1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
|
#!/usr/bin/env python3
from cv2 import (
THRESH_BINARY, ADAPTIVE_THRESH_MEAN_C,
adaptiveThreshold as adaptive_threshold, calcHist as calc_hist, blur,
equalizeHist as equalize_hist, GaussianBlur as gaussian_blur,
imread, imshow, Laplacian as laplacian, medianBlur as median_blur,
resize, Sobel as sobel, threshold, waitKey as wait_key)
from numpy import uint8
FILENAME = 'dino-gang.jpg'
GREYSCALE_COEFF = 0.2126, 0.7152, 0.0722
THRESHOLD, WHITE = 128, 255
BLUR_KSIZE = 6, 9
def disp(image, name):
"""Display the given image."""
imshow(name, image.astype(uint8))
wait_key()
# Exercise 1
image = imread(FILENAME)
disp(image, 'original')
# Exercise 2
disp(resize(image, (512, 512)), 'square')
# Exercise 3
# I'm going to ignore about cv2.IMREAD_GRAYSCALE
grey_image = uint8(image.dot(GREYSCALE_COEFF))
disp(grey_image, 'grey')
# Exercise 4
a, b = 1/2, 1/3
disp(image*a+b, 'brightness adjusted')
# Exercise 5
disp(threshold(grey_image, THRESHOLD, WHITE, THRESH_BINARY)[-1],
'binary threshold')
disp(adaptive_threshold(grey_image, WHITE, ADAPTIVE_THRESH_MEAN_C,
THRESH_BINARY, 25, 12), 'adaptive threshold')
# Exercise 6
hist = calc_hist([grey_image], [0], None, [256], [0, 256])
disp(equalize_hist(grey_image), 'equalized')
# Exercise 7
disp(blur(image, BLUR_KSIZE), 'blur')
disp(gaussian_blur(image, (0, 0), 5), 'Gaussian blur')
disp(median_blur(image, 7), 'median blur')
# Exercise 8
disp(laplacian(image, 2), 'Laplacian')
disp(sobel(image, 2, 1, 1), 'Sobel')
|