1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
|
//===-- Executor.h ----------------------------------------------*- C++ -*-===//
//
// The KLEE Symbolic Virtual Machine
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Class to perform actual execution, hides implementation details from external
// interpreter.
//
//===----------------------------------------------------------------------===//
#ifndef KLEE_EXECUTOR_H
#define KLEE_EXECUTOR_H
#include "klee/ExecutionState.h"
#include "klee/Interpreter.h"
#include "klee/Internal/Module/Cell.h"
#include "klee/Internal/Module/KInstruction.h"
#include "klee/Internal/Module/KModule.h"
#include "llvm/Support/CallSite.h"
#include <vector>
#include <string>
#include <map>
#include <set>
struct KTest;
namespace llvm {
class BasicBlock;
class BranchInst;
class CallInst;
class Constant;
class ConstantExpr;
class Function;
class GlobalValue;
class Instruction;
#if LLVM_VERSION_CODE <= LLVM_VERSION(3, 1)
class TargetData;
#else
class DataLayout;
#endif
class Twine;
class Value;
}
namespace klee {
class Array;
struct Cell;
class ExecutionState;
class ExternalDispatcher;
class Expr;
class InstructionInfoTable;
struct KFunction;
struct KInstruction;
class KInstIterator;
class KModule;
class MemoryManager;
class MemoryObject;
class ObjectState;
class PTree;
class Searcher;
class SeedInfo;
class SpecialFunctionHandler;
struct StackFrame;
class StatsTracker;
class TimingSolver;
class TreeStreamWriter;
template<class T> class ref;
/// \todo Add a context object to keep track of data only live
/// during an instruction step. Should contain addedStates,
/// removedStates, and haltExecution, among others.
class Executor : public Interpreter {
friend class BumpMergingSearcher;
friend class MergingSearcher;
friend class RandomPathSearcher;
friend class OwningSearcher;
friend class WeightedRandomSearcher;
friend class SpecialFunctionHandler;
friend class StatsTracker;
public:
class Timer {
public:
Timer();
virtual ~Timer();
/// The event callback.
virtual void run() = 0;
};
typedef std::pair<ExecutionState*,ExecutionState*> StatePair;
private:
class TimerInfo;
KModule *kmodule;
InterpreterHandler *interpreterHandler;
Searcher *searcher;
ExternalDispatcher *externalDispatcher;
TimingSolver *solver;
MemoryManager *memory;
std::set<ExecutionState*> states;
StatsTracker *statsTracker;
TreeStreamWriter *pathWriter, *symPathWriter;
SpecialFunctionHandler *specialFunctionHandler;
std::vector<TimerInfo*> timers;
PTree *processTree;
/// Used to track states that have been added during the current
/// instructions step.
/// \invariant \ref addedStates is a subset of \ref states.
/// \invariant \ref addedStates and \ref removedStates are disjoint.
std::set<ExecutionState*> addedStates;
/// Used to track states that have been removed during the current
/// instructions step.
/// \invariant \ref removedStates is a subset of \ref states.
/// \invariant \ref addedStates and \ref removedStates are disjoint.
std::set<ExecutionState*> removedStates;
/// When non-empty the Executor is running in "seed" mode. The
/// states in this map will be executed in an arbitrary order
/// (outside the normal search interface) until they terminate. When
/// the states reach a symbolic branch then either direction that
/// satisfies one or more seeds will be added to this map. What
/// happens with other states (that don't satisfy the seeds) depends
/// on as-yet-to-be-determined flags.
std::map<ExecutionState*, std::vector<SeedInfo> > seedMap;
/// Map of globals to their representative memory object.
std::map<const llvm::GlobalValue*, MemoryObject*> globalObjects;
/// Map of globals to their bound address. This also includes
/// globals that have no representative object (i.e. functions).
std::map<const llvm::GlobalValue*, ref<ConstantExpr> > globalAddresses;
/// The set of legal function addresses, used to validate function
/// pointers. We use the actual Function* address as the function address.
std::set<uint64_t> legalFunctions;
/// When non-null the bindings that will be used for calls to
/// klee_make_symbolic in order replay.
const struct KTest *replayOut;
/// When non-null a list of branch decisions to be used for replay.
const std::vector<bool> *replayPath;
/// The index into the current \ref replayOut or \ref replayPath
/// object.
unsigned replayPosition;
/// When non-null a list of "seed" inputs which will be used to
/// drive execution.
const std::vector<struct KTest *> *usingSeeds;
/// Disables forking, instead a random path is chosen. Enabled as
/// needed to control memory usage. \see fork()
bool atMemoryLimit;
/// Disables forking, set by client. \see setInhibitForking()
bool inhibitForking;
/// Signals the executor to halt execution at the next instruction
/// step.
bool haltExecution;
/// Whether implied-value concretization is enabled. Currently
/// false, it is buggy (it needs to validate its writes).
bool ivcEnabled;
/// The maximum time to allow for a single stp query.
double stpTimeout;
llvm::Function* getTargetFunction(llvm::Value *calledVal,
ExecutionState &state);
void executeInstruction(ExecutionState &state, KInstruction *ki);
void printFileLine(ExecutionState &state, KInstruction *ki);
void run(ExecutionState &initialState);
// Given a concrete object in our [klee's] address space, add it to
// objects checked code can reference.
