about summary refs log tree commit diff homepage
path: root/lib
diff options
context:
space:
mode:
Diffstat (limited to 'lib')
-rw-r--r--lib/Module/CMakeLists.txt1
-rw-r--r--lib/Module/Passes.h7
-rw-r--r--lib/Module/Scalarizer.cpp651
3 files changed, 0 insertions, 659 deletions
diff --git a/lib/Module/CMakeLists.txt b/lib/Module/CMakeLists.txt
index 341af9df..5f234237 100644
--- a/lib/Module/CMakeLists.txt
+++ b/lib/Module/CMakeLists.txt
@@ -19,7 +19,6 @@ set(KLEE_MODULE_COMPONENT_SRCS
   OptNone.cpp
   PhiCleaner.cpp
   RaiseAsm.cpp
-  Scalarizer.cpp
 )
 
 if (USE_WORKAROUND_LLVM_PR39177)
diff --git a/lib/Module/Passes.h b/lib/Module/Passes.h
index 6a302819..d5f8d821 100644
--- a/lib/Module/Passes.h
+++ b/lib/Module/Passes.h
@@ -150,13 +150,6 @@ private:
                      llvm::BasicBlock *defaultBlock);
 };
 
-// This is the interface to a back-ported LLVM pass.
-// Therefore this interface is only needed for
-// LLVM 3.4.
-#if LLVM_VERSION_CODE == LLVM_VERSION(3, 4)
-llvm::FunctionPass *createScalarizerPass();
-#endif
-
 /// InstructionOperandTypeCheckPass - Type checks the types of instruction
 /// operands to check that they conform to invariants expected by the Executor.
 ///
diff --git a/lib/Module/Scalarizer.cpp b/lib/Module/Scalarizer.cpp
deleted file mode 100644
index 0d8e1f48..00000000
--- a/lib/Module/Scalarizer.cpp
+++ /dev/null
@@ -1,651 +0,0 @@
-//===--- Scalarizer.cpp - Scalarize vector operations ---------------------===//
-//
-//                     The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This pass converts vector operations into scalar operations, in order
-// to expose optimization opportunities on the individual scalar operations.
-// It is mainly intended for targets that do not have vector units, but it
-// may also be useful for revectorizing code to different vector widths.
-//
-//===----------------------------------------------------------------------===//
-#include "klee/Config/Version.h"
-
-// This is taken from r195471 in LLVM. This unfortunately was introduced just
-// after LLVM branched for 3.4 so it has been copied into KLEE's source tree.
-// We only use this for LLVM 3.4 because newer LLVM's have this pass in-tree.
-#if LLVM_VERSION_CODE == LLVM_VERSION(3,4)
-
-#define DEBUG_TYPE "scalarizer"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/IR/IRBuilder.h"
-#include "llvm/InstVisitor.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-
-using namespace llvm;
-
-namespace {
-// Used to store the scattered form of a vector.
-typedef SmallVector<Value *, 8> ValueVector;
-
-// Used to map a vector Value to its scattered form.  We use std::map
-// because we want iterators to persist across insertion and because the
-// values are relatively large.
-typedef std::map<Value *, ValueVector> ScatterMap;
-
-// Lists Instructions that have been replaced with scalar implementations,
-// along with a pointer to their scattered forms.
-typedef SmallVector<std::pair<Instruction *, ValueVector *>, 16> GatherList;
-
-// Provides a very limited vector-like interface for lazily accessing one
-// component of a scattered vector or vector pointer.
-class Scatterer {
-public:
-  // Scatter V into Size components.  If new instructions are needed,
-  // insert them before BBI in BB.  If Cache is nonnull, use it to cache
-  // the results.
-  Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
-            ValueVector *cachePtr = 0);
-
-  // Return component I, creating a new Value for it if necessary.
-  Value *operator[](unsigned I);
-
-  // Return the number of components.
-  unsigned size() const { return Size; }
-
-private:
-  BasicBlock *BB;
-  BasicBlock::iterator BBI;
-  Value *V;
-  ValueVector *CachePtr;
-  PointerType *PtrTy;
-  ValueVector Tmp;
-  unsigned Size;
-};
-
-// FCmpSpliiter(FCI)(Builder, X, Y, Name) uses Builder to create an FCmp
-// called Name that compares X and Y in the same way as FCI.
