summary refs log tree commit diff
path: root/gnu/packages/patches/python-scikit-optimize-1150.patch
blob: 0cdf361a80515de7d01c887687202d8d28a39e07 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
From cd74e00d0e4f435d548444e1a5edc20155e371d7 Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?Jonas=20T=C3=B8rnes?= <jonas.tornes@gmail.com>
Date: Wed, 15 Feb 2023 18:47:52 +0100
Subject: [PATCH 1/5] Update RandomForesetRegressor criterion to be inline with
 scikit-learn change from mse to squared error this has the same funcitonality

---
 requirements.txt         |  6 +++---
 setup.py                 |  6 +++---
 skopt/learning/forest.py | 30 +++++++++++++++---------------
 3 files changed, 21 insertions(+), 21 deletions(-)

diff --git a/requirements.txt b/requirements.txt
index 1eaa3083a..23ab3d856 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -1,6 +1,6 @@
-numpy>=1.13.3
-scipy>=0.19.1
-scikit-learn>=0.20
+numpy>=1.23.2
+scipy>=1.10.0
+scikit-learn>=1.2.1
 matplotlib>=2.0.0
 pytest
 pyaml>=16.9
diff --git a/setup.py b/setup.py
index 8879da880..e7f921765 100644
--- a/setup.py
+++ b/setup.py
@@ -42,9 +42,9 @@
       classifiers=CLASSIFIERS,
       packages=['skopt', 'skopt.learning', 'skopt.optimizer', 'skopt.space',
                 'skopt.learning.gaussian_process', 'skopt.sampler'],
-      install_requires=['joblib>=0.11', 'pyaml>=16.9', 'numpy>=1.13.3',
-                        'scipy>=0.19.1',
-                        'scikit-learn>=0.20.0'],
+      install_requires=['joblib>=0.11', 'pyaml>=16.9', 'numpy>=1.23.2',
+                        'scipy>=1.10.0',
+                        'scikit-learn>=1.2.1'],
       extras_require={
         'plots':  ["matplotlib>=2.0.0"]
         }
diff --git a/skopt/learning/forest.py b/skopt/learning/forest.py
index 096770c1d..ebde568f5 100644
--- a/skopt/learning/forest.py
+++ b/skopt/learning/forest.py
@@ -27,7 +27,7 @@ def _return_std(X, trees, predictions, min_variance):
     -------
     std : array-like, shape=(n_samples,)
         Standard deviation of `y` at `X`. If criterion
-        is set to "mse", then `std[i] ~= std(y | X[i])`.
+        is set to "squared_error", then `std[i] ~= std(y | X[i])`.
 
     """
     # This derives std(y | x) as described in 4.3.2 of arXiv:1211.0906
@@ -61,9 +61,9 @@ class RandomForestRegressor(_sk_RandomForestRegressor):
     n_estimators : integer, optional (default=10)
         The number of trees in the forest.
 
-    criterion : string, optional (default="mse")
+    criterion : string, optional (default="squared_error")
         The function to measure the quality of a split. Supported criteria
-        are "mse" for the mean squared error, which is equal to variance
+        are "squared_error" for the mean squared error, which is equal to variance
         reduction as feature selection criterion, and "mae" for the mean
         absolute error.
 
@@ -194,7 +194,7 @@ class RandomForestRegressor(_sk_RandomForestRegressor):
     .. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001.
 
     """
-    def __init__(self, n_estimators=10, criterion='mse', max_depth=None,
+    def __init__(self, n_estimators=10, criterion='squared_error', max_depth=None,
                  min_samples_split=2, min_samples_leaf=1,
                  min_weight_fraction_leaf=0.0, max_features='auto',
                  max_leaf_nodes=None, min_impurity_decrease=0.,
@@ -228,20 +228,20 @@ def predict(self, X, return_std=False):
         Returns
         -------
         predictions : array-like of shape = (n_samples,)
-            Predicted values for X. If criterion is set to "mse",
+            Predicted values for X. If criterion is set to "squared_error",
             then `predictions[i] ~= mean(y | X[i])`.
 
         std : array-like of shape=(n_samples,)
             Standard deviation of `y` at `X`. If criterion
-            is set to "mse", then `std[i] ~= std(y | X[i])`.
+            is set to "squared_error", then `std[i] ~= std(y | X[i])`.
 
