diff options
Diffstat (limited to 'usth/MATH2.2/project')
-rw-r--r-- | usth/MATH2.2/project/contour.png | bin | 0 -> 60127 bytes | |||
-rw-r--r-- | usth/MATH2.2/project/heatrans.m | 15 | ||||
-rw-r--r-- | usth/MATH2.2/project/mesh.png | bin | 0 -> 93462 bytes | |||
-rw-r--r-- | usth/MATH2.2/project/report.pdf | bin | 0 -> 322485 bytes | |||
-rw-r--r-- | usth/MATH2.2/project/report.tex | 155 | ||||
-rwxr-xr-x | usth/MATH2.2/project/script | 22 |
6 files changed, 192 insertions, 0 deletions
diff --git a/usth/MATH2.2/project/contour.png b/usth/MATH2.2/project/contour.png new file mode 100644 index 0000000..dfd4dc1 --- /dev/null +++ b/usth/MATH2.2/project/contour.png Binary files differdiff --git a/usth/MATH2.2/project/heatrans.m b/usth/MATH2.2/project/heatrans.m new file mode 100644 index 0000000..d5d2e04 --- /dev/null +++ b/usth/MATH2.2/project/heatrans.m @@ -0,0 +1,15 @@ +function T = heatrans (cp, lambda, rho, Tg, Td, T0, L, dx, dt, N) + alpha = lambda / rho / cp; + beta = alpha * dt / dx^2; + M = round (L / dx); + side = repelem (beta, M); + A = diag (side, -1) + diag (repelem (1 - 2*beta, M + 1)) + diag (side, 1); + A(1, :) = A(end, :) = 0; + A(1, 1) = A(end, end) = 1; + + T = repelem (T0, M + 1); + [T(1) T(end)] = deal (Tg, Td); + for k = 2 : N + T(:, k) = A * T(:, k - 1); + end +end diff --git a/usth/MATH2.2/project/mesh.png b/usth/MATH2.2/project/mesh.png new file mode 100644 index 0000000..75de2d1 --- /dev/null +++ b/usth/MATH2.2/project/mesh.png Binary files differdiff --git a/usth/MATH2.2/project/report.pdf b/usth/MATH2.2/project/report.pdf new file mode 100644 index 0000000..88b7496 --- /dev/null +++ b/usth/MATH2.2/project/report.pdf Binary files differdiff --git a/usth/MATH2.2/project/report.tex b/usth/MATH2.2/project/report.tex new file mode 100644 index 0000000..e1c36bf --- /dev/null +++ b/usth/MATH2.2/project/report.tex @@ -0,0 +1,155 @@ +\documentclass[a4paper,12pt]{article} +\usepackage[english,vietnamese]{babel} +\usepackage{amsmath} +\usepackage{amssymb} +\usepackage{graphicx} +\usepackage{hyperref} +\usepackage{lmodern} +\usepackage{mathtools} +\usepackage{siunitx} + +\newcommand{\exercise}[1]{\noindent\textbf{#1.}} +\newcommand{\sifrac}[2]{\displaystyle\SI[per-mode=fraction]{#1}{#2}} + +\title{Numerical Methods: Heat Transfer} +\author{Nguyễn Gia Phong--BI9-184} +\date{\dateenglish\today} + +\begin{document} +\maketitle + +Given a bar of length $L = \SI{0.4}{\meter}$ consisting of homogeneous +and isotropic material with the initial temperature of $T_0 = \SI{0}{\celsius}$. +Suppose it is perfectly insulated with the exception of the ends with +the temperature of $T_g = \SI{100}{\celsius}$ and $T_d = \SI{50}{\celsius}$. +The thermal properties of material will be taken constant. +\begin{itemize} + \item Specific heat capacity: + $c_p = \sifrac{900}{\joule\per\kilogram\per\celsius}$ + \item Thermal conductivity: + $\lambda = \sifrac{237}{\watt\per\meter\per\celsius}$ + \item Density: + $\rho = \sifrac{2700}{\kilogram\per\cubic\meter}$ + \item Thermal diffusivity: + $\alpha = \dfrac{\lambda}{\rho c_p} + = \sifrac{9.753e-5}{\square\meter\per\second}$ +\end{itemize} + +The heat transfer in this bar can be described by the following +partial differential equation +\[\frac{\partial T}{\partial t} + = \alpha\frac{\partial^2 T}{\partial x^2}\tag{$*$}\] +where the temperature $T$ is a function of postition $x$ and time $t$. + +To solve the problem numerically, we devide space and time into equal intervals +of norms $\Delta x$ and $\Delta t$ respectively and let $M = L/\Delta x$. +Consequently, the spartial coordinate is defined as $x_i = (i - 1)\Delta x$ +with $i \in [1\,..\,M + 1]$ and the temporal one is $t_n = n\Delta t$ +with $n \in \mathbb N^*$. With these definitions\footnote{I believe $i = 0$ +and $n = 0$ in the assignment papers are typos since then the domain of $x_i$ +would exceed $L$ and $t_0$ would be negative.}, we denote $T_i^n = T(x_i, t_n)$. +Using numerical methods, we may start approximating the solutions of ($*$). + +\begin{enumerate} + \item The left-hand side of ($*$) can be approximated as + \[\frac{\partial T}{\partial t} = \frac{T_i^{n+1} - T_i^n}{\Delta t}\] + \item Similarly, the right-hand side is expressed in the following form + \[\alpha\frac{\partial^2 T}{\partial x^2} + = \alpha\frac{T_{i+1}^n - 2T_i^n + T_{i-1}^n}{\Delta x^2}\] + \item ($*$) is therefore reformulated as + \[\frac{T_i^{n+1} - T_i^n}{\Delta t} + = \alpha\frac{T_{i+1}^n - 2T_i^n + T_{i-1}^n}{\Delta x^2}\] + \item From the formular above + and let $\beta = \alpha\dfrac{\Delta t}{\Delta x^2}$, + we get + \[T_i^{n+1} = T_i^n + \beta\left(T_{i+1}^n - 2T_i^n + T_{i-1}^n\right)\] + \item Boundary conditions: + \begin{itemize} + \item $\forall n \in \mathbb N^*,\; T_1^n = T(0, t_n) = T_g$ + \item $\forall n \in \mathbb N^*,\; T_{M+1}^n = T(L, t_n) = T_d$ + \item $\forall i \in [2\,..\,M],\; T_{i}^1 = T(x_i, 0) = T_0$ + \end{itemize} + \item From (4) and (5), the temperature at point $x_i$ of the bar + at time $t_n$ is recursively defined as + \[T_i^n = \begin{dcases} + T_i^{n-1} + \beta\left(T_{i+1}^{n-1} - 2T_i^{n-1} + T_{i-1}^{n-1}\right) + &\text{ if }1 < i \le M \land n > 1\\ + T_g &\text{ if }i = 1\\ + T_d &\text{ if }i = M + 1\\ + T_0 &\text{ otherwise} + \end{dcases}\] + Since the temperature only depends on the values in the past, values within + $(i, n) \in [1\,..\,M+1]\times[1\,..\,N]$ with any $N$ of choice could + be computed via dynamic programming: + \begin{enumerate} + \item Create a 2-dimensional dynamic array $T$ with one-based index + and size $(M+1)\times 1$ + \item Initialize $T$ with $T_1^1 = T_g$, $T_{M+1}^1 = T_d$ + and $T_i^1 = T_0\ \forall i \in [2\,..