-struct FCmpSplitter {
-  FCmpSplitter(FCmpInst &fci) : FCI(fci) {}
-  Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
-                    const Twine &Name) const {
-    return Builder.CreateFCmp(FCI.getPredicate(), Op0, Op1, Name);
-  }
-  FCmpInst &FCI;
-};
-
-// ICmpSpliiter(ICI)(Builder, X, Y, Name) uses Builder to create an ICmp
-// called Name that compares X and Y in the same way as ICI.
-struct ICmpSplitter {
-  ICmpSplitter(ICmpInst &ici) : ICI(ici) {}
-  Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
-                    const Twine &Name) const {
-    return Builder.CreateICmp(ICI.getPredicate(), Op0, Op1, Name);
-  }
-  ICmpInst &ICI;
-};
-
-// BinarySpliiter(BO)(Builder, X, Y, Name) uses Builder to create
-// a binary operator like BO called Name with operands X and Y.
-struct BinarySplitter {
-  BinarySplitter(BinaryOperator &bo) : BO(bo) {}
-  Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
-                    const Twine &Name) const {
-    return Builder.CreateBinOp(BO.getOpcode(), Op0, Op1, Name);
-  }
-  BinaryOperator &BO;
-};
-
-// GEPSpliiter()(Builder, X, Y, Name) uses Builder to create
-// a single GEP called Name with operands X and Y.
-struct GEPSplitter {
-  GEPSplitter() {}
-  Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
-                    const Twine &Name) const {
-    return Builder.CreateGEP(Op0, Op1, Name);
-  }
-};
-
-// Information about a load or store that we're scalarizing.
-struct VectorLayout {
-  VectorLayout() : VecTy(0), ElemTy(0), VecAlign(0), ElemSize(0) {}
-
-  // Return the alignment of element I.
-  uint64_t getElemAlign(unsigned I) {
-    return MinAlign(VecAlign, I * ElemSize);
-  }
-
-  // The type of the vector.
-  VectorType *VecTy;
-
-  // The type of each element.
-  Type *ElemTy;
-
-  // The alignment of the vector.
-  uint64_t VecAlign;
-
-  // The size of each element.
-  uint64_t ElemSize;
-};
-
-class Scalarizer : public FunctionPass,
-                   public InstVisitor<Scalarizer, bool> {
-public:
-  static char ID;
-
-  Scalarizer() :
-    FunctionPass(ID) {
-    // HACK:
-    //initializeScalarizerPass(*PassRegistry::getPassRegistry());
-  }
-
-  virtual bool doInitialization(Module &M);
-  virtual bool runOnFunction(Function &F);
-
-  // InstVisitor methods.  They return true if the instruction was scalarized,
-  // false if nothing changed.
-  bool visitInstruction(Instruction &) { return false; }
-  bool visitSelectInst(SelectInst &SI);
-  bool visitICmpInst(ICmpInst &);
-  bool visitFCmpInst(FCmpInst &);
-  bool visitBinaryOperator(BinaryOperator &);
-  bool visitGetElementPtrInst(GetElementPtrInst &);
-  bool visitCastInst(CastInst &);
-  bool visitBitCastInst(BitCastInst &);
-  bool visitShuffleVectorInst(ShuffleVectorInst &);
-  bool visitPHINode(PHINode &);
-  bool visitLoadInst(LoadInst &);
-  bool visitStoreInst(StoreInst &);
-
-private:
-  Scatterer scatter(Instruction *, Value *);
-  void gather(Instruction *, const ValueVector &);
-  bool canTransferMetadata(unsigned Kind);
-  void transferMetadata(Instruction *, const ValueVector &);
-  bool getVectorLayout(Type *, unsigned, VectorLayout &);
-  bool finish();
-
-  template<typename T> bool splitBinary(Instruction &, const T &);
-
-  ScatterMap Scattered;
-  GatherList Gathered;
-  unsigned ParallelLoopAccessMDKind;
-  const DataLayout *TDL;
-};
-
-char Scalarizer::ID = 0;
-} // end anonymous namespace
-
-bool ScalarizeLoadStore = true; // HACK
-/*
-// This is disabled by default because having separate loads and stores makes
-// it more likely that the -combiner-alias-analysis limits will be reached.
