1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
|
\documentclass[a4paper,12pt]{article}
\usepackage[utf8]{inputenc}
\usepackage[english,vietnamese]{babel}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{enumerate}
\usepackage{mathtools}
\usepackage{multicol}
\usepackage{pgfplots}
\usepackage{siunitx}
\usetikzlibrary{shapes.geometric,angles,quotes}
\newcommand{\ud}{\,\mathrm{d}}
\newcommand{\curl}{\mathrm{curl}}
\newcommand{\del}{\mathrm{div}}
\newcommand{\unit}[1]{\hat{\textbf #1}}
\newcommand{\anonym}[2]{\left(#1 \mapsto #2\right)}
\newcommand{\tho}[3][]{\dfrac{\partial #1 #2}{\partial #3 #1}}
\newcommand{\leibniz}[3][]{\dfrac{\mathrm{d} #1 #2}{\mathrm{d} #3 #1}}
\newcommand{\chain}[3]{\tho{#1}{#2}\tho{#2}{#3}}
\newcommand{\exercise}[1]{\noindent\textbf{#1.}}
\title{Cuculutu Review}
\author{Nguyễn Gia Phong}
\date{Summer 2019}
\begin{document}
\maketitle
\setcounter{section}{13}
\section{Partial Derivatives}
\setcounter{subsection}{1}
\subsection{Limits et Continuity}
\exercise{37} Determine the set of points at which the function is continuous.
\[f(x, y) = \begin{dcases}
\frac{x^2 y^3}{2x^2 + y^2} &\text{if }(x, y) \neq (0, 0)\\
1 &\text{if }(x, y) = (0, 0)
\end{dcases}\]
By AM-GM inequality,
\[x^2 + x^2 + y^2 \geq 3x^2|y|
\iff \frac{x^2|y^3|}{3x^2|y|} \geq \frac{x^2|y^3|}{2x^2 + y^2} \geq 0
\iff \frac{-y^2}{3} \leq \frac{x^2 y^3}{2x^2 + y^2} \leq \frac{y^2}{3}\]
Since $\pm y^2/3 \to 0$ as $y \to 0$, by the Squeeze Theorem,
\[\lim_{x\to 0\atop y\to 0}f(x, y) = 0 \neq f(0, 0)\]
Therefore $f$ is discontiuous at (0, 0). On $\mathbb R^2\backslash\{0\}$,
$f$ is a rational function and thus is continuous on its domain.
\exercise{44} Let
\[f(x, y) = \begin{dcases}
0 &\text{if }y \leq 0\text{ or }y \geq x^4\\
1 &\text{if }0 < y < x^4
\end{dcases}\]
\begin{enumerate}[(a)]
\item For all paths of the form $y = mx^a$ with $a < 4 \iff 4 - a > 0$,
consider the function $g(x) = |y| - x^4 = |m|\cdot|x|^a - |x|^4$:
\[g(x) \geq 0 \iff |m|\cdot|x|^a \geq |x|^4 \iff |x| \leq \sqrt[4-a]{|m|}\]
When this condition is met, either $y \leq 0$ or $y = |y| \geq x^4$,
so $f(x, y) = 0$. Therefore $f(x, y) = 0 \to 0$ as $(x, y) \to (0, 0)$ on
\[\left\{(x, y)\,\Big|\,
x \in \left[-\sqrt[4-a]{|m|}, \sqrt[4-a]{|m|}\right] \cap D\right\}\]
which includes the point (0, 0) if the domain $D$ of $x \mapsto mx^a$ does.
\item It is trivial that $f(0, 0) = 0$. Along $y = x^4/2$, for $x \neq 0$,
\[x^4 - y = x^4 - \frac{x^4}{2} = \frac{x^4}{2} > 0
\iff y < x^4 \Longrightarrow f(x, y) = 1\]
Hence \[\lim_{x\to 0\atop y\to 0} f\left(x, \frac{x^4}{2}\right) = 1
\neq f(0, 0) = 0\] or $f$ is discontiuous on $y = x^4/2$ at (0, 0).
\item Using the same reasoning, one may also easily show that
$f$ is discontiuous on the entire curve $y = x^4/20$.
\end{enumerate}
\subsection{Partial Derivatives}
\exercise{33} Find the first partial derivatives of the function.
\begin{align*}
w &= \ln(x + 2y + 3z)\\
\tho{w}{x} &= \frac{1}{x + 2y + 3z}\cdot\tho{(x + 2y + 3z)}{x}
= \frac{1}{x + 2y + 3z}\\
\tho{w}{y} &= \frac{1}{x + 2y + 3z}\cdot\tho{(x + 2y + 3z)}{y}
= \frac{2}{x + 2y + 3z}\\
\tho{w}{z} &= \frac{1}{x + 2y + 3z}\cdot\tho{(x + 2y + 3z)}{z}
= \frac{3}{x + 2y + 3z}
\end{align*}
\exercise{50} Use implicit differentiation to find
$\partial z/\partial x$ and $\partial z/\partial y$.
\[yz + x\ln y = z^2
\Longrightarrow \begin{dcases}
y\tho{z}{x} + \ln y &= 2z\tho{z}{x}\\
z + \frac{x}{y} &= 2z\tho{z}{y}\\
\end{dcases}
\iff \begin{dcases}
\frac{\ln y}{2z - y} &= \tho{z}{x}\\
2 + \frac{x}{2yz} &= \tho{z}{y}
\end{dcases}\]
\exercise{66} Find $g_{rst}$.
\begin{multline*}
g(r, s, t) = e^r\sin(st) \Longrightarrow g_r = e^r\sin(st)\\
\Longrightarrow g_{rs} = se^r\cos(st) \Longrightarrow g_{rst} = -ste^r\sin(st)
\end{multline*}
\exercise{101} Let
\[f(x, y) = \begin{dcases}
\frac{x^3y + xy^3}{x^2 + y^2} &\text{if } (x, y) \neq (0, 0)\\
0 &\text{if } (x, y) = (0, 0)
\end{dcases}\]
\begin{enumerate}[(a)]
\item Graph $f$.