MemoryObject *addExternalObject(ExecutionState &state, void *addr,
unsigned size, bool isReadOnly);
void initializeGlobalObject(ExecutionState &state, ObjectState *os,
const llvm::Constant *c,
unsigned offset);
void initializeGlobals(ExecutionState &state);
void stepInstruction(ExecutionState &state);
void updateStates(ExecutionState *current);
void transferToBasicBlock(llvm::BasicBlock *dst,
llvm::BasicBlock *src,
ExecutionState &state);
void callExternalFunction(ExecutionState &state,
KInstruction *target,
llvm::Function *function,
std::vector< ref<Expr> > &arguments);
ObjectState *bindObjectInState(ExecutionState &state, const MemoryObject *mo,
bool isLocal, const Array *array = 0);
/// Resolve a pointer to the memory objects it could point to the
/// start of, forking execution when necessary and generating errors
/// for pointers to invalid locations (either out of bounds or
/// address inside the middle of objects).
///
/// \param results[out] A list of ((MemoryObject,ObjectState),
/// state) pairs for each object the given address can point to the
/// beginning of.
typedef std::vector< std::pair<std::pair<const MemoryObject*, const ObjectState*>,
ExecutionState*> > ExactResolutionList;
void resolveExact(ExecutionState &state,
ref<Expr> p,
ExactResolutionList &results,
const std::string &name);
/// Allocate and bind a new object in a particular state. NOTE: This
/// function may fork.
///
/// \param isLocal Flag to indicate if the object should be
/// automatically deallocated on function return (this also makes it
/// illegal to free directly).
///
/// \param target Value at which to bind the base address of the new
/// object.
///
/// \param reallocFrom If non-zero and the allocation succeeds,
/// initialize the new object from the given one and unbind it when
/// done (realloc semantics). The initialized bytes will be the
/// minimum of the size of the old and new objects, with remaining
/// bytes initialized as specified by zeroMemory.
void executeAlloc(ExecutionState &state,
ref<Expr> size,
bool isLocal,
KInstruction *target,
bool zeroMemory=false,
const ObjectState *reallocFrom=0);
/// Free the given address with checking for errors. If target is
/// given it will be bound to 0 in the resulting states (this is a
/// convenience for realloc). Note that this function can cause the
/// state to fork and that \ref state cannot be safely accessed
/// afterwards.
void executeFree(ExecutionState &state,
ref<Expr> address,
KInstruction *target = 0);
void executeCall(ExecutionState &state,
KInstruction *ki,
llvm::Function *f,
std::vector< ref<Expr> > &arguments);
// do address resolution / object binding / out of bounds checking
// and perform the operation
void executeMemoryOperation(ExecutionState &state,
bool isWrite,
ref<Expr> address,
ref<Expr> value /* undef if read */,
KInstruction *target /* undef if write */);
void executeMakeSymbolic(ExecutionState &state, const MemoryObject *mo,
const std::string &name);
/// Create a new state where each input condition has been added as
/// a constraint and return the results. The input state is included
/// as one of the results. Note that the output vector may included
/// NULL pointers for states which were unable to be created.
void branch(ExecutionState &state,
const std::vector< ref<Expr> > &conditions,
std::vector<ExecutionState*> &result);
// Fork current and return states in which condition holds / does
// not hold, respectively. One of the states is necessarily the
// current state, and one of the states may be null.
StatePair fork(ExecutionState ¤t, ref<Expr> condition, bool isInternal);
/// Add the given (boolean) condition as a constraint on state. This
/// function is a wrapper around the state's addConstraint function
/// which also manages manages propogation of implied values,
/// validity checks, and seed patching.
void addConstraint(ExecutionState &state, ref<Expr> condition);
// Called on [for now] concrete reads, replaces constant with a symbolic
// Used for testing.
ref<Expr> replaceReadWithSymbolic(ExecutionState &state, ref<Expr> e);
const Cell& eval(KInstruction *ki, unsigned index,
ExecutionState &state) const;
Cell& getArgumentCell(ExecutionState &state,
KFunction *kf,
unsigned index) {
return state.stack.back().locals[kf->getArgRegister(index)];
}
Cell& getDestCell(ExecutionState &state,
KInstruction *target) {
return state.stack.back().locals[target->dest];
}
void bindLocal(KInstruction *target,
ExecutionState &state,
ref<Expr> value);
void bindArgument(KFunction *kf,
unsigned index,
ExecutionState &state,
ref<Expr> value);
ref<klee::ConstantExpr> evalConstantExpr(const llvm::ConstantExpr *ce);
/// Return a unique constant value for the given expression in the
/// given state, if it has one (i.e. it provably only has a single
/// value). Otherwise return the original expression.
ref<Expr> toUnique(const ExecutionState &state, ref<Expr> &e);
/// Return a constant value for the given expression, forcing it to
/// be constant in the given state by adding a constraint if
/// necessary. Note that this function breaks completeness and
/// should generally be avoided.
