{10^X} g(d) P_T G_T G_R\] where $X$ is a zero-mean
+normal random variable with STD $\sigma = \SI{6}{\deci\bel}$.
+\begin{enumerate}[(a)]
+ \item Given $\bar P_R = \SI{1}{\milli\watt}$ at $d = \SI{100}{\metre}$.
+ \[P_R > \bar P_R \iff \sqrt[10]{10^X} > 1 \iff X > 0\]
+ Since $X$ is zero-mean and normally distributed, the probability
+ the received power at a mobile at that distance from the base station
+ will exceed \SI{1}{\milli\watt} is \SI{50}{\percent}, and so is the
+ probability it is less than \SI{1}{\milli\watt}.
+
+ \item Let $Y = X/\sigma$, $Y \sim \N(0, 1)$
+ and $F_X(x) = \Phi(X/\sigma) = \Phi(X/6)$.
+
+ The probability a mobile has an acceptable received signal at
+ \SI{10}{\milli\watt} or higher is
+ \begin{align*}
+ P\left(P_R \ge 10\bar P_R\right)
+ &= P\left(\sqrt[10]{10^X} \ge 10\right) = P(X \ge 10)\\
+ &= 1 - F_X(10) = 1 - \Phi\left(\frac{10}{6}\right) = \SI{4.78}{\percent}
+ \end{align*}
+
+ \item For $\sigma = \SI{10}{\deci\bel}$, $F_X(x) = \Phi(X/10)$.
+ The probability a mobile has an acceptable received signal at
+ \SI{10}{\milli\watt} or higher is
+ \[P\left(P_R \ge 10\bar P_R\right) = 1 - F_X(10)
+ = 1 - \Phi(1) = \SI{15.87}{\percent}\]
+
+ \item If the lower limit for an acceptable received signal is
+ \SI{6}{\milli\watt}, with $\sigma = 6$, the probability a received signal
+ is acceptable is
+ \begin{align*}
+ P\left(P_R \ge 6\bar P_R\right)
+ &= P\left(\sqrt[10]{10^X} \ge 6\right)
+ = P\left(X \ge \lg{6^{10}}\right)\\
+ &= 1 - F_X\left(\lg{6^{10}}\right)
+ = 1 - \Phi\left(\frac{\lg{6^{10}}}{6}\right) = \SI{9.73}{\percent}
+ \end{align*}
+ With $\sigma = 10$, the probability a received signal is acceptable is
+ \[P\left(P_R \ge 6\bar P_R\right) = 1 - F_X\left(\lg{6^{10}}\right)
+ = 1 - \Phi\left(\frac{\lg{6^{10}}}{10}\right) = \SI{21.82}{\percent}\]
+\end{enumerate}
+
+\subsection{Random Channel Characterization}
+Given $x(t) = e^t * (\Pi(t - 1) - \Pi(t - 3))$ and $h(t) = \delta(t - 1)$,
+where $\Pi$ is the rectangular function:
+\[\Pi(t) = \begin{dcases}
+ 0, &\text{if }|t| > \frac{1}{2}\\
+ \frac{1}{2}, &\text{if }|t| = \frac{1}{2}\\
+ 1, &\text{if }|t| < \frac{1}{2}\\
+\end{dcases}\]
+
+The convolution sum of $x$ and $h$ is
+\begin{align*}
+ y(t) &= x(t - 1)\\
+ &= \int_{-\infty}^\infty e^{t-z-1}(\Pi(z-2) - \Pi(z-4))\ud z\\
+ &= \int_{-\infty}^\infty e^{t-z-1}\Pi(z-2)\ud z
+ - \int_{-\infty}^\infty e^{t-z-1}\Pi(z-4)\ud z\\
+ &= \int_{1.5}^{2.5} e^{t-z-1}\ud z
+ - \int_{3.5}^{4.5} e^{t-z-1}\ud z\\
+ &= e^{t-1}\left(e^{2.5} - e^{1.5} - e^{4.5} + e^{3.5}\right)
+\end{align*}
+
+\subsection{Fading}
+\problem 1 Consider several delay spreeds $D$ of \SI{0.5}{\micro\second},
+\SI{1}{\micro\second} and \SI{6}{\micro\second}.
+
+\begin{itemize}
+ \item For IS-95 and cdma2000 which uses the transmission bandwidth of
+ \SI{1.25}{\mega\hertz}, their symbol interval is \SI{0.8}{\micro\second}.
+ For the multipath rays to be resolvable, the delay spread must be
+ greater than this (\SI{1}{\micro\second} and \SI{6}{\micro\second}).
+ \item For WCDMA which uses the bandwidth of \SI{5}{\mega\hertz},
+ the symbol interval is \SI{0.2}{\micro\second}, thus symbols
+ are resolvable in all cases.