\begin{tikzpicture}
\begin{axis}[xlabel={x}, ylabel={y}]
\addplot3[surf]{(x^3 * y - x * y^3) / (x^2 + y^2)};
\end{axis}
\end{tikzpicture}
\item Find the first partial derivatives of $f$ when $(x, y) \neq (0, 0)$.
\begin{align*}
\tho{f}{x} &= \frac{(x^2 + y^2)\tho{(x^3y - xy^3)}{x}
- (x^3y - xy^3)\tho{(x^2 + y^2)}{x}}{(x^2 + y^2)^2}\\
&= \frac{(x^2 + y^2)(3x^2y - y^3) - 2x(x^3y - xy^3)}{(x^2 + y^2)^2}\\
&= \frac{x^4y + 4x^2y^3 - y^5}{x^4 + 2x^2y^2 + y^4}
\end{align*}
\begin{align*}
\tho{f}{x}
&= \frac{(x^2 + y^2)(x^3 - 3xy^2) - 2y(x^3y - xy^3)}{(x^2 + y^2)^2}\\
&= \frac{x^5 - 4x^3y^2 - xy^4}{x^4 + 2x^2y^2 + y^4}
\end{align*}
\item Find $f_x$, $f_y$ at (0, 0).
\begin{align*}
f_x(0, 0) &= \lim_{h\to 0}\frac{f(h, 0) - f(0, 0)}{h}
= \lim_{h\to 0}\frac{\frac{h^30 - h0^3}{h^2 + 0^2} - 0}{h}
= \lim_{h\to 0}0 = 0\\
f_y(0, 0) &= \lim_{h\to 0}\frac{f(0, h) - f(0, 0)}{h}
= \lim_{h\to 0}\frac{0 - 0}{h}
= \lim_{h\to 0}0 = 0
\end{align*}
\item Show that $f_{xy}(0, 0) = -1$ and $f_{yx}(0, 0) = 1$.
\begin{align*}
f_{xy}(0, 0) &= \lim_{h\to 0}\frac{f_x(0, h) - f_x(0, 0)}{h}
= \lim_{h\to 0}\frac{\frac{0 + 0 - h^5}{0 + 0 + h^4} - 0}{h}
= \lim_{h\to 0}-1 = -1\\
f_{yx}(0, 0) &= \lim_{h\to 0}\frac{f_y(h, 0) - f_y(0, 0)}{h}
= \lim_{h\to 0}\frac{\frac{h^5 + 0 + 0}{h^4 + 0 + 0} - 0}{h}
= \lim_{h\to 0}1 = 1
\end{align*}
\item The result of part (d) does not contradict Clairaut's Theorem,
which only covers the case $f_{xy}$ and $f_{yx}$ are continuous at (0, 0).
Using GeoGebra we get the second derivatives of $f$ on
$\mathbb R\backslash\{0\}$ as followed:
\[f_{xy} = f_{yx} = \frac{x^6 + 9x^4y^2 - 9x^2y^4 - y^6}{(x^2 + y^2)^3}\]
Since $f_{xy}(x, 0) = x^6/x^6 \to 1$ while $f_{xy} = -y^6/y^6\to -1$
as $(x, y) \to (0, 0)$ the second derivative is discontinuous at origin.
\end{enumerate}
\setcounter{subsection}{5}
\subsection{Directional Derivatives}
\exercise{17} Find the directional derivative of $h(r,s,t) = \ln(3r + 6s + 9t)$
at (1, 1, 1) in the direction of $\mathbf v = 4\unit\i + 12\unit\j + 6\unit k$.
From gradient of $h$
\[\nabla h = \frac{3\unit\i + 6\unit\j + 9\unit k}{3r + 6s + 9t}
\Longrightarrow \nabla h(1, 1, 1)
= \frac{\unit\i}{6} + \frac{\unit\j}{3} + \frac{\unit k}{2}\]
and unit vector of $\mathbf v$
\[\unit v = \frac{2\unit\i}{7} + \frac{6\unit\j}{7} + \frac{3\unit k}{7}\]
we can compute the direction derivative as
\[\mathrm D_{\unit v}(1, 1, 1) = \nabla h(1, 1, 1)\cdot\unit v
= \frac{1}{21} + \frac{4}{7} + \frac{3}{14} = \frac{23}{42}\]
\subsection{Maximum and Minimum Values}
\exercise{18} Find the local maximum and minimum values and
saddle point(s) of the function. If you have three-dimensional
graphing software, graph the function with a domain and viewpoint
that reveal all the important aspects of the function.
\[f(x, y) = \sin x\sin y,\qquad -\pi < x < \pi,\qquad -\pi < y < \pi\]
\begin{multicols}{2}
\begin{align*}
&\Longrightarrow\begin{cases}
f_x = \cos x\sin y\\
f_y = \sin x\cos y
\end{cases}\\
&\Longrightarrow\begin{cases}
f_{xx} = f_{yy} = -\sin x\sin y\\
f_{xy} = f_{yx} = \sin x\sin y
\end{cases}\\
&\Longrightarrow D = f_{xx}f_{yy} - f_{xy}^2 = 0
\end{align*}
For $f_x = f_y = 0$, either $x = y = 0$ or $x, y \in \{\pm\pi/2\}$.
$D$ does not indicate if $f$ has local extreme values
at these critical points.
\noindent\begin{tikzpicture}[domain=-pi:pi]
\begin{axis}[xlabel={x}, ylabel={y}]
\addplot3[surf]{sin(deg(x)) * sin(deg(y))};
\end{axis}
\end{tikzpicture}
\end{multicols}
It is clear that $f$ has 2 local maximums of 1 at $x = y = \pm\pi$
and 2 local minimum of -1 at $x = -y = \pm\pi$, since these are
its absolute extreme values as well.