-static cl::opt<bool> ScalarizeLoadStore
-  ("scalarize-load-store", cl::Hidden, cl::init(false),
-   cl::desc("Allow the scalarizer pass to scalarize loads and store"));
-
-INITIALIZE_PASS(Scalarizer, "scalarizer", "Scalarize vector operations",
-                false, false)
-*/
-
-Scatterer::Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
-                     ValueVector *cachePtr)
-  : BB(bb), BBI(bbi), V(v), CachePtr(cachePtr) {
-  Type *Ty = V->getType();
-  PtrTy = dyn_cast<PointerType>(Ty);
-  if (PtrTy)
-    Ty = PtrTy->getElementType();
-  Size = Ty->getVectorNumElements();
-  if (!CachePtr)
-    Tmp.resize(Size, 0);
-  else if (CachePtr->empty())
-    CachePtr->resize(Size, 0);
-  else
-    assert(Size == CachePtr->size() && "Inconsistent vector sizes");
-}
-
-// Return component I, creating a new Value for it if necessary.
-Value *Scatterer::operator[](unsigned I) {
-  ValueVector &CV = (CachePtr ? *CachePtr : Tmp);
-  // Try to reuse a previous value.
-  if (CV[I])
-    return CV[I];
-  IRBuilder<> Builder(BB, BBI);
-  if (PtrTy) {
-    if (!CV[0]) {
-      Type *Ty =
-        PointerType::get(PtrTy->getElementType()->getVectorElementType(),
-                         PtrTy->getAddressSpace());
-      CV[0] = Builder.CreateBitCast(V, Ty, V->getName() + ".i0");
-    }
-    if (I != 0)
-      CV[I] = Builder.CreateConstGEP1_32(CV[0], I,
-                                         V->getName() + ".i" + Twine(I));
-  } else {
-    // Search through a chain of InsertElementInsts looking for element I.
-    // Record other elements in the cache.  The new V is still suitable
-    // for all uncached indices.
-    for (;;) {
-      InsertElementInst *Insert = dyn_cast<InsertElementInst>(V);
-      if (!Insert)
-        break;
-      ConstantInt *Idx = dyn_cast<ConstantInt>(Insert->getOperand(2));
-      if (!Idx)
-        break;
-      unsigned J = Idx->getZExtValue();
-      CV[J] = Insert->getOperand(1);
-      V = Insert->getOperand(0);
-      if (I == J)
-        return CV[J];
-    }
-    CV[I] = Builder.CreateExtractElement(V, Builder.getInt32(I),
-                                         V->getName() + ".i" + Twine(I));
-  }
-  return CV[I];
-}
-
-bool Scalarizer::doInitialization(Module &M) {
-  ParallelLoopAccessMDKind =
-    M.getContext().getMDKindID("llvm.mem.parallel_loop_access");
-  return false;
-}
-
-bool Scalarizer::runOnFunction(Function &F) {
-  TDL = getAnalysisIfAvailable<DataLayout>();
-  for (Function::iterator BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI) {
-    BasicBlock *BB = BBI;
-    for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
-      Instruction *I = II;
-      bool Done = visit(I);
-      ++II;
-      if (Done && I->getType()->isVoidTy())
-        I->eraseFromParent();
-    }
-  }
-  return finish();
-}
-
-// Return a scattered form of V that can be accessed by Point.  V must be a
-// vector or a pointer to a vector.
-Scatterer Scalarizer::scatter(Instruction *Point, Value *V) {
-  if (Argument *VArg = dyn_cast<Argument>(V)) {
-    // Put the scattered form of arguments in the entry block,
-    // so that it can be used everywhere.