+\end{itemize}
+
+\problem 2 Indicate the condition for flat fading for each of the following
+data rates with transmission in binary form: \SI{8}{kbps}, \SI{40}{kbps},
+\SI{100}{kbps}, \SI{6}{Mbps}.
+
+Assume information is transmitted in rectangular waves, the symbol interval
+are \SI{125}{\micro\second}, \SI{25}{\micro\second}, \SI{10}{\micro\second}
+and \SI{1/6}{\micro\second} respectively. For flat fading to occur,
+the delay spread must be significantly less than the symbol interval.
+Since no data is provided or found, no conclusion is drawn on which
+radio environments would result in flat fading for each of these data rates.
+
+\section{Cellular Concept}
+\subsection{Channel Allocation}
+\problem 1 Assume the simplest path-loss model of $g(d) = d^{-3}$, calculate
+down-link SIR at point P at the corner of a hexagonal cell in a 3-reuse case.
+
+Using to path-loss model, the signal-to-interference ratio
+can be approximated from the six first-tier interferers as follows
+\[\SIR \approx \frac{1}{\left(\frac{R}{D-R}\right)^3
+ + \left(\frac{R}{D+R}\right)^3
+ + 4\left(\frac{R}{D}\right)^3}\]
+
+In a 3-reuse case, $D = \sqrt{3C}R = 3R$, and thus
+\[\SIR \approx \frac{1}{\left(\frac{R}{2R}\right)^3
+ + \left(\frac{R}{4R}\right)^3
+ + 4\left(\frac{R}{3R}\right)^3} = \frac{1728}{499}\]
+
+\problem 2 Calculate the worst-case uplink SIR assuming the co-channel
+interference is caused only by the closest interfering mobiles in radio cells
+a distance $D = 3.46R$ away from the cell. Assume the simplest path-loss model
+of $g(d) = d^{-4}$, the signal-to-interference ratio is approximated by
+\[\SIR \approx \frac{P_t/R^4}{6P_t/\left(\frac{3D}{4}\right)^4}
+= \frac{(3D/4)^4}{6R^4}\]
+
+With $D = 3.46R$ (4-reuse), this becomes
+\[\SIR \approx \frac{(3\cdot3.46/4)^4}{6} = 7.56\]
+
+\subsection{Erlang-B Formula and Sizing a Cell}
+\problem 1 An user who makes a call attempt every 15 minutes, with each call
+lasts an average of 2 minutes, generate the load of 2/15 erlangs.
+
+\problem 2 Consider a mobile system supporting 832 frequency channels
+and 7-reuse, there are over 118 channels per cell. With the probility of
+call blocking of $P_B \le \SI{1}{\percent}$, the traffic is around 101 erlangs.
+Given the average call-holding time $h = \SI{200}{\second}$, the arrival rate
+can be calculated to be $\lambda = \SI{0.505}{\mathrm{calls}\per\second}$.
+Since an user makes a call every \SI{900}{\second} on average, there are
+approximately 454.5 users. As the density of mobile terminals is
+\SI{2}{\mathrm{terminals}\per\square{\kilo\metre}}, the area is
+\SI{227.25}{\square{\kilo\metre}}, which indicates a cell radius
+of $R = \SI{9.35}{\kilo\metre}$, assuming a hexagonal topology.
+
+\section{Modulation Techniques}
+\problem 1 Consider communication system operating at the transmission
+bandwidth of \SI{1}{\mega\hertz} with the rolloff factor of 0.25.
+\begin{itemize}
+ \item Achievable data traffic rate is
+ \[R_s = \frac{B}{1 + \beta} = \frac{10^6}{1 + 0.25}
+ = \SI{800}{\kilo\baud\per\second}\]
+ \item Delay spread that no ISI occurs is much less than the symbol interval,
+ which is $T = B^{-1} = \SI{1}{\micro\second}$.
+ \item Using OFDM with $N = 16$ equally spead carriers, for each subcarrier,
+ $\Delta f = \SI{62.5}{\kilo\hertz}$, $R_s = \SI{50}{\kilo\baud\per\second}$
+ and $T = \SI{16}{\micro\second}$.
+ \item Additionally use 16-QAM, the bit rate is
+ $R_\bit = \SI{800}{\kilo\bit\per\second}$.
+\end{itemize}
+
+\problem 2 Given $B = \SI{1}{\mega\hertz}$, $\beta = 0.25$,
+$R_\bit = \SI{4.8}{\mega\bit\per\second}$ and $T = \SI{25}{\micro\second}$.
+
+$R_s = B/(1+\beta) = \SI{0.8}{\mega\baud\per\second}$, thus 64-QAM is used.
+
+For OFDM, $N = R_s/\Delta f = R_\bit T \approx 128$.