Suppose $f(0, 0)$ is a local minimum. Then, by definition,
$f(a, b) \geq f(0, 0) = 0$ if $(a, b)$ is sufficiently close to origin
(say, at most within $[-\pi/2, \pi/2]^2$). However, for all $a$, $b$
satisfying $ab < 0$, $f(a, b) = \sin a\sin b < 0$, thus our assumption
is incorrect. Similarly, $f$ does not has a local maximum at origin because
\[\forall a, b \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]: ab > 0,
\qquad f(a, b) = \sin a\sin b > 0 = f(0, 0)\]
Therefore (0, 0) is a saddle point.
\exercise{35} Find the absolute extreme values of $f(x, y) = 2x^3 + y^4$
on the unit disc.
The critical points of $f$ occur when
\[f_x = f_y = 0 \iff 6x^2 = 4y^3 = 0 \iff x = y = 0\]
at which $f(x, y) = f(0, 0) = 0$.
On the unit circle, as $y^2 = 1 - x^2$, let
\[g(x) = f(x, y) = 2x^3 + (1 - x^2)^2 = x^4 + 2x^3 - 2x^2 + 1\]
Within $[-1, 1]$, $g'(x) = 4x^3 + 6x^2 - 4x = 0$ if and only if
$x = 0$ or $x = 0.5$. Since $g(-1) = -2$, $g(0) = 1$, $g(0.5) = 0.8125$
and $g(1) = 2$, the absolute minimum and maximum of $g$ on $[-1, 1]$
are respectively $g(-1) = -2$ and $g(1) = 2$.
Thus on the boundary, the minimum value of $f$ is -2 at $(-1, \pm 1)$
and the maximum value is 2 at $(1, \pm 1)$.
\exercise{46} Find the dimensions of the box with volume $1000\text{ cm}^3$
that has minimal surface area.
Let the dimensions of the box be $x, y, z$ in dm, $x, y, z$ are positive
and $xyz = 1$. Total surface area of the box would then be
\[S(x, y, z) = 2xy + 2yz + 2zx\]
By AM-GM inequality,
\[S(x, y, z) \geq 2\cdot 3\sqrt{xy\cdot yz\cdot zx} = 6\]
Thus $S$ has its absolute minumum of 6 at $x = y = z = 1$.
\exercise{53} If the length of the diagonal of a rectangular box must be $L$,
what is the largest possible volume?
Let the dimensions of the box be three positive numbers $x, y, z$,
$x^2 + y^2 + z^2 = L^2$. The volume of the box would then be
$V(x, y, z) = xyz$. By AM-GM inequality,
\[V(x, y, z) = \sqrt{x^2 y^2 z^2} \leq \frac{x^2 + y^2 + z^2}{3}
= \frac{L^2}{3}\]
Thus $V$ has its absolute maximum of $L^2/3$ at $x = y = z = L/\sqrt 3$.
\subsection{Lagrange Multipliers}
\exercise{12} Use Lagrange multipliers to find the maximum and minimum values
of $f(x, y, z) = x^4 + y^4 + z^4$ subject to $g(x, y, z) = x^2 + y^2 + z^2 = 1$.
Extreme values of $f$ occur when
\[\begin{cases}
\nabla f = \lambda\nabla g\\
g(x, y, z) = 1
\end{cases}
\iff\begin{cases}
\langle 4x^3, 4y^3, 4z^3\rangle
= \lambda\langle 2x, 2y, 2z\rangle \neq \mathbf 0\\
x^2 + y^2 + z^2 = 1
\end{cases}\]
\begin{enumerate}
\item For $\lambda = 2/3$, $x^2 = y^2 = z^2 = 1/3 = f(x, y, z)$.
\item For $\lambda = 1$ and $(x^2, y^2, z^2) \in \{(0, 1/2, 1/2),
(1/2, 0, 1/2), (1/2, 1/2, 0)\}$, $f(x, y, z) = 1/2$.
\item For $\lambda = 2$ and $(x^2, y^2, z^2) \in \{(1, 0, 0),
(0, 1, 0), (0, 0, 1)\}$, $f(x, y, z) = 1$.
\end{enumerate}
Therefore, subject to the given constrain, $f$ has absolute maximum of 1
and minimum of 1/3.\pagebreak
\exercise{42} Find the maximum and minimum volumes of a rectangular box
whose surface area is $1500\text{ cm}^2$ and whose total edge length is 200 cm.
Let the dimensions of the box be $x, y, z$ in dm, with $x, y, z$ are positive,
$2xy + 2yz + 2zx = 15$ and $4x + 4y + 4z = 20$. From these constrains,
we can easily obtain $x + y = 5 - z$ and
\[xy + (x + y)z = \frac{15}{2} \iff xy = \frac{15}{2} - 5z + z^2\]
Thus with $0 < z < 5$ the volume of the box is
\[V = xyz = z^3 - 5z^2 + \frac{15z}{2}\]
whose critical points are
\[\leibniz{V}{z} = 3z^2 - 10z + \frac{15}{2} = 0
\iff z = \frac{10 \pm \sqrt{10}}{6}\]
at which $V = \dfrac{175 \pm 5\sqrt{10}}{54}$.
On the other hand, the constrains are equivalent to
\[\begin{cases}
x^2 + y^2 + z^2 = 10\\
x + y + z = 5
\end{cases}\]
or the intersection of a sphere and a plane, which result in a circle $C$.
Hence the range of $z$ would be between $a$ and $b$, whereas each of $z = a$
and $z = b$ only has one point in common with $C$. Since all surfaces
$x^2 + y^2 + z^2 = 10$, $x + y + z = 5$, $z = a$ and $z = b$ has $x = y$
as their plane of symmetry, these two points must be on $x = y$ as well:
\begin{align*}
\begin{cases}
2x^2 + z^2 = 10\\
2x + z = 5
\end{cases}
\iff&\begin{cases}
2x^2 + (5 - 2x)^2 = 10\\
z = 5 - 2x
\end{cases}\\
\iff&\begin{cases}
6x^2 - 20x + 15 = 0\\
z = 5 - 2x
\end{cases}\\
\iff&\begin{dcases}
x = \frac{10 \pm \sqrt{10}}{6}\\
z = \frac{5 \pm \sqrt{10}}{3}
\end{dcases}\\
\Longrightarrow &\,V = \dfrac{175 \pm 5\sqrt{10}}{54}
\end{align*}
These are the maximum and minimum volumes of the given box.