         """
         mean = super(RandomForestRegressor, self).predict(X)
 
         if return_std:
-            if self.criterion != "mse":
+            if self.criterion != "squared_error":
                 raise ValueError(
-                    "Expected impurity to be 'mse', got %s instead"
+                    "Expected impurity to be 'squared_error', got %s instead"
                     % self.criterion)
             std = _return_std(X, self.estimators_, mean, self.min_variance)
             return mean, std
@@ -257,9 +257,9 @@ class ExtraTreesRegressor(_sk_ExtraTreesRegressor):
     n_estimators : integer, optional (default=10)
         The number of trees in the forest.
 
-    criterion : string, optional (default="mse")
+    criterion : string, optional (default="squared_error")
         The function to measure the quality of a split. Supported criteria
-        are "mse" for the mean squared error, which is equal to variance
+        are "squared_error" for the mean squared error, which is equal to variance
         reduction as feature selection criterion, and "mae" for the mean
         absolute error.
 
@@ -390,7 +390,7 @@ class ExtraTreesRegressor(_sk_ExtraTreesRegressor):
     .. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001.
 
     """
-    def __init__(self, n_estimators=10, criterion='mse', max_depth=None,
+    def __init__(self, n_estimators=10, criterion='squared_error', max_depth=None,
                  min_samples_split=2, min_samples_leaf=1,
                  min_weight_fraction_leaf=0.0, max_features='auto',
                  max_leaf_nodes=None, min_impurity_decrease=0.,
@@ -425,19 +425,19 @@ def predict(self, X, return_std=False):
         Returns
         -------
         predictions : array-like of shape=(n_samples,)
-            Predicted values for X. If criterion is set to "mse",
+            Predicted values for X. If criterion is set to "squared_error",
             then `predictions[i] ~= mean(y | X[i])`.
 
         std : array-like of shape=(n_samples,)
             Standard deviation of `y` at `X`. If criterion
-            is set to "mse", then `std[i] ~= std(y | X[i])`.
+            is set to "squared_error", then `std[i] ~= std(y | X[i])`.
         """
         mean = super(ExtraTreesRegressor, self).predict(X)
 
         if return_std:
-            if self.criterion != "mse":
+            if self.criterion != "squared_error":
                 raise ValueError(
-                    "Expected impurity to be 'mse', got %s instead"
+                    "Expected impurity to be 'squared_error', got %s instead"
                     % self.criterion)
             std = _return_std(X, self.estimators_, mean, self.min_variance)
             return mean, std

From 6eb2d4ddaa299ae47d9a69ffb31ebc4ed366d1c1 Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?Jonas=20T=C3=B8rnes?= <jonas.tornes@gmail.com>
Date: Thu, 16 Feb 2023 11:34:58 +0100
Subject: [PATCH 2/5] Change test to be consistent with code changes.

---
 skopt/learning/tests/test_forest.py | 4 ++--
 1 file changed, 2 insertions(+), 2 deletions(-)

diff --git a/skopt/learning/tests/test_forest.py b/skopt/learning/tests/test_forest.py
index 0711cde9d..c6ed610f3 100644
--- a/skopt/learning/tests/test_forest.py
+++ b/skopt/learning/tests/test_forest.py
@@ -35,7 +35,7 @@ def test_random_forest():
     assert_array_equal(clf.predict(T), true_result)
     assert 10 == len(clf)
 
-    clf = RandomForestRegressor(n_estimators=10, criterion="mse",
+    clf = RandomForestRegressor(n_estimators=10, criterion="squared_error",
                                 max_depth=None, min_samples_split=2,
                                 min_samples_leaf=1,
                                 min_weight_fraction_leaf=0.,
@@ -80,7 +80,7 @@ def test_extra_forest():
     assert_array_equal(clf.predict(T), true_result)
     assert 10 == len(clf)
 
-    clf = ExtraTreesRegressor(n_estimators=10, criterion="mse",
+    clf = ExtraTreesRegressor(n_estimators=10, criterion="squared_error",
                               max_depth=None, min_samples_split=2,
                               min_samples_leaf=1, min_weight_fraction_leaf=0.,
                               max_features="auto", max_leaf_nodes=None,