///
/// \param purpose An identify string to printed in case of concretization.
ref<klee::ConstantExpr> toConstant(ExecutionState &state, ref<Expr> e,
const char *purpose);
/// Bind a constant value for e to the given target. NOTE: This
/// function may fork state if the state has multiple seeds.
void executeGetValue(ExecutionState &state, ref<Expr> e, KInstruction *target);
/// Get textual information regarding a memory address.
std::string getAddressInfo(ExecutionState &state, ref<Expr> address) const;
// remove state from queue and delete
void terminateState(ExecutionState &state);
// call exit handler and terminate state
void terminateStateEarly(ExecutionState &state, const llvm::Twine &message);
// call exit handler and terminate state
void terminateStateOnExit(ExecutionState &state);
// call error handler and terminate state
void terminateStateOnError(ExecutionState &state,
const llvm::Twine &message,
const char *suffix,
const llvm::Twine &longMessage="");
// call error handler and terminate state, for execution errors
// (things that should not be possible, like illegal instruction or
// unlowered instrinsic, or are unsupported, like inline assembly)
void terminateStateOnExecError(ExecutionState &state,
const llvm::Twine &message,
const llvm::Twine &info="") {
terminateStateOnError(state, message, "exec.err", info);
}
/// bindModuleConstants - Initialize the module constant table.
void bindModuleConstants();
template <typename TypeIt>
void computeOffsets(KGEPInstruction *kgepi, TypeIt ib, TypeIt ie);
/// bindInstructionConstants - Initialize any necessary per instruction
/// constant values.
void bindInstructionConstants(KInstruction *KI);
void handlePointsToObj(ExecutionState &state,
KInstruction *target,
const std::vector<ref<Expr> > &arguments);
void doImpliedValueConcretization(ExecutionState &state,
ref<Expr> e,
ref<ConstantExpr> value);
/// Add a timer to be executed periodically.
///
/// \param timer The timer object to run on firings.
/// \param rate The approximate delay (in seconds) between firings.
void addTimer(Timer *timer, double rate);
void initTimers();
void processTimers(ExecutionState *current,
double maxInstTime);
public:
Executor(const InterpreterOptions &opts, InterpreterHandler *ie);
virtual ~Executor();
const InterpreterHandler& getHandler() {
return *interpreterHandler;
}
// XXX should just be moved out to utility module
ref<klee::ConstantExpr> evalConstant(const llvm::Constant *c);
virtual void setPathWriter(TreeStreamWriter *tsw) {
pathWriter = tsw;
}
virtual void setSymbolicPathWriter(TreeStreamWriter *tsw) {
symPathWriter = tsw;
}
virtual void setReplayOut(const struct KTest *out) {
assert(!replayPath && "cannot replay both buffer and path");
replayOut = out;
replayPosition = 0;
}
virtual void setReplayPath(const std::vector<bool> *path) {
assert(!replayOut && "cannot replay both buffer and path");
replayPath = path;
replayPosition = 0;
}
virtual const llvm::Module *
setModule(llvm::Module *module, const ModuleOptions &opts);
virtual void useSeeds(const std::vector<struct KTest *> *seeds) {
usingSeeds = seeds;
}
virtual void runFunctionAsMain(llvm::Function *f,
int argc,
char **argv,
char **envp);
/*** Runtime options ***/
virtual void setHaltExecution(bool value) {
haltExecution = value;
}
virtual void setInhibitForking(bool value) {
inhibitForking = value;
}
/*** State accessor methods ***/
virtual unsigned getPathStreamID(const ExecutionState &state);
virtual unsigned getSymbolicPathStreamID(const ExecutionState &state);
virtual void getConstraintLog(const ExecutionState &state,
std::string &res,
Interpreter::LogType logFormat = Interpreter::STP);
virtual bool getSymbolicSolution(const ExecutionState &state,
std::vector<
std::pair<std::string,
std::vector<unsigned char> > >
&res);
virtual void getCoveredLines(const ExecutionState &state,
std::map<const std::string*, std::set<unsigned> > &res);
Expr::Width getWidthForLLVMType(LLVM_TYPE_Q llvm::Type *type) const;
};
} // End klee namespace
#endif
|