1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
|
#!/usr/bin/env python3
"""This module provide Gaussian and Gauss-Jordan eliminations on numpy
array of floats since they are not provided by numpy.
Note that matrix operations are straightforward with numpy.array, namely
add (+ -), scalar ops (+ - * / **) and mul (@), so try to make use of
the library while doing your matrix homework ;-P
"""
from itertools import islice
from math import inf
from numpy import array
def leadidx(row):
"""Return index of leading entry in row."""
for index, entry in enumerate(row):
if entry: return index
else:
return inf
def gauss(mat, log=False):
"""Return a matrix in row-echelon form, which is row-equivalent to mat,
along with shorthand method of notation of row operations performed.
"""
if mat.size == 0: return mat, []
m, matrix, operations = len(mat), mat.__copy__(), []
# Fuck optimization: we won't have 1000x1000 matrices for homework anyway.
for i in range(m):
while i + 1 < m:
eye, ar = min(islice(enumerate(matrix), i + 1, m),
key=(lambda t: leadidx(t[1])))
if leadidx(ar) >= leadidx(matrix[i]): break
operations.append('R{} <-> R{}'.format(i + 1, eye + 1))
matrix[i], matrix[eye] = ar, matrix[i]
if log: print(operations[-1], *matrix, sep='\n')
row = matrix[i]
j = leadidx(row)
if j == inf: return matrix, operations
if row[j] != 1: # floating point accuracy is a total disaster tho
operations.append('({})R{} -> R{}'.format(1 / row[j], i+1, i+1))
row /= row[j]
if log: print(operations[-1], *matrix, sep='\n')
for l in range(i + 1, m):
k = -matrix[l][j]
if k: # OMG I want Python 3.7 so much
operations.append('R{} + {}R{} -> R{}'.format(
l + 1, '' if k == 1 else '({})'.format(k), i + 1, l + 1))
matrix[l] += k * row
if log: print(operations[-1], *matrix, sep='\n')
return matrix, operations
def gauss_jordan(mat, log=False):
"""Return a matrix in reduced row-echelon form, which is
row-equivalent to mat, along with shorthand method of notation of
row operations performed.
"""
if mat.size == 0: return mat, []
matrix, operations = gauss(mat, log)
m = len(mat)
for i in range(1, m):
j = leadidx(matrix[i])
if j == inf: return matrix, operations
k = -matrix[i - 1][j]
if k:
operations.append('R{} + {}R{} -> R{}'.format(
i, '' if k == 1 else '({})'.format(k), i + 1, i))
matrix[i - 1] += k * matrix[i]
if log: print(operations[-1], *matrix, sep='\n')
return matrix, operations
if __name__ == '__main__':
A = array([[1, -2, 3, 9],
[-1, 3, 0, -4],
[2, -5, 5, 17]], dtype=float)
print(*A, sep='\n', end='\n\n')
mat, ops = gauss(A)
print(*ops, sep='\n')
print(*mat, sep='\n', end='\n\n')
mat, ops = gauss_jordan(A)
print(*ops, sep='\n')
print(*mat, sep='\n', end='\n\n')
|