\section{Multiple Integrals}
\setcounter{subsection}{1}
\subsection{Interated Integrals}
\exercise{19} Calculate the double integral.
\begin{align*}
\int_0^{\pi/6}\int_0^{\pi/3}x\sin(x + y)\ud y\ud x
&= \int_0^{\pi/6}\left[-x\cos(x + y)\right]_{y=0}^{y=\pi/3}\ud x\\
&= \int_0^{\pi/6}x\left(\cos x - \cos\left(x + \frac\pi 3\right)\right)\ud x\\
&= \int_0^{\pi/6}x\cos\left(x - \frac\pi 3\right)\ud x\\
&= \int_0^{\pi/6}x\ud\cos\left(x - \frac\pi 3\right)\\
&= \left[x\sin\left(x - \frac\pi 3\right)\right]_0^{\pi/6}
- \int_0^{\pi/6}\sin\left(x - \frac\pi 3\right)\ud x\\
&= -\frac{\pi}{12} + \left[\cos\left(x - \frac\pi 3\right)\right]_0^{\pi/6}\\
&= \frac{\sqrt 3}{2} - \frac{1}{2} - \frac{\pi}{12}
\end{align*}
\exercise{28} Find the volume of the solid enclosed by the surface
$z = 1 + e^x\sin y$ and the planes $x = \pm 1$, $y = 0$, $y = \pi$ and $z = 0$.
\begin{align*}
\int_0^\pi\int_{-1}^1(1 + e^x\sin y)\ud x \ud y
&= \int_0^\pi\left[x + e^x\sin y\right]_{x=-1}^{x=1}\ud y\\
&= \int_0^\pi\left(2 + \left(e - \frac{1}{e}\right)\sin y\right)\ud y\\
&= \left[2x + \left(\frac{1}{e} - e\right)\cos y\right]_0^\pi\\
&= 2\pi
\end{align*}
\subsection{Double Integrals over General Regions}
\exercise{10} Evaluate the double integral.
\begin{align*}
\int_1^e\int_0^{\ln x}x^3\ud y\ud x
&= \int_1^e x^3\ln x\ud x\\
&= \int_1^e\ln x\ud\frac{x^4}{4}\\
&= \left.\frac{x^4\ln x}{4}\right]_1^e - \int_1^e\frac{x^4}{4}\ud\ln x\\
&= e^4 - \int_1^e\frac{x^3}{4}\ud x\\
&= e^4 - \left.\frac{x^4}{16}\right]_1^e\\
&= \frac{15e^4 + 1}{16}
\end{align*}
\exercise{16} Set up iterated integrals for both orders of integration.
Then evaluate the double integral using the easier order
and explain why it’s easier.
\begin{multline*}
I = \iint_D y^2 e^{xy}\ud A,\qquad D\text{ is bounded by }y = x, y = 4, x = 0\\
\Longrightarrow I = \int_0^4\int_x^4 y^2 e^{xy}\ud y\ud x
= \int_0^4\int_0^y y^2 e^{xy}\ud x\ud y
\end{multline*}
Since $y^2 e^{xy}$ is simply an exponential function of $x$,
it would be easier to evaluate
\begin{align*}
I &= \int_0^4\int_0^y y^2 e^{xy}\ud x\ud y\\
&= \int_0^4\left[y^3 e^{xy}\right]_{x=0}^{x=y}\ud y\\
&= \int_0^4 y^3 e^{y^2}\ud y
= \int_0^4 y^2\ud\frac{e^{y^2}}{2}\\
&= \left.\frac{y^2 e^{y^2}}{2}\right]_0^4 - \int_0^4\frac{e^{y^2}}{2}\ud y^2\\
&= 8e^{16} - \int_0^{16}\frac{e^z}{2}\ud z\\
&= 8e^{16} - \left.\frac{e^z}{2}\right]_0^{16}
= \frac{15e^{16}}{2}
\end{align*}
\exercise{31} Find the volume of the solid bounded by the cylinder
$x^2 + y^2 = 1$ and the plane $y = z$ in the first octant.
\[\int_0^1\int_0^{\sqrt{1-x^2}}y\ud y\ud x
= \int_0^1\frac{1 - x^2}{2}\ud x
= \frac{1}{3}\]
\subsection{Double Integrals in Polar Coordinates}
\exercise{13} Evaluate the given integral by changing to polar coordinates.
\[I = \iint_R\arctan\frac{y}{x}\ud A,\qquad
\text{where }R = \{(x, y)\,|\,1 \leq x^2 + y^2 \leq 4, 0 \leq y \leq x\}\]
In polar coordinates,
\[R = [1, 2]\times \left[0, \frac\pi 4\right]\]
thus
\begin{align*}
I &= \int_0^{\pi/4}\int_1^2\arctan\frac{r\sin\theta}{r\cos\theta}
r\ud r\ud\theta\\
&= \int_0^{\pi/4}\int_1^2\arctan\tan\theta r\ud r\ud\theta\\
&= \int_0^{\pi/4}\int_1^2\theta r\ud r\ud\theta\\
&= \int_0^{\pi/4}\frac{3\theta}{2}\ud r\ud\theta\\
&= \frac{3\pi^2}{64}
\end{align*}
\begin{multicols*}{2}
\noindent\begin{tikzpicture}[domain=-pi:pi]
\begin{axis}[legend pos=south east, xlabel={$\theta$}, ylabel={$r$},
axis x line = middle, axis y line = middle,
enlarge y limits={rel=0.1}, enlarge x limits={rel=0.1}]
\addplot[color=magenta]{1};
\addplot[color=green]{2 * cos(deg(x))};
\legend{$r = 1$, $r = 2\cos\theta$}
\end{axis}
\end{tikzpicture}
\exercise{17} Use a double integral to find the area of the region
inside $C_1: (x - 1)^2 + y^2 = 1$ and outside $C_0: x^2 + y^2 = 1$.\\
In polar coordinates $C_1$ has the equation $r = 2\cos\theta$ and
the equation of $C_0$ is $r = 1$. Therefore the given region is within
$1 \leq r \leq 2\cos\theta$, whereas $\theta \in [-\pi, \pi]$.