+
+\problem 3 Consider a transmission of bandwidth $B = \SI{2}{\mega\hertz}$,
+where phase-shift keying and Nyquist rolloff shaping is used.
+
+For rolloff factors of 0.2, 0.25, 0.5, the traffic rates are respectively
+\SI{1.67}{\mega\baud\per\second}, \SI{1.6}{\mega\baud\per\second} and
+\SI{1.33}{\mega\baud\per\second}.
+
+In order to transmit at a rate of $R_\bit = \SI{6.4}{\mega\bit\per\second}$
+when $\beta = 0.25$, 16-QAM should be used.
+
+\problem 4 Given the input sequence 1001111010
+and the following QPSK signal pairs
+\begin{center}
+ \begin{tabular}{c c c}
+ \toprule
+ Successive Signal & $a_i$ & $b_i$\\
+ \midrule
+ 0 0 & $-1$ & $-1$\\
+ 0 1 & $-1$ & $+1$\\
+ 1 0 & $+1$ & $-1$\\
+ 1 1 & $+1$ & $+1$\\
+ \bottomrule
+ \end{tabular}
+\end{center}
+
+Let the carrier frequency be some multiple of 1/T
+
+\begin{tikzpicture}
+ \begin{axis}[scale only axis, width=0.8\textwidth, height=0.16\textwidth,
+ xlabel=In-phase Carrier, xtick={0,1,2,3,4,5},
+ xticklabels={0,T,2T,3T,4T,5T}, ymin=-2, ymax=2, samples=420]
+ \addplot[domain=0:5]{cos(x*720)};
+ \end{axis}
+\end{tikzpicture}
+
+\begin{tikzpicture}
+ \begin{axis}[scale only axis, width=0.8\textwidth, height=0.16\textwidth,
+ xlabel=Quadrature-phase Carrier, xtick={0,1,2,3,4,5},
+ xticklabels={0,T,2T,3T,4T,5T}, ymin=-2, ymax=2, samples=420]
+ \addplot[domain=0:5]{sin(x*720)};
+ \end{axis}
+\end{tikzpicture}
+
+The output QPSK signal would then be
+
+\begin{tikzpicture}
+ \begin{axis}[scale only axis, width=0.8\textwidth, height=0.16\textwidth,
+ xlabel=In-phase Component, xtick={0,1,2,3,4,5},
+ xticklabels={0,T,2T,3T,4T,5T}, ymin=-2, ymax=2, samples=69]
+ \addplot[domain=0:1]{+cos(x*720)};
+ \addplot[domain=1:2]{-cos(x*720)};
+ \addplot[domain=2:3]{+cos(x*720)};
+ \addplot[domain=3:4]{+cos(x*720)};
+ \addplot[domain=4:5]{+cos(x*720)};
+ \end{axis}
+\end{tikzpicture}
+
+\begin{tikzpicture}
+ \begin{axis}[scale only axis, width=0.8\textwidth, height=0.16\textwidth,
+ xlabel=Quadrature-phase Component, xtick={0,1,2,3,4,5},
+ xticklabels={0,T,2T,3T,4T,5T}, ymin=-2, ymax=2, samples=69]
+ \addplot[domain=0:1]{-sin(x*720)};
+ \addplot[domain=1:2]{+sin(x*720)};
+ \addplot[domain=2:3]{+sin(x*720)};
+ \addplot[domain=3:4]{-sin(x*720)};
+ \addplot[domain=4:5]{-sin(x*720)};
+ \end{axis}
+\end{tikzpicture}
+
+\begin{tikzpicture}
+ \begin{axis}[scale only axis, width=0.8\textwidth, height=0.16\textwidth,
+ xlabel=Output Signal, xtick={0,1,2,3,4,5},
+ xticklabels={0,T,2T,3T,4T,5T}, ymin=-2, ymax=2, samples=69]
+ \addplot[domain=0:1]{+cos(x*720)-sin(x*720)};
+ \addplot[domain=1:2]{-cos(x*720)+sin(x*720)};
+ \addplot[domain=2:3]{+cos(x*720)+sin(x*720)};
+ \addplot[domain=3:4]{+cos(x*720)-sin(x*720)};
+ \addplot[domain=4:5]{+cos(x*720)-sin(x*720)};
+ \end{axis}
+\end{tikzpicture}
+
+\section{Multiple Access Techniques}
+\subsection{Time-Division Multiple Access}
+Transmission bit rate is the rate at which the bits are transmitted, while
+the user information bit rate is the rate at which per data are transmitted.
