diff options
author | Nguyễn Gia Phong <mcsinyx@disroot.org> | 2020-07-08 14:11:07 +0700 |
---|---|---|
committer | Nguyễn Gia Phong <mcsinyx@disroot.org> | 2020-07-08 14:11:07 +0700 |
commit | e09aa90e0e388d4c42e38381961bc3fa1771cff3 (patch) | |
tree | bf6bc96a6a21ab41c57e76e5167986879557923e /usth/ICT2.12/labwork/2 | |
parent | 815cb0173890ada973925a9238d8765c47a1bbfd (diff) | |
download | cp-e09aa90e0e388d4c42e38381961bc3fa1771cff3.tar.gz |
[usth/ICT2.{5,12}] Process images and base data
Diffstat (limited to 'usth/ICT2.12/labwork/2')
-rwxr-xr-x | usth/ICT2.12/labwork/2 | 54 |
1 files changed, 54 insertions, 0 deletions
diff --git a/usth/ICT2.12/labwork/2 b/usth/ICT2.12/labwork/2 new file mode 100755 index 0000000..af253ed --- /dev/null +++ b/usth/ICT2.12/labwork/2 @@ -0,0 +1,54 @@ +#!/usr/bin/env python3 +from cv2 import ( + COLOR_BGR2GRAY, KMEANS_RANDOM_CENTERS, THRESH_BINARY, TERM_CRITERIA_EPS, + TERM_CRITERIA_MAX_ITER, Canny as canny, cvtColor as cvt_color, + HoughLines as hough_lines, imread, imshow, inRange as in_range, kmeans, + Laplacian as laplacian, line, Sobel as sobel, threshold, + waitKey as wait_key) +from numpy import cos, float32, pi, sin, uint8 + +FILENAME = 'dino-gang.jpg' +THRESHOLD, WHITE = 128, 255 +CANNY_THRESH = 69 + + +def disp(image, name): + """Display the given image.""" + imshow(name, image.astype(uint8)) + wait_key() + + +image = imread(FILENAME) +disp(image, 'original') + +# Exercise 1 +# Requiring all three channels to be greater than THRESHOLD +# using in_range produces a blacker result (fewer white points). +# The information inferred by human (me) is less clear. +grey = cvt_color(image, COLOR_BGR2GRAY) +disp(threshold(grey, THRESHOLD, WHITE, THRESH_BINARY)[-1], 'threshold') +disp(in_range(image, (THRESHOLD,)*3, (WHITE,)*3), 'in range') + +# Exercise 2 +disp(laplacian(image, 2), 'Laplacian') +disp(sobel(image, 2, 1, 1), 'Sobel') +# Canny produces a lot visible edge comparing to Laplacian and Sobel. +edges = canny(image, CANNY_THRESH, CANNY_THRESH*2) +disp(edges, 'canny') + +# Exercise 3 +pixels = float32(image.reshape((-1, 3))) +criteria = TERM_CRITERIA_EPS|TERM_CRITERIA_MAX_ITER, 10, 1.0 +ret, labels, centers = kmeans(pixels, 3, None, criteria, + 10, KMEANS_RANDOM_CENTERS) +# Compared to global threshold, this has colors. +# I am unsure how this relate to adaptive threshold though. +disp(centers[labels.flatten()].reshape(image.shape), 'seg') + +# Exercise 4 +for ((rho, theta),) in hough_lines(edges, 1, pi/180, THRESHOLD): + a, b = cos(theta), sin(theta) + x, y = a*rho, b*rho + line(image, (int(x-b*1000), int(y+a*1000)), (int(x+b*1000), int(y-a*1000)), + (0, 0, 255), 2) +disp(image, 'hough') |