\end{multicols*}
Since on $[-\pi, \pi]$, $2\cos\theta \geq 1 \iff -\pi/3 \leq \theta \leq \pi/3$,
the area of the given region is
\begin{align*}
\int_{-\pi/3}^{\pi/3}\int_1^{2\cos\theta}r\ud r\ud\theta
&= \int_{-\pi/3}^{\pi/3}\frac{4\cos^2\theta - 1}{2}\ud\theta\\
&= \int_{-\pi/3}^{\pi/3}\left(2\cos^2\theta - 1 + \frac{1}{2}\right)\ud\theta\\
&= \int_{-\pi/3}^{\pi/3}\left(\cos 2\theta + \frac{1}{2}\right)\ud\theta\\
&= \left[\frac{\sin 2\theta + \theta}{2}\right]_{-\pi/3}^{\pi/3}\\
&= \frac{\sqrt 3}{2} + \frac\pi 3
\end{align*}
\subsection{Applications of Double Integrals}
\exercise{5} Find the mass and center of mass of the lamina that occupies
the region triangular $D$ with vertices (0, 0), (2, 1), (0, 3)
and has the given density function $\rho(x, y) = x + y$.
\begin{align*}
m &= \iint_D(x + y)\ud A\\
&= \int_0^2\int_{x/2}^{3-x}(x+y)\ud y\ud x\\
&= \int_0^2\frac{36 - 9x^2}{8}\ud x\\
&= 9 - 3 = 6
\end{align*}
\begin{align*}
\bar x &= \iint_D\frac{x(x + y)}{m}\ud A&
\bar y &= \iint_D\frac{y(x + y)}{m}\ud A\\
&= \int_0^2\int_{x/2}^{3-x}\frac{x^2 + xy}{6}\ud y\ud x&
&= \int_0^2\int_{x/2}^{3-x}\frac{xy + y^2}{6}\ud y\ud x\\
&= \int_0^2\frac{12x - 3x^3}{16}\ud x&
&= \int_0^2\frac{6 - 3x}{4}\ud x\\
&= \frac{3}{4}&
&= \frac{3}{2}
\end{align*}
\subsection{Surface Area}
\exercise{7} Find the area of the part of
the hyperbolic paraboloid $z = y^2 - x^2$
that lies between the cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.
\begin{align*}
&\iint_D\sqrt{1 + \left(\tho{(y^2 - x^2)}{x}\right)^2
+ \left(\tho{(y^2 - x^2)}{y}\right)^2}\ud A\\
= &\iint_D\sqrt{1 + 4x^2 + 4y^2}\ud A\\
= &\int_0^{2\pi}\int_1^2 r\sqrt{1 + 4r^2\cos^2\theta + 4r^2\sin^2\theta}
\ud r\ud\theta\\
= &\int_1^2\pi\sqrt{1 + 4r^2}\ud r^2\\
= &\int_1^4\pi\sqrt{1 + 4t}\ud t\\
= &\,\pi\left[\frac{(1 + 4t)^{1.5}}{6}\right]_1^4\\
= &\,\frac{17^{1.5} - 5^{1.5}}{6}\pi
\end{align*}
\section{Vector Calculus}
\setcounter{subsection}{1}
\subsection{Line Integrals}
\exercise{12} Evaluate the integral, where $C$ is the given curve.
\[I = \int_C(x^2 + y^2 + z^2)\ud s,\qquad
C: x = t, y = \cos 2t, z = \sin 2t, 0 \leq t \leq 2\pi\]
\begin{align*}
I &= \int_0^{2\pi}(x^2 + y^2 + z^2)\sqrt{\left(\leibniz{x}{t}\right)^2
+ \left(\leibniz{z}{t}\right)^2 + \left(\leibniz{z}{t}\right)^2}\ud t\\
&= \int_0^{2\pi}(t^2 + \cos^2 2t + \sin^2 2t)
\sqrt{\left(\leibniz{t}{t}\right)^2 + \left(\leibniz{\cos 2t}{t}\right)^2
+ \left(\leibniz{\sin 2t}{t}\right)^2}\ud t\\
&= \int_0^{2\pi}(t^2 + 1)\sqrt 2\ud t = \frac{8\pi\sqrt 2}{3} + 2\pi\sqrt 2
\end{align*}
\exercise{15} With $C$ is the line segment from (1, 0, 0) to (4, 1, 2),
$x = 3t + 1$, $y = t$, $z = 2t$, whereas $0 \leq t \leq 1$ and
\begin{align*}
J &= \int_C z^2\ud x + x^2\ud y + y^2\ud z\\
&= \int_0^1 z^2\leibniz{x}{t}\ud t + x^2\leibniz{y}{t}\ud t
+ y^2\leibniz{z}{t}\ud t\\
&= \int_0^1(x^2 + 2y^2 + 3z^2)\ud t\\
&= \int_0^1(9t^2 + 6t + 1 + 2t^2 + 12t^2)\ud t\\
&= \int_0^1(23t^2 + 6t + 1)\ud t\\
&= \left[\frac{23t^3}{3} + 3t^2 + t\right]_0^1 = \frac{35}{3}
\end{align*}
\exercise{39} Find the work done by the force field
$\mathbf F(x, y) = \langle x, y + 2\rangle$ is moving an object along an arch
of the cycloid $\mathbf r(t) = \langle t-\sin t, 1-\cos t\rangle$,
$0 \leq t \leq 2\pi$.