From 52c620add07d845debbaff2ce2b1c5faf3eae79b Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?Jonas=20T=C3=B8rnes?= <jonas.tornes@gmail.com>
Date: Wed, 22 Feb 2023 16:59:03 +0100
Subject: [PATCH 3/5] Update skopt/learning/forest.py
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit

Fix max line width

Co-authored-by: Roland Laurès <roland@laures-valdivia.net>
---
 skopt/learning/forest.py | 4 ++--
 1 file changed, 2 insertions(+), 2 deletions(-)

diff --git a/skopt/learning/forest.py b/skopt/learning/forest.py
index ebde568f5..07dc42664 100644
--- a/skopt/learning/forest.py
+++ b/skopt/learning/forest.py
@@ -194,8 +194,8 @@ class RandomForestRegressor(_sk_RandomForestRegressor):
     .. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001.
 
     """
-    def __init__(self, n_estimators=10, criterion='squared_error', max_depth=None,
-                 min_samples_split=2, min_samples_leaf=1,
+    def __init__(self, n_estimators=10, criterion='squared_error',
+                 max_depth=None, min_samples_split=2, min_samples_leaf=1,
                  min_weight_fraction_leaf=0.0, max_features='auto',
                  max_leaf_nodes=None, min_impurity_decrease=0.,
                  bootstrap=True, oob_score=False,

From 52a7db95cb567186fb4e9003139fea4592bdbf05 Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?Jonas=20T=C3=B8rnes?= <jonas.tornes@gmail.com>
Date: Wed, 22 Feb 2023 17:03:25 +0100
Subject: [PATCH 4/5] Fix line widht issues

---
 skopt/learning/forest.py | 4 ++--
 1 file changed, 2 insertions(+), 2 deletions(-)

diff --git a/skopt/learning/forest.py b/skopt/learning/forest.py
index 07dc42664..d4c24456b 100644
--- a/skopt/learning/forest.py
+++ b/skopt/learning/forest.py
@@ -390,8 +390,8 @@ class ExtraTreesRegressor(_sk_ExtraTreesRegressor):
     .. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001.
 
     """
-    def __init__(self, n_estimators=10, criterion='squared_error', max_depth=None,
-                 min_samples_split=2, min_samples_leaf=1,
+    def __init__(self, n_estimators=10, criterion='squared_error',
+                 max_depth=None, min_samples_split=2, min_samples_leaf=1,
                  min_weight_fraction_leaf=0.0, max_features='auto',
                  max_leaf_nodes=None, min_impurity_decrease=0.,
                  bootstrap=False, oob_score=False,

From 6b185e489fb4a56625e8505292a20c80434f0633 Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?Jonas=20T=C3=B8rnes?= <jonas.tornes@gmail.com>
Date: Wed, 22 Feb 2023 18:37:11 +0100
Subject: [PATCH 5/5] Fix lin width issues for comments.

---
 skopt/learning/forest.py | 12 ++++++------
 1 file changed, 6 insertions(+), 6 deletions(-)

diff --git a/skopt/learning/forest.py b/skopt/learning/forest.py
index d4c24456b..eb3bd6648 100644
--- a/skopt/learning/forest.py
+++ b/skopt/learning/forest.py
@@ -63,9 +63,9 @@ class RandomForestRegressor(_sk_RandomForestRegressor):
 
     criterion : string, optional (default="squared_error")
         The function to measure the quality of a split. Supported criteria
-        are "squared_error" for the mean squared error, which is equal to variance
-        reduction as feature selection criterion, and "mae" for the mean
-        absolute error.
+        are "squared_error" for the mean squared error, which is equal to
+        variance reduction as feature selection criterion, and "mae" for the
+        mean absolute error.
 
     max_features : int, float, string or None, optional (default="auto")
         The number of features to consider when looking for the best split:
@@ -259,9 +259,9 @@ class ExtraTreesRegressor(_sk_ExtraTreesRegressor):
 
     criterion : string, optional (default="squared_error")
         The function to measure the quality of a split. Supported criteria
-        are "squared_error" for the mean squared error, which is equal to variance
-        reduction as feature selection criterion, and "mae" for the mean
-        absolute error.
+        are "squared_error" for the mean squared error, which is equal to
+        variance reduction as feature selection criterion, and "mae" for the
+        mean absolute error.
 
     max_features : int, float, string or None, optional (default="auto")
         The number of features to consider when looking for the best split: