Age | Commit message (Collapse) | Author |
|
|
|
ObjectStates can be shared between multiple states.
A read expression of a symbolic object can be represented differently
depending on previous read expression on the same object.
If the read expression uses a symbolic index, all pending updates
will become entries in the update list of the object state.
If the same object state is read again, with a concrete index,
the latest update list item will be referenced, even though it might
contain more recent but non-essential updates.
If, instead, a concrete read will be executed first, it does not contain
the non-essential updates.
For both executions, the ReadExpr with a constant index will have two
different representations, which is not intented.
This patch makes sure, we do not include more recent, non-essential
updates for concrete reads.
Fixes #921
|
|
|
|
|
|
|
|
printing category
|
|
category for building and printing expressions
|
|
and "default=off" in --help
|
|
|
|
files
|
|
This was renamed in LLVM commit 54f0462d2b7f, so handle the rename.
Signed-off-by: Jiri Slaby <jirislaby@gmail.com>
|
|
Otherwise we see:
../lib/Expr/Expr.cpp:331:14: error: no member named 'integerPartWidth' in namespace 'llvm'; did you mean 'llvm::APFloatBase::integerPartWidth'?
Signed-off-by: Jiri Slaby <jirislaby@gmail.com>
|
|
|
|
|
|
|
|
* use `using` instead of typdef
* use `collection.empty()` instead of size
* use `auto` if clear
* use `emplace_back` where useful
* use `nullptr` instead of NULL
* use `override` if applicable
* use `explicit` for constructor to avoid implicit conversion
|
|
Don't pollute the project include directory with optimization specific
headers.
|
|
Remove unneeded headers from include files
|
|
Conditions are checked inside of `optimizeExpr()`
anyway. This simplifies the code a lot.
|
|
|
|
simplifies code a lot.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configuration, TravisCI scripts and Dockerfile build appropriately.
There are a bunch of clean ups this enables but this commit doesn't
attempt them. We can do that in future commits.
|
|
Fixes klee/klee#717
delete on null pointer is always safe.
|
|
Request LLVM 3.4 as minimal requirement for KLEE
|
|
It became unnecessary when defining options and mainly undefined.
So introduce KLEE_LLVM_CL_VAL_END as suggested by @delcypher.
Signed-off-by: Jiri Slaby <jirislaby@gmail.com>
|
|
assignments against the corresponding `Query` object and check the
assignment evaluates correctly.
This can be switched on using `-debug-assignment-validating-solver`
on the command line.
|
|
constant arrays.
|
|
* Making `Expr::compre(const Expr&, ExprEquivSet)` private and moving
its implementation into `Expr.cpp`.
* Document `Expr::compare(const Expr&)`.
This partially addresses #515 .
|
|
|
|
transitive dependencies on KLEE's libraries rather than on the final
binaries. This is better because it means we can build
other tools that use KLEE's libraries and not need to express the
needed LLVM dependencies.
It also makes it clearer what the dependencies are between KLEE
libraries. This has illustrated a problem with the `kleeBasic`
library. It contains `ConstructSolverChain.cpp` which clearly
belongs in `kleaverSolver` not in `kleeBasic`. This will be fixed
later.
|
|
This is based off intial work by @jirislaby in #481. However it
has been substantially modified.
Notably it includes a separate build sytem to build the runtimes which
is inspired by the old build system. The reason for doing this is
because CMake is not well suited for building the runtime:
* CMake is configured to use the host compiler, not the bitcode
compiler. These are not the same thing.
* Building the runtime using `add_custom_command()` is flawed
because we can't automatically get transitive depencies (i.e.
header file dependencies) unless the CMake generator is makefiles.
(See `IMPLICIT_DEPENDS` of `add_custom_command()` in CMake).
So for now we have a very simple build system for building the runtimes.
In the future we can replace this with something more sophisticated if
we need it.
Support for all features of the old build system are implemented apart
from recording the git revision and showing it in the output of
`klee --help`.
Another notable change is the CMake build system works much better with
LLVM installs which don't ship with testing tools. The build system
will download the sources for `FileCheck` and `not` tools if the
corresponding binaries aren't available and will build them. However
`lit` (availabe via `pip install lit`) and GTest must already be
installed.
Apart from better support for testing a significant advantage of the
new CMake build system compared to the existing "Autoconf/Makefile"
build system is that it is **not** coupled to LLVM's build system
(unlike the existing build system). This means that LLVM's
autoconf/Makefiles don't need to be installed somewhere on the system.
Currently all tests pass.
Support has been implemented in TravisCI and the Dockerfile for
building with CMake.
The existing "Autoconf/Makefile" build system has been left intact
and so both build systems can coexist for a short while. We should
remove the old build system as soon as possible though because it
creates an unnecessary maintance burden.
|
|
* Add unittest to check that the `Assignment` class can evaluate
expressions containing a `NotOptimizedExpr`.
* Fix the `AssignmentTest.FoldNotOptimized` unit test by
teaching the `ExprEvaluator` to fold `NotOptimizedExpr` nodes.
|
|
|
|
The address of KLEE-internal data structures should not influence the
order arrays are printed out.
Order arrays by name.
|
|
a message stating this.
|
|
that it's possible to call it from gdb.
|
|
|
|
The implementation of the constructor calls a method on a ``ConstantExpr``
which means the type must be complete (i.e. a forward declaration of
``ConstantExpr`` is insufficient) which creates an unnecessary ordering
Dependency in ``Expr.h``.
|
|
the ``ParserImpl`` it wouldn't free allocated ``Identifier``s
|
|
Some of these leaks were introduced by the factory constructor for Array
objects (f049ff3bc04daead8c3bb9f06e89e71e2054c82a) but a few others have
been around for far longer.
This leak was fixed by introducing a ``ArrayCache`` object which has two
purposes
* Retains ownership of all created ``Array`` objects and destroys them when
the ``ArrayCache`` destructor is called.
* Mimic the caching behaviour for symbolic arrays that was introduced
by f049ff3bc04daead8c3bb9f06e89e71e2054c82a where arrays with the same
name and size get "uniqued".
The Executor now maintains a ``arrayCache`` member that it uses and
passes by pointer to objects that need to construct ``Array`` objects (i.e.
``ObjectState``). This way when the Executor is destroyed all the
``Array`` objects get freed which seems like the right time to do this.
For Kleaver the ``ParserImpl`` has a ``TheArrayCache`` member that is
used for building ``Array`` objects. This means that the Parser must
live as long as the built expressions will be used otherwise we will
have a use after free. I'm not sure this is the right design choice.
It might be better to transfer ownership of the ``Array`` objects to
the root ``Decl`` returned by the parser.
|
|
The overloaded assignment operator previously only deleted the head
``UpdateNode`` if the ``UpdateList`` had exclusive ownership which left the remaining
list of ``UpdateNode``s dangling if those nodes had ``refCount`` of 1.
To fix this the logic that was previously in the ``UpdateList`` destructor
for deleting nodes that were exclusively referenced by the UpdateList
has been moved into ``UpdateList::tryFreeNodes()`` so that it can be
called from ``UpdateList::operator=()``.
It looks like this bug has been in KLEE since the beginning.
|
|
always goes to zero (matches LLVM's APInt::ashr(...)). This is meant
to partially address issue #218.
There are a few problems with this commit
* It is possible for AShrExpr to not be abbreviated because the scan
methods will not see that we print the 0th child of the AShrExpr twice
* The added test case should really be run through an SMT solver (
i.e. STP) but that requires infrastructure changes.
|