-    Function *F = VArg->getParent();
-    BasicBlock *BB = &F->getEntryBlock();
-    return Scatterer(BB, BB->begin(), V, &Scattered[V]);
-  }
-  if (Instruction *VOp = dyn_cast<Instruction>(V)) {
-    // Put the scattered form of an instruction directly after the
-    // instruction.
-    BasicBlock *BB = VOp->getParent();
-    return Scatterer(BB, llvm::next(BasicBlock::iterator(VOp)),
-                     V, &Scattered[V]);
-  }
-  // In the fallback case, just put the scattered before Point and
-  // keep the result local to Point.
-  return Scatterer(Point->getParent(), Point, V);
-}
-
-// Replace Op with the gathered form of the components in CV.  Defer the
-// deletion of Op and creation of the gathered form to the end of the pass,
-// so that we can avoid creating the gathered form if all uses of Op are
-// replaced with uses of CV.
-void Scalarizer::gather(Instruction *Op, const ValueVector &CV) {
-  // Since we're not deleting Op yet, stub out its operands, so that it
-  // doesn't make anything live unnecessarily.
-  for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I)
-    Op->setOperand(I, UndefValue::get(Op->getOperand(I)->getType()));
-
-  transferMetadata(Op, CV);
-
-  // If we already have a scattered form of Op (created from ExtractElements
-  // of Op itself), replace them with the new form.
-  ValueVector &SV = Scattered[Op];
-  if (!SV.empty()) {
-    for (unsigned I = 0, E = SV.size(); I != E; ++I) {
-      Instruction *Old = cast<Instruction>(SV[I]);
-      CV[I]->takeName(Old);
-      Old->replaceAllUsesWith(CV[I]);
-      Old->eraseFromParent();
-    }
-  }
-  SV = CV;
-  Gathered.push_back(GatherList::value_type(Op, &SV));
-}
-
-// Return true if it is safe to transfer the given metadata tag from
-// vector to scalar instructions.
-bool Scalarizer::canTransferMetadata(unsigned Tag) {
-  return (Tag == LLVMContext::MD_tbaa
-          || Tag == LLVMContext::MD_fpmath
-          || Tag == LLVMContext::MD_tbaa_struct
-          || Tag == LLVMContext::MD_invariant_load
-          || Tag == ParallelLoopAccessMDKind);
-}
-
-// Transfer metadata from Op to the instructions in CV if it is known
-// to be safe to do so.
-void Scalarizer::transferMetadata(Instruction *Op, const ValueVector &CV) {
-  SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
-  Op->getAllMetadataOtherThanDebugLoc(MDs);
-  for (unsigned I = 0, E = CV.size(); I != E; ++I) {
-    if (Instruction *New = dyn_cast<Instruction>(CV[I])) {
-      for (SmallVectorImpl<std::pair<unsigned, MDNode *> >::iterator
-             MI = MDs.begin(), ME = MDs.end(); MI != ME; ++MI)
-        if (canTransferMetadata(MI->first))
-          New->setMetadata(MI->first, MI->second);
-      New->setDebugLoc(Op->getDebugLoc());
-    }
-  }
-}
-
-// Try to fill in Layout from Ty, returning true on success.  Alignment is
-// the alignment of the vector, or 0 if the ABI default should be used.
-bool Scalarizer::getVectorLayout(Type *Ty, unsigned Alignment,
-                                 VectorLayout &Layout) {
-  if (!TDL)
-    return false;
-
-  // Make sure we're dealing with a vector.
-  Layout.VecTy = dyn_cast<VectorType>(Ty);
-  if (!Layout.VecTy)
-    return false;
-
-  // Check that we're dealing with full-byte elements.
-  Layout.ElemTy = Layout.VecTy->getElementType();
-  if (TDL->getTypeSizeInBits(Layout.ElemTy) !=
-      TDL->getTypeStoreSizeInBits(Layout.ElemTy))
-    return false;
-
-  if (Alignment)
-    Layout.VecAlign = Alignment;
-  else
-    Layout.VecAlign = TDL->getABITypeAlignment(Layout.VecTy);
-  Layout.ElemSize = TDL->getTypeStoreSize(Layout.ElemTy);
-  return true;
-}
-
-// Scalarize two-operand instruction I, using Split(Builder, X, Y, Name)
-// to create an instruction like I with operands X and Y and name Name.