\,M]$, + where $T_i^n$ is element of row $i$ and column $n$ + \item For $n = 2$ to $N$ + \begin{itemize} + \item Let $T_1^k = T_g$ + \item For $i = 2$ to $M$, let $T_i^k = T_i^{k-1} + + \beta\left(T_{i+1}^{k-1} - 2T_i^{k-1} + T_{i-1}^{k-1}\right)$ + \item Let $T_{M+1}^k = T_d$ + \end{itemize} + \item Return $T_i^n$ + \end{enumerate} + Each iteration in (c) can be written in matrix notation as + $T^k = AT^{k+1}$, where $T_n$ is column $n$ and $A$ is + a matrix of size $(M+1)\times(M+1)$ + \[A =\begin{bmatrix} + 1 & 0 & 0 & \cdots & 0 & 0 & 0\\ + \beta & 1-2\beta & \beta & \cdots & 0 & 0 & 0\\ + 0 & \beta & 1-2\beta & \cdots & 0 & 0 & 0\\ + \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots\\ + 0 & 0 & 0 & \cdots & 1-2\beta & \beta & 0\\ + 0 & 0 & 0 & \cdots & \beta & 1-2\beta & \beta\\ + 0 & 0 & 0 & \cdots & 0 & 0 & 1 + \end{bmatrix}\] + \item Steps (a) to (c) is then implemented in Octave as +\begin{verbatim} +function T = heatrans (cp, lambda, rho, Tg, Td, T0, L, + dx, dt, N) + alpha = lambda / rho / cp; + beta = alpha * dt / dx^2; + M = round (L / dx); + side = repelem (beta, M); + A = (diag (repelem (1 - 2*beta, M + 1)) + + diag (side, -1) + diag (side, 1)); + A(1, :) = A(end, :) = 0; + A(1, 1) = A(end, end) = 1; + + T = repelem (T0, M + 1); + [T(1) T(end)] = deal (Tg, Td); + for k = 2 : N + T(:, k) = A * T(:, k - 1); + end +end +\end{verbatim} + + Choosing $\Delta x = \SI{0.01}{\meter}$, $\Delta t = \SI{0.5}{\second}$ + and $N = 841$, we define +\begin{verbatim} +T = heatrans (900, 237, 2700, 100, 50, 0, 0.4, + 0.01, 0.5, 841); +\end{verbatim} + then the temperature at point $x_i$ at time $t_n$ is \verb|T(i, n)|. + \pagebreak + + To visualize the heat transfer process, we use \verb|mesh| to plot + a 3D graph: + + \includegraphics[width=0.841\textwidth]{mesh.png} + + The temperature can be shown more intuitively using \verb|contourf|: + + \includegraphics[width=0.841\textwidth]{contour.png} + + The \verb|script| to reproduce these results along with \verb|heatrans.m| + bundled with this report and this document itself are all licensed under a + \href{http://creativecommons.org/licenses/by-sa/4.0/}{Creative Commons + Attribution-ShareAlike 4.0 International License}. +\end{enumerate} +\end{document} \ No newline at end of file diff --git a/usth/MATH2.2/project/script b/usth/MATH2.2/project/script new file mode 100755 index 0000000..99b61f7 --- /dev/null +++ b/usth/MATH2.2/project/script @@ -0,0 +1,22 @@ +#!/usr/bin/env octave +[cp lambda rho] = deal (900, 237, 2700); +[Tg Td T0] = deal (100, 50, 0); +[L dx dt N] = deal (0.4, 0.01, 0.5, 841); +T = heatrans (cp, lambda, rho, Tg, Td, T0, L, dx, dt, N); +[X Y Z] = deal (0:dx:L, 0:dt:420, T'); + +figure (1); # mesh +mesh (X, Y, Z); +title ("Temperature of the bar during the first 420 seconds"); +xlabel ("x (m)"); +ylabel ("t (s)"); +zlabel ("T (°C)"); + +figure (2); # contour +contourf (X, Y, Z, 0:7:100, "showtext", "on"); +title ("Temperature of the bar during the first 420 seconds"); +xlabel ("x (m)"); +ylabel ("t (s)"); + +disp ("Press any key to coninue..."); +kbhit; |