\begin{align*}
W &= \int_C\mathbf F\cdot\ud\mathbf r\\
&= \int_0^{2\pi}\mathbf F\cdot\leibniz{\mathbf r}{t}\ud t\\
&= \int_0^{2\pi}\langle x, y+2\rangle\cdot
\left<\leibniz{x}{t}, \leibniz{y}{t}\right>\ud t\\
&= \int_0^{2\pi}\langle t-\sin t, 3-\cos t\rangle\cdot
\left<1-\cos t, \sin t\right>\ud t\\
&= \int_0^{2\pi}\left(t - t\cos t + 2\sin t\right)\ud t\\
&= \left[\frac{t^2}{2} - t\sin t - 3\cos t\right]_0^{2\pi} = 2\pi^2
\end{align*}
\subsection{The Fundamental Theorem for Line Integral}
\exercise{19} Show that the line integral is independent
from any path $C$ from (1, 0) to (2, 1) and evaluate the integral.
\[\int_C\frac{2x}{e^y}\ud x + \left(2y - \frac{x^2}{e^y}\right)\ud y
= \int_C\left(\frac{2x}{e^y}\unit\i + 2y\unit\j - \frac{x^2}{e^y}\unit\j\right)
\cdot\ud(x\unit\i + y\unit\j)\]
Since on $\mathbb R^2$
\[\tho{}{y}\frac{2x}{e^y} = \frac{-2x}{e^y}
= \tho{}{x}\left(2y - \frac{x^2}{e^y}\right)\]
the function
\[\mathbf F(x, y) = \frac{2x}{e^y}\unit\i + 2y\unit\j - \frac{x^2}{e^y}\unit\j\]
is conservative and thus the given line integral is independent from path.
Let $f$ be a differentiable of $(x, y)$ that $\nabla f = \mathbf F$.
One function satisfying this is \[f(x, y) = y^2 + \frac{x^2}{e^y}\]
By the fundamental theorem for line integrals,
\[\int_C\mathbf F\cdot\ud\mathbf r = f(2, 1) - f(1, 0) = \frac{4}{e}\]
\subsection{Green's Theorem}
\exercise{6} Use Green’s Theorem to evaluate the line integral along the given
positively oriented rectangle with vertices (0, 0), (5, 0), (5, 2) and (0, 2).
\begin{align*}
\int_C\cos y\ud x + x^2\sin y\ud y
&= \int_0^5\int_0^2\left(\tho{x^2\sin y}{x} - \tho{\cos y}{y}\right)\ud y\ud x\\
&= \int_0^5\int_0^2(2x\sin y + \sin y)\ud y\ud x\\
&= \int_0^5(2x + 1)(1 - \cos 2)\ud x\\
&= 30 - 30\cos 2
\end{align*}
\begin{multicols}{2}
\noindent\begin{tikzpicture}[domain=-pi/2:pi/2]
\begin{axis}[legend pos=north east, xlabel={$x$}, ylabel={$y$},
axis x line = middle, axis y line = middle,
enlarge y limits={rel=0.1}, enlarge x limits={rel=0.1}]
\addplot[->,>=stealth,color=blue]{cos(deg(x))};
\addplot[<-,>=stealth,color=orange]{0};
\legend{$r = \cos x$, $r = 0$}
\end{axis}
\end{tikzpicture}
\exercise{12} Use Green's Theorem to evaluate the line integral along the
path $C$ including the curve $y = \cos x$ from $(-\pi/2, 0)$ to $(\pi/2, 0)$
and the line segment connecting these two points.
Since the curve is negatively oriented, by Green's Theorem,
\end{multicols}
\begin{align*}
&\int_C(e^{-x} + y^2)\ud x + (e^{-y} + x^2)\ud y\\
= &\,-\int_{-\pi/2}^{\pi/2}\int_0^{\cos x}\left(
\tho{}{x}(e^{-y} + x^2) - \tho{}{y}(e^{-x} + y^2)\right)\ud y\ud x\\
= &\int_{\pi/2}^{-\pi/2}\int_0^{\cos x}(2x - 2y)\ud y\ud x\\
= &\int_{\pi/2}^{-\pi/2}(2x\cos x - \cos^2 x)\ud x\\
= &\,\frac 1 2\int_{-\pi/2}^{\pi/2}(\cos 2x + 1)\ud x
- \int_{-\pi/2}^{\pi/2}2x\ud\sin x\\
= &\left[\frac{\sin 2x}{4} + \frac{x}{2}
- 2x\sin x - 2\cos x\right]_{-\pi/2}^{\pi/2} = \frac\pi 2
\end{align*}
\subsection{Curl and Divergence}
This section is to aid my revision of Electromagnetism. First, on $\mathbb R^3$,
we define
\[\nabla = \unit\i\tho{}{x} + \unit\j\tho{}{y} + \unit k\tho{}{z}\]
then the curl of vector field $\mathbf F = P\unit\i + Q\unit\j + R\unit k$ is
\begin{multline*}
\curl\mathbf F
= \nabla\times\mathbf F
= \begin{vmatrix}
\unit\i & \unit\j & \unit k\\
\tho{}{x} & \tho{}{y} & \tho{}{z}\\
P & Q & R
\end{vmatrix}\\
= \unit\i\left(\tho{R}{y} - \tho{Q}{z}\right)
+ \unit\j\left(\tho{P}{z} - \tho{R}{x}\right)
+ \unit k\left(\tho{Q}{x} - \tho{P}{y}\right)
\end{multline*}
If $f$ is a function of three variables that has continuous second-order
partial derivatives, then $\curl(\nabla f) = \mathbf 0$.
On the other hand, if $\curl\mathbf F = \mathbf 0$
then $\mathbf F$ is a conservative vector field (preconditions:
$P$, $Q$ and $R$ must be partially differentiable).