+
+In particular, GSM gives each time slot \SI{576.92}{\micro\second},
+minus \SI{30.46}{\micro\second} guard time. During this duration,
+\SI{148}{\bit} are tramsmitted, thus the transmission bit rate is
+$\SI{148}{\bit}/(\SI{576.92}{\micro\second}-\SI{30.46}{\micro\second})
+= \SI{270.834}{\kilo\bit\per\second}$. Of the \SI{148}{\bit},
+\SI{114}{\bit} are data bits. Furthermore, only one slot per GSM eight-slot
+frame and 24 out of 26 frames are used to carry information. Therefore,
+the user bit rate is $\SI{114}{\bit}/\SI{4.615}{\milli\second}\cdot 24/26
+= \SI{22.8}{\kilo\bit\per\second}$.
+
+Similarly, IS-136 has the transmission bit rate of $\SI{1944}{\bit}
+/ \SI{40}{\milli\second} = \SI{48.6}{\kilo\bit\per\second}$ and $\SI{520}{\bit}
+/ \SI{40}{\milli\second} = \SI{13}{\kilo\bit\per\second}$.
+
+\subsection{Code-Division Multiple Access}
+Consider IS-95 with the bit rate of \SI{9.6}{\kilo\bit\per\second}
+and the chip rate of \SI{1.2288}{\mega\chip\per\second}, the speading gain
+is 128 chips per bit.
+
+\section{Channel Coding Techniques}
+
+\subsection{Block Coding}
+Consider the generator matrix
+\[\mathbf G = [\mathbf I_k \mathbf P] = \begin{pmatrix}
+ 1&0&0&0&1&0&1\\
+ 0&1&0&0&1&1&1\\
+ 0&0&1&0&1&1&0\\
+ 0&0&0&1&0&1&1
+\end{pmatrix}\]
+it is trivial that $n = 7$, $k = 4$ and
+\[\mathbf P = \begin{pmatrix}
+ 1&0&1\\
+ 1&1&1\\
+ 1&1&0\\
+ 0&1&1
+\end{pmatrix}\]
+
+The parity check matrix is then given by
+\[\mathbf H = [\mathbf P^T \mathbf I_{n-k}] = \begin{pmatrix}
+ 1&0&0&1&1&1&0\\
+ 0&1&0&0&1&1&1\\
+ 0&0&1&1&1&0&1
+\end{pmatrix}\]
+
+\subsection{Convolutional Coding}
+Consider a $K = 3$, rate \textonehalf{} convolution encoder with generators
+$g_1 = [101]$ and $g_2 = [011]$.
+\begin{center}
+ \begin{circuitikz}
+ \draw (0,3) node (input) {input}
+ (1,3) node[inputarrow] (in) {}
+ (2,3) node[circ] (m1) {}
+ (3.5,3) node[twoportshape] (port1) {}
+ (5,3) node[circ] (m2) {}
+ (6.5,3) node[twoportshape] (port2) {}
+ (8,3) node[circ] (m3) {}
+ (input) -- (in) -- (m1) -- (port1) -- (m2) -- (port2) -- (m3)
+
+ (5,5.5) node[xor port, rotate=90] (xor1) {}
+ (9,6) node[flowarrow] (out1) {}
+ (10,6) node{$n_1$}
+ (m1) |- (xor1.in 1)
+ (m3) |- (xor1.in 2)
+ (xor1.out) |- (out1)
+
+ (6.5,0.5) node[xor port, rotate=270] (xor2) {}
+ (9,0) node[flowarrow] (out2) {}
+ (10,0) node{$n_2$}
+ (m3) |- (xor2.in 1)
+ (m2) |- (xor2.in 2)
+ (xor2.out) |- (out2);
+ \end{circuitikz}
+\end{center}
+
+Initialize the encoder with 01, we get the following state diagram
+\begin{center}
+ \begin{tikzpicture}[->,>=latex,shorten >=1pt,auto,node distance=42mm]
+ \node[initial,state] (01) {01};
+ \node[state] (00) [above right of=01] {00};
+ \node[state] (11) [below right of=01] {11};
+ \node[state] (10) [below right of=00] {10};
+
+ \path (00) edge [dashed, loop above] node {00} (00)
+ edge node {10} (10)
+ (01) edge [dashed] node {11} (00)
+ edge [bend left] node {01} (10)
+ (10) edge [dashed, bend left] node {01} (01)
+ edge node {11} (11)
+ (11) edge [dashed] node {10} (01)
+ edge [loop below] node {00} (11);
+
+ \node [below of=10] {%
+ \begin{tabular}{c c}
+ \raisebox{2pt}{\tikz{\draw[dashed] (0,0) -- (10mm,0);}} & 0\\
+ \raisebox{2pt}{\tikz{\draw (0,0) -- (10mm,0);}} & 1
+ \end{tabular}};
+ \end{tikzpicture}
+\end{center}
+Given the input bit sequence of 10011011, the output would be
+0101111011100111.
