1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
|
#!/usr/bin/env python3
from math import gcd
def xgcd(a, b):
"""Return a tuple (u, v), such that u*a + v*b == gcd(a, b).
https://en.wikibooks.org/wiki/Algorithm_Implementation/Mathematics/Extended_Euclidean_algorithm#Iterative_algorithm
"""
u0, u1, v0, v1 = 1, 0, 0, 1
while b:
q, a, b = a // b, b, a % b
u0, v0, u1, v1 = u1, v1, u0 - q*u1, v0 - q*v1
return u0, v0
def biendoiso(a, b, c):
g = gcd(a, b)
if c % g:
return -1
elif not c % a:
return c // a
elif not c % b:
return c // b
if a > b: a, b = b, a
u, v = map(lambda n: n * c // g, xgcd(a, b))
m = u * g // b
return u + v + m*(a-b)
with open('biendoiso.inp') as fi, open('biendoiso.out', 'w') as fo:
x, y, a, b = map(int, fi.read().split())
fo.write('{}\n'.format(biendoiso(a, b, y - x)))
|