Similarly, the divergence of vector field $\mathbf F$ is defined as
\[\del\mathbf{F} = \nabla\cdot\mathbf F
= \unit\i\tho{P}{x} + \unit\j\tho{Q}{y} + \unit k\tho{R}{z}\]
Trivially, $\nabla\cdot(\nabla\times\mathbf F) = 0$
because the terms cancel in pairs by Clairaut's Theorem.
The cool thing about operators is that they can be weirdly combined,
e.g. $\del(\nabla f) = \nabla\cdot\nabla f = \nabla^2 f$
and $\nabla^2 F = \nabla\cdot\nabla\cdot\mathbf F$.
Now we are able to write Green's Theorem in the vector form
\[\oint_{\partial S}\mathbf F\cdot\ud\mathbf r
= \iint_S(\curl\mathbf F)\cdot\unit k\ud A\]
whereas $\mathbf r(t) = x(t)\unit\i + y(t)\unit\j$.
The outward normal vector to the contour is given by
$\mathbf n(t) = \leibniz{y}{t}\unit\i - \leibniz{x}{t}\unit\j$.
So we have the second vector form of Green's Theorem.
\[\oint_{\partial S}\mathbf F\cdot\unit n\ud s = \iint_S\del\mathbf F\ud A\]
\subsection{Parametric Surfaces and Their Areas}
\exercise{42} Find the area of the part of the cone $z = \sqrt{x^2 + y^2}$
that lies between the plane $y = x$ and the cylinder $y = x^2$.
\begin{align*}
&\int_0^1\int_{x^2}^x\sqrt{
1 + \left(\tho{z}{x}\right)^2 + \left(\tho{z}{y}\right)_2}\ud y\ud x\\
=&\int_0^1\int_{x^2}^x\sqrt 2\ud y\ud x
= \int_0^1(x - x^2)\sqrt 2\ud y\ud x\\
=&\,\frac{1}{2} - \frac{1}{3}
= \frac{1}{6}
\end{align*}
\section{Second-Order Differential Equations}
\subsection{Homogeneous Linear Equations}
\exercise{11} Solve the differential equation.
\[2\leibniz{^2 y}{t^2} + 2\leibniz{y}{t} - y = 0\]
Since the auxiliary equation $2r^2 + 2x - 1 = 0$ has two real and distinct
roots $\dfrac{\pm\sqrt 3 - 1}{2}$, the general solution is
\[y = c_1\exp\frac{\sqrt 3 - 1}{2}t + c_2\exp\frac{-\sqrt 3 - 1}{2}t\]
\exercise{21} Solve the initial value problem.
\[y'' - 6y' + 10y = 0,\qquad y(0) = 2,\qquad y''(0) = 3\]
Since the auxiliary equation $r^2 - 6x + 10 = 0$ has two complex roots
$3\pm i$, the general solution is
\[y = e^{3x}(c_1\cos x + c_2\sin x)
\Longrightarrow y' = e^{3x}((3c_1 + c_2)\cos x + (3c_2 - c_1)\sin x)\]
As $y(0) = 2$, $c_1 = 2$. Similarly, from $y'(0) = 3$,
we can obtain $3c_1 - c_2 = 3 \Longrightarrow c_2 = 3$. Thus the solution
of the initial value problem is $y = e^{3x}(3\cos x + 2\sin x)$.
\subsection{Nonhomogeneous Linear Equations}
Solve the differential equation or initial-value problem using the method of
undetermined coefficients.
\[y'' - 4y' + 5y = e^{-x}\tag{5}\]
The auxiliary equation of $y'' - 4y' + 5y = 0$ is $r^2 - 4r + 5 = 0$ with roots
$r = 2\pm i$. Hence the solution to the complementary equation is
\[y_c = e^{2x}(c_1\cos x + c_2\sin x)\]
Since $G(x) = e^{-x}$ is an exponential function, we seek a particular solution
of an exponential function as well:
\[y_p = Ae^{-x}
\Longrightarrow y_p' = -Ae^{-x}
\Longrightarrow y_p'' = Ae^{-x}\]
Substituting these into the differential equation, we get
\[Ae^{-x} - 4Ae^{-x} + 5Ae^{-x} = e^{-x} \iff A = \frac{1}{10}\]
Thus the general solution of the exponential equation is
\[y = y_c + y_p = e^{2x}(c_1\cos x + c_2\sin x) + \frac{1}{10e^x}\]
\[y'' + y' - 2y = x + \sin 2x,\qquad y(0) = 1,\qquad y'(0) = 0\tag{10}\]
The auxiliary equation of $y'' + y' - 2y = 0$ is $r^2 + r - 2 = 0$ with roots
$r = -2, 1$. Thus the solution to the complementary equation is
\[y_c = c_1 e^x + \frac{c_2}{e^{2x}}\]
We seek a particular solution of the form
\begin{multline*}
y_p = Ax + B + C\cos 2x + D\sin 2x\\
\Longrightarrow y_p' = A - 2C\sin 2x + 2D\cos 2x\\
\Longrightarrow y_p'' = -4C\cos 2x - 4D\sin 2x
\end{multline*}
Substituting these into the differential equation, we get
\begin{multline*}
(-4C + 2D - 2C)\cos 2x + (-4D - 2C - 2D)\sin 2x + A - 2B - 2Ax = x + \sin 2x\\
\iff\begin{cases}
-4C + 2D - 2C = 0\\
-4D - 2C - 2D = 1\\
A - 2B = 0\\
-2A = 1
\end{cases}
\iff\begin{cases}
A = -1/2\\
B = -1/4\\
C = -1/20\\
D = -3/20
\end{cases}
\end{multline*}
Thus the general solution of the exponential equation is
\begin{multline*}
y = y_c + y_p = c_1 e^x + \frac{c_2}{e^{2x}} - \frac{x}{2} - \frac{1}{4}
- \frac{\cos 2x}{20} - \frac{3\sin 2x}{20}\\
\Longrightarrow y' = c_1 e^x - \frac{2c_2}{e^{2x}} - \frac{1}{2}
+ \frac{\sin 2x}{10} - \frac{3\cos 2x}{10}
\end{multline*}
Since $y(0) = 1$ and $y'(0) = 0$,
\[\begin{dcases}
c_1 + c_2 - \frac{1}{4} - \frac{1}{20} = 1\\
c_1 - 2c_2 - \frac{3}{10} = 0
\end{dcases}
\iff \begin{dcases}
c_1 + c_2 = \frac{13}{10}\\
c_1 - 2c_2 = \frac{3}{10}
\end{dcases}
\iff \begin{dcases}
c_1 = \frac{29}{30}\\
c_2 = \frac{1}{3}
\end{dcases}\]
Therefore the solution to the initial value problem is
\[y = \frac{29e^x}{30} + \frac{1}{3e^{2x}} - \frac{x}{2} - \frac{1}{4}
- \frac{\cos 2x}{20} - \frac{3\sin 2x}{20}\]
\subsection{Applications}
\exercise{3} A spring with a mass of 2 kg has damping constant 14, and a force
of 6 N is required to keep the spring stretched 0.5 m beyond its natural
length. The spring is stretched 1 m beyond its natural length and then
released with zero velocity. Find the position of the mass at any time $t$.