-template<typename Splitter>
-bool Scalarizer::splitBinary(Instruction &I, const Splitter &Split) {
-  VectorType *VT = dyn_cast<VectorType>(I.getType());
-  if (!VT)
-    return false;
-
-  unsigned NumElems = VT->getNumElements();
-  IRBuilder<> Builder(I.getParent(), &I);
-  Scatterer Op0 = scatter(&I, I.getOperand(0));
-  Scatterer Op1 = scatter(&I, I.getOperand(1));
-  assert(Op0.size() == NumElems && "Mismatched binary operation");
-  assert(Op1.size() == NumElems && "Mismatched binary operation");
-  ValueVector Res;
-  Res.resize(NumElems);
-  for (unsigned Elem = 0; Elem < NumElems; ++Elem)
-    Res[Elem] = Split(Builder, Op0[Elem], Op1[Elem],
-                      I.getName() + ".i" + Twine(Elem));
-  gather(&I, Res);
-  return true;
-}
-
-bool Scalarizer::visitSelectInst(SelectInst &SI) {
-  VectorType *VT = dyn_cast<VectorType>(SI.getType());
-  if (!VT)
-    return false;
-
-  unsigned NumElems = VT->getNumElements();
-  IRBuilder<> Builder(SI.getParent(), &SI);
-  Scatterer Op1 = scatter(&SI, SI.getOperand(1));
-  Scatterer Op2 = scatter(&SI, SI.getOperand(2));
-  assert(Op1.size() == NumElems && "Mismatched select");
-  assert(Op2.size() == NumElems && "Mismatched select");
-  ValueVector Res;
-  Res.resize(NumElems);
-
-  if (SI.getOperand(0)->getType()->isVectorTy()) {
-    Scatterer Op0 = scatter(&SI, SI.getOperand(0));
-    assert(Op0.size() == NumElems && "Mismatched select");
-    for (unsigned I = 0; I < NumElems; ++I)
-      Res[I] = Builder.CreateSelect(Op0[I], Op1[I], Op2[I],
-                                    SI.getName() + ".i" + Twine(I));
-  } else {
-    Value *Op0 = SI.getOperand(0);
-    for (unsigned I = 0; I < NumElems; ++I)
-      Res[I] = Builder.CreateSelect(Op0, Op1[I], Op2[I],
-                                    SI.getName() + ".i" + Twine(I));
-  }
-  gather(&SI, Res);
-  return true;
-}
-
-bool Scalarizer::visitICmpInst(ICmpInst &ICI) {
-  return splitBinary(ICI, ICmpSplitter(ICI));
-}
-
-bool Scalarizer::visitFCmpInst(FCmpInst &FCI) {
-  return splitBinary(FCI, FCmpSplitter(FCI));
-}
-
-bool Scalarizer::visitBinaryOperator(BinaryOperator &BO) {
-  return splitBinary(BO, BinarySplitter(BO));
-}
-
-bool Scalarizer::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
-  return splitBinary(GEPI, GEPSplitter());
-}
-
-bool Scalarizer::visitCastInst(CastInst &CI) {
-  VectorType *VT = dyn_cast<VectorType>(CI.getDestTy());
-  if (!VT)
-    return false;
-
-  unsigned NumElems = VT->getNumElements();
-  IRBuilder<> Builder(CI.getParent(), &CI);
-  Scatterer Op0 = scatter(&CI, CI.getOperand(0));
-  assert(Op0.size() == NumElems && "Mismatched cast");
-  ValueVector Res;
-  Res.resize(NumElems);
-  for (unsigned I = 0; I < NumElems; ++I)
-    Res[I] = Builder.CreateCast(CI.getOpcode(), Op0[I], VT->getElementType(),
-                                CI.getName() + ".i" + Twine(I));
-  gather(&CI, Res);
-  return true;
-}
-
-bool Scalarizer::visitBitCastInst(BitCastInst &BCI) {
-  VectorType *DstVT = dyn_cast<VectorType>(BCI.getDestTy());
-  VectorType *SrcVT = dyn_cast<VectorType>(BCI.getSrcTy());
-  if (!DstVT || !SrcVT)
-    return false;
-
-  unsigned DstNumElems = DstVT->getNumElements();
-  unsigned SrcNumElems = SrcVT->getNumElements();
-  IRBuilder<> Builder(BCI.getParent(), &BCI);
-  Scatterer Op0 = scatter(&BCI, BCI.getOperand(0));
-  ValueVector Res;
-  Res.resize(DstNumElems);
-
-  if (DstNumElems == SrcNumElems) {
-    for (unsigned I = 0; I < DstNumElems; ++I)
-      Res[I] = Builder.CreateBitCast(Op0[I], DstVT->getElementType(),
-                                     BCI.getName() + ".i" + Twine(I));
-  } else if (DstNumElems > SrcNumElems) {
-    // <M x t1> -> <N*M x t2>.  Convert each t1 to <N x t2> and copy the
-    // individual elements to the destination.
