summary refs log tree commit diff
path: root/gnu/packages/cran.scm
diff options
context:
space:
mode:
authorRicardo Wurmus <ricardo.wurmus@mdc-berlin.de>2019-01-07 16:26:54 +0100
committerRicardo Wurmus <rekado@elephly.net>2019-01-07 18:44:04 +0100
commit13f5837b4ce12aca681b15e985738f95c4045ad5 (patch)
treef4ca3f7935b5de5f374990cfe791a41b9cadf974 /gnu/packages/cran.scm
parentb614009e6a8c965ef73d8d65e99d44b933f9eb12 (diff)
downloadguix-13f5837b4ce12aca681b15e985738f95c4045ad5.tar.gz
gnu: Add r-densityclust.
* gnu/packages/cran.scm (r-densityclust): New variable.
Diffstat (limited to 'gnu/packages/cran.scm')
-rw-r--r--gnu/packages/cran.scm30
1 files changed, 30 insertions, 0 deletions
diff --git a/gnu/packages/cran.scm b/gnu/packages/cran.scm
index 9aa6e3b270..4ffcdbab36 100644
--- a/gnu/packages/cran.scm
+++ b/gnu/packages/cran.scm
@@ -8747,3 +8747,33 @@ only sparse real matrices in Matrix package format are supported.")
     ;; SVDLIBC is released under BSD-2.  The R interface is released under
     ;; BSD-3.
     (license (list license:bsd-3 license:bsd-2))))
+
+(define-public r-densityclust
+  (package
+    (name "r-densityclust")
+    (version "0.3")
+    (source
+     (origin
+       (method url-fetch)
+       (uri (cran-uri "densityClust" version))
+       (sha256
+        (base32
+         "1zry0vafajzmr37aylglxfvwplhdygbkb9cvzvh8cy0xgnjrnx13"))))
+    (properties `((upstream-name . "densityClust")))
+    (build-system r-build-system)
+    (propagated-inputs
+     `(("r-fnn" ,r-fnn)
+       ("r-ggplot2" ,r-ggplot2)
+       ("r-ggrepel" ,r-ggrepel)
+       ("r-gridextra" ,r-gridextra)
+       ("r-rcolorbrewer" ,r-rcolorbrewer)
+       ("r-rcpp" ,r-rcpp)
+       ("r-rtsne" ,r-rtsne)))
+    (home-page "https://cran.r-project.org/web/packages/densityClust")
+    (synopsis "Clustering by fast search and find of density peaks")
+    (description
+     "This package provides an improved implementation (based on k-nearest
+neighbors) of the density peak clustering algorithm, originally described by
+Alex Rodriguez and Alessandro Laio (Science, 2014 vol. 344).  It can handle
+large datasets (> 100,000 samples) very efficiently.")
+    (license license:gpl2+)))