+\end{document}
diff --git a/usth/ICT2.10/midterm/A-GPS.png b/usth/ICT2.10/midterm/A-GPS.png
new file mode 100644
index 0000000..c5599ce
--- /dev/null
+++ b/usth/ICT2.10/midterm/A-GPS.png
Binary files differ
diff --git a/usth/ICT2.10/midterm/BY.png b/usth/ICT2.10/midterm/BY.png
new file mode 100644
index 0000000..8613373
--- /dev/null
+++ b/usth/ICT2.10/midterm/BY.png
Binary files differ
diff --git a/usth/ICT2.10/midterm/CC.png b/usth/ICT2.10/midterm/CC.png
new file mode 100644
index 0000000..216443a
--- /dev/null
+++ b/usth/ICT2.10/midterm/CC.png
Binary files differ
diff --git a/usth/ICT2.10/midterm/SA.png b/usth/ICT2.10/midterm/SA.png
new file mode 100644
index 0000000..b12cd1c
--- /dev/null
+++ b/usth/ICT2.10/midterm/SA.png
Binary files differ
diff --git a/usth/ICT2.10/midterm/USTH.jpg b/usth/ICT2.10/midterm/USTH.jpg
new file mode 100644
index 0000000..d2190eb
--- /dev/null
+++ b/usth/ICT2.10/midterm/USTH.jpg
Binary files differ
diff --git a/usth/ICT2.10/midterm/lobes.png b/usth/ICT2.10/midterm/lobes.png
new file mode 100644
index 0000000..bf3d357
--- /dev/null
+++ b/usth/ICT2.10/midterm/lobes.png
Binary files differ
diff --git a/usth/ICT2.10/midterm/main.pdf b/usth/ICT2.10/midterm/main.pdf
new file mode 100644
index 0000000..837437b
--- /dev/null
+++ b/usth/ICT2.10/midterm/main.pdf
Binary files differ
diff --git a/usth/ICT2.10/midterm/main.tex b/usth/ICT2.10/midterm/main.tex
new file mode 100644
index 0000000..0a33ca1
--- /dev/null
+++ b/usth/ICT2.10/midterm/main.tex
@@ -0,0 +1,439 @@
+\documentclass[pdf]{beamer}
+\usepackage[english,vietnamese]{babel}
+\usepackage{amsmath}
+\usepackage{booktabs}
+\usepackage{graphicx}
+\usepackage{hyperref}
+\usepackage{lmodern}
+\usepackage{siunitx}
+
+\mode<presentation>{}
+\usetheme[hideothersubsections]{Hannover}
+\usecolortheme{crane}
+\usefonttheme[onlymath]{serif}
+\usebackgroundtemplate{
+ \includegraphics[width=\paperwidth,height=\paperheight]{USTH.jpg}}
+\renewcommand{\thefootnote}{\fnsymbol{footnote}}
+\setcounter{tocdepth}{2}
+
+\title{Satellite Internet}
+\author[Group 1]{Nguyễn Như Hiếu---BI9-103\\
+ Ngô Ngọc Đức Huy---BI9-119\\
+ Ngô Xuân Minh---BI9-167\\
+ Nguyễn Gia Phong---BI9-184\\
+ Nguyễn Hồng Quang---BI9-194\\
+ Trần Minh Vương---BI9-239}
+\institute{University of Science and Technology of Hà Nội}
+\date{\selectlanguage{english}\today}
+
+\begin{document}
+\frame{\titlepage}
+\selectlanguage{english}
+\begin{frame}{Contents}
+ \tableofcontents
+\end{frame}
+
+\section{Introduction}
+\frame{\tableofcontents[currentsection]}
+\begin{frame}{Usage}\Large
+ \begin{block}{Popular Use}
+ \begin{itemize}
+ \item Airplane
+ \item Cruise Ship
+ \item Rural Area
+ \end{itemize}
+ \end{block}
+ \begin{block}{Similarity}
+ All three are either in or travel through area \\
+ with little to no ground station.
+ \end{block}
+\end{frame}
+
+\begin{frame}{Future Usage}\Large
+ Provide Internet for the whole world
+
+ \begin{block}{Fact}
+ Over 3.7 Billion people are living without being \\
+ connected to the internet.
+ \end{block}
+\end{frame}
+
+\section{How It Works}
+\frame{\tableofcontents[currentsection]}
+\begin{frame}{Components}
+ \begin{itemize}\Large
+ \item Geostationary satellite (GEO)
+ \item Gateway
+ \item Antenna
+ \item Others:
+ \begin{itemize}\Large
+ \item Modem
+ \item Centralized NOC
+ \end{itemize}
+ \end{itemize}
+\end{frame}
+
+\begin{frame}{Components Interaction}
+ \begin{figure}
+ \includegraphics[width=0.9\textwidth]{A-GPS.png}
+ \caption{GPS using A-GPS and GSM network}
+ \end{figure}
+\end{frame}
+
+
+\begin{frame}{One-way Satellite Network}
+\Large
+ \begin{center}
+ \includegraphics[width=\textwidth]{one-way-to-earth.png}
+ \end{center}
+\end{frame}
+
+\subsection{1-way from Earth}
+\begin{frame}{Components}\large
+ \begin{itemize}
+ \item Upstream: Data travelling through telephone modem
+ \item Downstream: Download through satellite
+ \end{itemize}
+\end{frame}
+
+\begin{frame}{Characteristics}
+ \begin{itemize}
+ \item Upload speed: Same as that of the dial-up internet
+ \item Download speed: Much faster than dial-up internet
+ \item Latency: Still high,much lower than two way satellite internet
+ \item You have to tie up the telephone lie when you use the Internet
+ \end{itemize}
+\end{frame}
+
+\subsection{1-way to Earth}
+\begin{frame}{One-way to Earth}\Large
+ \begin{block}{Components}
+ \begin{itemize}
+ \item 1 transmitting hub station (usually very large)
+ \item Multiple receive-only Earth stations
+ \end{itemize}
+ \end{block}
+\end{frame}
+
+\begin{frame}{Characteristics}\Large
+ \begin{itemize}
+ \item Usage: IP multicast-based data,\\
+ audio and video distribution
+ \item Interactivity: Little user interface,\\
+ similar to TV or radio content
+ \end{itemize}
+\end{frame}
+
+\subsection{2-way}
+\begin{frame}{Two-way Satellite Network}
+ \begin{center}
+ \includegraphics[width=0.8\textwidth]{two-way.png}
+ \end{center}
+\end{frame}
+
+\begin{frame}{Components}\LARGE
+ \begin{itemize}
+ \item VSAT: Send and receive data
+ \item Telecommunication port:\\ Relay data through Internet
+ \end{itemize}
+\end{frame}
+
+\begin{frame}{Condition}\LARGE
+ Satellite dish must be precisely pointed\\
+ to avoid interference.
+\end{frame}
+
+\begin{frame}{Characteristics}\large
+ \begin{itemize}
+ \item Both TDMA and single channel per carrier
+ \item Mostly Ku-band, but also C-band and Ka-band
+ \item May utilize telephone modem to reduce latency
+ \item Home-user's bandwidth based on payment
+ \item Difficult on moving vehicles
+ \end{itemize}
+\end{frame}
+
+\begin{frame}{Portable Satellite Internet}
+ \begin{block}{Portable}
+ \begin{itemize}
+ \item Use self-contained box pointed in general direction of Satellite
+ \item Expensive
+ \end{itemize}
+ \end{block}
+ \begin{block}{Satellite phone}
+ \begin{itemize}
+ \item Omnidirectional antenna so no alignment needed
+ \item Low bandwidth so slow to browse net,useful for sending email
+ \end{itemize}
+ \end{block}
+\end{frame}
+
+\section{Limits and Challenges}
+\frame{\tableofcontents[currentsection]}
+
+\subsection{Weather}
+\begin{frame}{Heavy rain or Blizzard}\LARGE
+ \begin{itemize}
+ \item Fading
+ \item Accumulating raindrop or snow
+ \item Wind
+ \end{itemize}
+\end{frame}
+
+\subsection{Latency}
+\begin{frame}{Latency}\large
+ \begin{block}{Satellite altitude}
+ \begin{itemize}
+ \item LEO: $<$ \SI{2000}{\kilo\meter}
+ \item MEO: 2000--\SI{35786}{\kilo\meter}
+ \item GEO: $>$ \SI{35786}{\kilo\meter}
+ \end{itemize}
+ \end{block}
+ \begin{block}{Result}
+ GEO has 12 times higher latency than terrestrial base networks.
+ LEO and MEO have a bit lower delay.
+ \end{block}
+\end{frame}
+
+\subsection{Others}
+\begin{frame}{Other Limitations}\Large
+ \begin{block}{Economically}
+ Costly: \SI{2}{\mega b\per\second} costs around \$100 a month.
+ \end{block}
+ \begin{block}{Environmentally}
+ Space junk: Only 2000 out of 5000 launched satellites are still in function.
+ \end{block}
+\end{frame}
+
+\section{Mitigations}
+\frame{\tableofcontents[currentsection]}
+\subsection{Techniques}
+\begin{frame}{Fade Mitigation Techniques}\Large
+ Common functions:
+ \begin{itemize}
+ \item \emph{Monitor} link quality by continuous measurements
+ \item \emph{Predict} short-term behavior and duration\\
+ of satellite channel's next state
+ \item \emph{Set} parameters based on previous estimation
+ \end{itemize}
+\end{frame}
+
+\subsubsection{EIRP Control Techniques}
+\begin{frame}{Effective Isotropic Radiated Power}\Large
+ \begin{itemize}
+ \item EIRP = tranmitted power $\times$ antenna gain
+ \item EIRP control = adjusting carrier power
+ or antenna gain to compensate for power losses
+ \end{itemize}
+\end{frame}
+
+\begin{frame}{Power Control System}
+ \begin{enumerate}\large
+ \item Open loop: Based on recently received power.
+ \begin{itemize}\large
+ \item Non-reliable
+ \item Responsive
+ \end{itemize}
+ \item Closed loop: Based on channel power measurements.
+ \begin{itemize}\large
+ \item More comprehensive
+ \item Large propagation delay
+ \end{itemize}
+ \end{enumerate}
+\end{frame}
+
+\begin{frame}{Uplink Power Control}
+ \begin{itemize}
+ \item Vary carrier power at the earth station
+ \item Restoration of side lobes might lead to\\
+ adjacent \emph{channel} interference\\
+ \includegraphics[width=0.54\textwidth]{lobes.png}
+ \item Increase of earth station transmit power may cause
+ adjacent \emph{satellite} interference\footnote{Satellites
+ are separated by 2--3 degrees on the geostationary orbit.\\}
+ \item Effective and preferred by many satellite operators
+ \end{itemize}
+\end{frame}
+
+\begin{frame}{Downlink Power Control}
+ \begin{itemize}\Large
+ \item Vary carrier power on-board the satellite
+ \item Difficult to implement due to\\ satellite size and weight limitations
+ \item Subject to
+ \begin{enumerate}\large
+ \item Adjacent \emph{channel} interference
+ \item Inter\emph{modulation} interference
+ \item Inter\emph{system} interference (with terrestrial networks)
+ \end{enumerate}
+ \end{itemize}
+\end{frame}
+
+\begin{frame}{Spot Beam Shaping}\Large
+ \begin{itemize}
+ \item Adjust antenna gain on-board the satellite\\
+ for a certain geographical region
+ \item Shape satellite antenna for nearly constant\\
+ ground receive power, even under rainfall
+ \item Does \textbf{not} need expensive calculations\\
+ for attenuation estimation\footnote{SBS compensates
+ the entire coverage area instead of a single site.\\}
+ \item Technology and research are WIP
+ \end{itemize}
+\end{frame}
+
+\subsubsection{Adaptive Transmission Techniques}
+\begin{frame}{Adaptive Transmission Techniques}
+ \begin{itemize}\Large
+ \item Modify processing/transmission\\ manner of signals
+ \item Resource-shared techniques
+ \item Categories:
+ \begin{enumerate}\large
+ \item Hierarchical coding
+ \item Hierarchical modulation
+ \item Data rate reduction
+ \end{enumerate}
+ \end{itemize}
+\end{frame}
+
+\begin{frame}{Hierarchical Coding}\large
+ \begin{itemize}
+ \item Add redundancy to the information signal
+ \item Trade-off between bandwidth and error probability
+ \item Different conditions require different coding schemes
+ \item Prioritize users with less efficient coding schemes, i.e.\\
+ longer bursts (TDMA) or larger bandwidth (FDMA)
+ \end{itemize}
+\end{frame}
+
+\begin{frame}{Hierarchical Modulation}\large
+ \begin{itemize}
+ \item Provide lower quality fallback in case of weak signals
+ \item Exchange bandwidth efficiency for power requirements
+ \item Suitable for localized satellite systems, e.g. VSAT
+ \item Users with lower-order modulation get more resources
+ \end{itemize}
+\end{frame}
+
+\begin{frame}{Data Rate Reduction}\large
+ \begin{itemize}
+ \item Reduce information data rate for power gain
+ \item Distribute satellite resources equally to every user
+ \item Utilizable where significant information rate reduction\\
+ is tolerable, e.g.\ video or data but voice transmission
+ \end{itemize}
+\end{frame}
+
+\subsubsection{Diversity Protection Schemes}
+\begin{frame}{Diversity Protection Schemes}\large
+ \begin{itemize}
+ \item Use multiple channels with different characteristics
+ \item Oriented against rain fades and highly efficient
+ \item Performance criteria
+ \begin{itemize}
+ \item Diversity gain: difference between site attenuation\\
+ and joint attenuation, for the same probability level
+ \item Diversity improvement: ratio of site exceedence probability
+ to the joint one, for the same attenuation value
+ \end{itemize}
+ \end{itemize}
+\end{frame}
+
+\begin{frame}{Diversity Techniques}
+ \begin{tabular}{l p{0.39\textwidth} l p{0.18\textwidth}}
+ \toprule
+ \textbf{Diversity} & \textbf{Setup} & \textbf{Efficiency} & \textbf{Cost}\\
+ \midrule
+ Site & Connected earth stations & High & High\\
+ Orbital & Earth station may choose\newline between satellites & Low & Low\\
+ Frequency & Use lower frequency\newline on higher attenuation
+ & Adaptive & Terrestrial equipments\\
+ Time & Repeat faded data & Selective\footnote{\ldots of fade duration} & N/A\\
+ \bottomrule
+ \end{tabular}
+\end{frame}
+
+\subsection{Comparison}
+\begin{frame}{EIRP Control Techniques}
+ \begin{table}
+ \begin{tabular}{l l p{0.27\textwidth} p{0.2\textwidth}}
+ \toprule
+ \textbf{Tech} & \textbf{Availability}
+ & \textbf{Max gain} (dB) & \textbf{Cons} \\
+ \midrule
+ ULPC & 0.01--10 \% & 5 (VSAT)\newline 15 (hubs)& power range \\
+ DLPC & 0.01--10 \% & 3 (sat.~TWTA) & power range \\
+ SBS & 0.01--1 \% & 5 (sat.~antenna) & immature research \\
+ \bottomrule
+ \end{tabular}
+ \caption{Comparisons between EIRP control techniques}
+ \end{table}
+\end{frame}
+
+\begin{frame}{Adaptive Transmission Techniques}
+ \begin{table}
+ \begin{tabular}{l l p{0.25\textwidth} p{0.23\textwidth}}
+ \toprule
+ \textbf{Tech} & \textbf{Availability}
+ & \textbf{Max gain} (dB) & \textbf{Cons} \\
+ \midrule
+ HC/HM & 0.01--10 \% & 10--15\newline ($E_b/N_0$ range)
+ & fading in \newline many stations \\
+ DDR & 0.01--10 \% & 3--9 & low rate\newline intolerant \\
+ \bottomrule
+ \end{tabular}
+ \caption{Comparisons between adaptive transmission techniques}
+ \end{table}
+\end{frame}
+
+\begin{frame}{Diversity Protection Schemes}
+ \begin{table}
+ \begin{tabular}{l l p{0.25\textwidth} p{0.24\textwidth}}
+ \toprule
+ \textbf{Tech} & \textbf{Availability}
+ & \textbf{Max gain} (dB) & \textbf{Cons} \\
+ \midrule
+ SD & 0.001--0.1 \% & 10--30\newline (conv.~rain) & cost \\
+ OD & 0.001--1 \% & 3--10 & satellite switch \\
+ FD & 0.01--10 \% & 30 (Ka--Ku) & cost\\
+ \bottomrule
+ \end{tabular}
+ \caption{Comparisons between diversity protection schemes}
+ \end{table}
+\end{frame}
+
+\section{Conclusion}
+\frame{\tableofcontents[currentsection]}
+\begin{frame}{Conclusion}\LARGE
+ \begin{itemize}
+ \item Have many potentials
+ \item Challenging
+ \item Need more research
+ \end{itemize}
+\end{frame}
+
+\begin{frame}{References}
+ \begin{thebibliography}{69}
+ \setbeamertemplate{bibliography item}[article]
+ \bibitem{KuKaV} Athanasios D.~Panagopoulos,\\
+ Pantelis-Daniel M.~Arapoglou and Panayotis G.~Cottis.\\
+ ``Satellite communications at Ku, Ka, and V bands:
+ Propagation impairments and mitigation techniques''.\\
+ \emph{Communications Surveys \& Tutorials}, vol.~6, p.~2--14.\\
+ IEEE, 2004. doi:10.1109/COMST.2004.5342290.
+ \setbeamertemplate{bibliography item}[online]
+ \bibitem{wiki} Satellite Internet access. \emph{Wikipedia}.
+ \end{thebibliography}
+\end{frame}
+
+\begin{frame}{Copying}\Large
+ \begin{center}
+ \includegraphics[width=0.2\textwidth]{CC.png}
+ \includegraphics[width=0.2\textwidth]{BY.png}
+ \includegraphics[width=0.2\textwidth]{SA.png}
+ \end{center}
+
+ This work is licensed under a
+ \href{https://creativecommons.org/licenses/by-sa/4.0/}{Creative Commons
+ Attribution-ShareAlike 4.0 International License}.
+\end{frame}
+\end{document}
diff --git a/usth/ICT2.10/midterm/one-way-to-earth.png b/usth/ICT2.10/midterm/one-way-to-earth.png
new file mode 100644
index 0000000..965acc4
--- /dev/null
+++ b/usth/ICT2.10/midterm/one-way-to-earth.png
Binary files differ
diff --git a/usth/ICT2.10/midterm/two-way.png b/usth/ICT2.10/midterm/two-way.png
new file mode 100644
index 0000000..41e25e5
--- /dev/null
+++ b/usth/ICT2.10/midterm/two-way.png
Binary files differ