-    unsigned FanOut = DstNumElems / SrcNumElems;
-    Type *MidTy = VectorType::get(DstVT->getElementType(), FanOut);
-    unsigned ResI = 0;
-    for (unsigned Op0I = 0; Op0I < SrcNumElems; ++Op0I) {
-      Value *V = Op0[Op0I];
-      Instruction *VI;
-      // Look through any existing bitcasts before converting to <N x t2>.
-      // In the best case, the resulting conversion might be a no-op.
-      while ((VI = dyn_cast<Instruction>(V)) &&
-             VI->getOpcode() == Instruction::BitCast)
-        V = VI->getOperand(0);
-      V = Builder.CreateBitCast(V, MidTy, V->getName() + ".cast");
-      Scatterer Mid = scatter(&BCI, V);
-      for (unsigned MidI = 0; MidI < FanOut; ++MidI)
-        Res[ResI++] = Mid[MidI];
-    }
-  } else {
-    // <N*M x t1> -> <M x t2>.  Convert each group of <N x t1> into a t2.
-    unsigned FanIn = SrcNumElems / DstNumElems;
-    Type *MidTy = VectorType::get(SrcVT->getElementType(), FanIn);
-    unsigned Op0I = 0;
-    for (unsigned ResI = 0; ResI < DstNumElems; ++ResI) {
-      Value *V = UndefValue::get(MidTy);
-      for (unsigned MidI = 0; MidI < FanIn; ++MidI)
-        V = Builder.CreateInsertElement(V, Op0[Op0I++], Builder.getInt32(MidI),
-                                        BCI.getName() + ".i" + Twine(ResI)
-                                        + ".upto" + Twine(MidI));
-      Res[ResI] = Builder.CreateBitCast(V, DstVT->getElementType(),
-                                        BCI.getName() + ".i" + Twine(ResI));
-    }
-  }
-  gather(&BCI, Res);
-  return true;
-}
-
-bool Scalarizer::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
-  VectorType *VT = dyn_cast<VectorType>(SVI.getType());
-  if (!VT)
-    return false;
-
-  unsigned NumElems = VT->getNumElements();
-  Scatterer Op0 = scatter(&SVI, SVI.getOperand(0));
-  Scatterer Op1 = scatter(&SVI, SVI.getOperand(1));
-  ValueVector Res;
-  Res.resize(NumElems);
-
-  for (unsigned I = 0; I < NumElems; ++I) {
-    int Selector = SVI.getMaskValue(I);
-    if (Selector < 0)
-      Res[I] = UndefValue::get(VT->getElementType());
-    else if (unsigned(Selector) < Op0.size())
-      Res[I] = Op0[Selector];
-    else
-      Res[I] = Op1[Selector - Op0.size()];
-  }
-  gather(&SVI, Res);
-  return true;
-}
-
-bool Scalarizer::visitPHINode(PHINode &PHI) {
-  VectorType *VT = dyn_cast<VectorType>(PHI.getType());
-  if (!VT)
-    return false;
-
-  unsigned NumElems = VT->getNumElements();
-  IRBuilder<> Builder(PHI.getParent(), &PHI);
-  ValueVector Res;
-  Res.resize(NumElems);
-
-  unsigned NumOps = PHI.getNumOperands();
-  for (unsigned I = 0; I < NumElems; ++I)
-    Res[I] = Builder.CreatePHI(VT->getElementType(), NumOps,
-                               PHI.getName() + ".i" + Twine(I));
-
-  for (unsigned I = 0; I < NumOps; ++I) {
-    Scatterer Op = scatter(&PHI, PHI.getIncomingValue(I));
-    BasicBlock *IncomingBlock = PHI.getIncomingBlock(I);
-    for (unsigned J = 0; J < NumElems; ++J)
-      cast<PHINode>(Res[J])->addIncoming(Op[J], IncomingBlock);
-  }
-  gather(&PHI, Res);
-  return true;
-}
-
-bool Scalarizer::visitLoadInst(LoadInst &LI) {
-  if (!ScalarizeLoadStore)
-    return false;
-  if (!LI.isSimple())
-    return false;
-
-  VectorLayout Layout;
-  if (!getVectorLayout(LI.getType(), LI.getAlignment(), Layout))
-    return false;
-
-  unsigned NumElems = Layout.VecTy->getNumElements();
-  IRBuilder<> Builder(LI.getParent(), &LI);
-  Scatterer Ptr = scatter(&LI, LI.getPointerOperand());
-  ValueVector Res;
-  Res.resize(NumElems);
-
-  for (unsigned I = 0; I < NumElems; ++I)
-    Res[I] = Builder.CreateAlignedLoad(Ptr[I], Layout.getElemAlign(I),
-                                       LI.getName() + ".i" + Twine(I));
-  gather(&LI, Res);
-  return true;
-}
-
-bool Scalarizer::visitStoreInst(StoreInst &SI) {
-  if (!ScalarizeLoadStore)
-    return false;
-  if (!SI.isSimple())
-    return false;
-
-  VectorLayout Layout;
-  Value *FullValue = SI.getValueOperand();
-  if (!getVectorLayout(FullValue->getType(), SI.getAlignment(), Layout))
-    return false;
-
-  unsigned NumElems = Layout.VecTy->getNumElements();
-  IRBuilder<> Builder(SI.getParent(), &SI);
-  Scatterer Ptr = scatter(&SI, SI.getPointerOperand());
-  Scatterer Val = scatter(&SI, FullValue);
-
-  ValueVector Stores;
-  Stores.resize(NumElems);
-  for (unsigned I = 0; I < NumElems; ++I) {
-    unsigned Align = Layout.getElemAlign(I);
-    Stores[I] = Builder.CreateAlignedStore(Val[I], Ptr[I], Align);
-  }
-  transferMetadata(&SI, Stores);
-  return true;
-}
-
-// Delete the instructions that we scalarized.  If a full vector result
-// is still needed, recreate it using InsertElements.
-bool Scalarizer::finish() {
-  if (Gathered.empty())
-    return false;
-  for (GatherList::iterator GMI = Gathered.begin(), GME = Gathered.end();
-       GMI != GME; ++GMI) {
-    Instruction *Op = GMI->first;
-    ValueVector &CV = *GMI->second;
-    if (!Op->use_empty()) {
-      // The value is still needed, so recreate it using a series of
-      // InsertElements.
-      Type *Ty = Op->getType();
-      Value *Res = UndefValue::get(Ty);
-      unsigned Count = Ty->getVectorNumElements();
-      IRBuilder<> Builder(Op->getParent(), Op);
-      for (unsigned I = 0; I < Count; ++I)
-        Res = Builder.CreateInsertElement(Res, CV[I], Builder.getInt32(I),
-                                          Op->getName() + ".upto" + Twine(I));
-      Res->takeName(Op);
-      Op->replaceAllUsesWith(Res);
-    }
-    Op->eraseFromParent();
-  }
-  Gathered.clear();
-  Scattered.clear();
-  return true;
-}
-
-namespace klee {
-  llvm::FunctionPass *createScalarizerPass() {
-    return new Scalarizer();
-  }
-}
-
-#endif