By Hooke's law,
\[k(0.5) = 6 \iff k = 12\]
By Newton's second law of motion,
\[2\leibniz{^2 x}{t^2} + 14\leibniz{x}{t} + 12x = 0\]
Since the auxiliary equation $2r^2 + 14r + 12 = 0$ has two real
and distinct roots $r = -6, -1$, the general solution is
\[x = \frac{c_1}{e^t} + \frac{c_2}{e^{6t}}
\Longrightarrow \leibniz{x}{t} = \frac{-c_1}{e^t} - \frac{6c_2}{e^{6t}}\]
From $x(0) = 1$ and $x'(0) = 0$ we get
\[\begin{cases}
c_1 + c_2 = 1\\
-c_1 - 6c_2 = 0
\end{cases}
\iff\begin{cases}
c_1 = 6/5\\
c_2 = -1/5
\end{cases}\]
Therefore the position at any time $t$ is
\[x = \frac{6}{5e^t} - \frac{c_2}{5e^{6t}}\]
\setcounter{section}{8}
\section{First-Order Differential Equations}
\setcounter{subsection}{2}
\subsection{Separable Equations}
\exercise{8} Solve the differential equation.
\begin{align*}
\leibniz{y}{\theta} &= \frac{e^y\sin^2\theta}{y\sec\theta}\\
\iff \int\frac{y}{e^y}\ud y &= \int\sin\theta\cos\theta\ud\theta\\
\iff \int-y\ud e^{-y} &= \int\sin^2\theta\ud\sin\theta\\
\iff \int e^{-y}\ud y - \frac{y}{e^y} &= \frac{\sin^3\theta}{3}\\
\iff \frac{1 + y}{e^y} &= C - \frac{\sin^3\theta}{3}
\end{align*}
\setcounter{subsection}{4}
\subsection{Linear Equations}
\exercise{28} In a damped RL circuit, the generator supplies a voltage of
$E(t) = 40\sin 60t$ volts, the inductance is 1 H, the resistance is 10 $\Omega$
and $I(0) = 1$ A.
\begin{align*}
&E - L\leibniz{I}{t} - RI = 0\\
\iff &\frac{40}{L}\sin 60t = \leibniz{I}{t} + \frac{RI}{L}\\
\iff &\frac{40e^{tR/L}}{L}\sin 60t
= \frac{RI}{L}e^{tR/L} + \leibniz{I}{t}e^{tR/L}\\
\iff &\frac{40}{L}\int e^{tR/L}\sin 60t\ud t = \int\ud Ie^{tR/L}\tag{$*$}
\end{align*}
Let $J = \int e^{tR/L}\sin 60t\ud t$,
\begin{align*}
J &= \frac{-1}{60}\int e^{tR/L}\ud\cos 60t\\
&= \frac{1}{60}\int\cos 60t\ud e^{tR/L} - \frac{e^{tR/L}\cos 60t}{60}\\
&= \frac{R}{3600L}\int e^{tR/L}\ud\sin 60t - \frac{e^{tR/L}\cos 60t}{60}\\
&= \frac{R}{3600L}e^{tR/L}\sin 60t - \frac{R}{3600L}\int\sin 60t\ud e^{tR/L}
- \frac{e^{tR/L}\cos 60t}{60}\\
&= \frac{R}{3600L}e^{tR/L}\sin 60t - \frac{R^2}{3600L^2}J
- \frac{e^{tR/L}\cos 60t}{60}
\end{align*}
Hence $J = \dfrac{e^{tR/L}(RL\sin 60t - 60L^2\cos 60t)}{R^2+3600L^2}$
and $(*)$ is equivalent to
\begin{multline*}
\frac{40e^{tR/L}(R\sin 60t - 60L\cos 60t)}{R^2+3600L^2} = Ie^{tR/L} - C\\
\iff I = \frac{40R\sin 60t - 2400L\cos 60t}{R^2+3600L^2}
+ \frac{C}{e^{tR/L}}\\
\iff I = \frac{\sin 60t - 3\cos 60t}{5}
+ \frac{C}{e^{t/20}}
\end{multline*}
Since $I = 1$ at $t = 0$,
\[1 = \frac{\sin 0 - 3\cos 0}{5} + \frac{C}{e^0} \iff C = \frac 8 5\]
and thus $I = \dfrac{\sin 60t - 3\cos 60t}{5} + \dfrac{8}{5}\exp\dfrac{-t}{20}$.
At $t = 0.1$, $I = (\sin 6 - 3\cos 6)/5 + 1.6e^{-1/200} \approx 2.11$ A.
\end{document}
|