1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
|
//===-- ExternalDispatcher.cpp --------------------------------------------===//
//
// The KLEE Symbolic Virtual Machine
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "ExternalDispatcher.h"
#include "klee/Config/Version.h"
#include "klee/Module/KCallable.h"
#include "klee/Module/KModule.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/ExecutionEngine/GenericValue.h"
#include "llvm/ExecutionEngine/MCJIT.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/TargetSelect.h"
#include <csetjmp>
#include <csignal>
using namespace llvm;
using namespace klee;
/***/
static sigjmp_buf escapeCallJmpBuf;
extern "C" {
static void sigsegv_handler(int signal, siginfo_t *info, void *context) {
siglongjmp(escapeCallJmpBuf, 1);
}
}
namespace klee {
class ExternalDispatcherImpl {
private:
typedef std::map<const llvm::Instruction *, llvm::Function *> dispatchers_ty;
dispatchers_ty dispatchers;
llvm::Function *createDispatcher(KCallable *target, llvm::Instruction *i,
llvm::Module *module);
llvm::ExecutionEngine *executionEngine;
LLVMContext &ctx;
std::map<std::string, void *> preboundFunctions;
bool runProtectedCall(llvm::Function *f, uint64_t *args);
llvm::Module *singleDispatchModule;
std::vector<std::string> moduleIDs;
std::string &getFreshModuleID();
int lastErrno;
public:
ExternalDispatcherImpl(llvm::LLVMContext &ctx);
~ExternalDispatcherImpl();
bool executeCall(KCallable *callable, llvm::Instruction *i,
uint64_t *args);
void *resolveSymbol(const std::string &name);
int getLastErrno();
void setLastErrno(int newErrno);
};
std::string &ExternalDispatcherImpl::getFreshModuleID() {
// We store the module IDs because `llvm::Module` constructor takes the
// module ID as a StringRef so it doesn't own the ID. Therefore we need to
// own the ID.
static uint64_t counter = 0;
std::string underlyingString;
llvm::raw_string_ostream ss(underlyingString);
ss << "ExternalDispatcherModule_" << counter;
moduleIDs.push_back(ss.str()); // moduleIDs now has a copy
++counter; // Increment for next call
return moduleIDs.back();
}
void *ExternalDispatcherImpl::resolveSymbol(const std::string &name) {
assert(executionEngine);
const char *str = name.c_str();
// We use this to validate that function names can be resolved so we
// need to match how the JIT does it. Unfortunately we can't
// directly access the JIT resolution function
// JIT::getPointerToNamedFunction so we emulate the important points.
if (str[0] == 1) // asm specifier, skipped
++str;
void *addr = sys::DynamicLibrary::SearchForAddressOfSymbol(str);
if (addr)
return addr;
// If it has an asm specifier and starts with an underscore we retry
// without the underscore. I (DWD) don't know why.
if (name[0] == 1 && str[0] == '_') {
++str;
addr = sys::DynamicLibrary::SearchForAddressOfSymbol(str);
}
return addr;
}
ExternalDispatcherImpl::ExternalDispatcherImpl(LLVMContext &ctx)
: ctx(ctx), lastErrno(0) {
std::string error;
singleDispatchModule = new Module(getFreshModuleID(), ctx);
// The MCJIT JITs whole modules at a time rather than individual functions
// so we will let it manage the modules.
// Note that we don't do anything with `singleDispatchModule`. This is just
// so we can use the EngineBuilder API.
auto dispatchModuleUniq = std::unique_ptr<Module>(singleDispatchModule);
executionEngine = EngineBuilder(std::move(dispatchModuleUniq))
.setErrorStr(&error)
.setEngineKind(EngineKind::JIT)
.create();
if (!executionEngine) {
llvm::errs() << "unable to make jit: " << error << "\n";
abort();
}
// If we have a native target, initialize it to ensure it is linked in and
// usable by the JIT.
llvm::InitializeNativeTarget();
llvm::InitializeNativeTargetAsmParser();
llvm::InitializeNativeTargetAsmPrinter();
// from ExecutionEngine::create
if (executionEngine) {
// Make sure we can resolve symbols in the program as well. The zero arg
// to the function tells DynamicLibrary to load the program, not a library.
sys::DynamicLibrary::LoadLibraryPermanently(0);
}
#ifdef WINDOWS
preboundFunctions["getpid"] = (void *)(long)getpid;
preboundFunctions["putchar"] = (void *)(long)putchar;
preboundFunctions["printf"] = (void *)(long)printf;
preboundFunctions["fprintf"] = (void *)(long)fprintf;
preboundFunctions["sprintf"] = (void *)(long)sprintf;
#endif
}
ExternalDispatcherImpl::~ExternalDispatcherImpl() {
delete executionEngine;
// NOTE: the `executionEngine` owns all modules so
// we don't need to delete any of them.
}
bool ExternalDispatcherImpl::executeCall(KCallable *callable, Instruction *i,
uint64_t *args) {
dispatchers_ty::iterator it = dispatchers.find(i);
if (it != dispatchers.end()) {
// Code already JIT'ed for this
return runProtectedCall(it->second, args);
}
// Code for this not JIT'ed. Do this now.
Function *dispatcher;
#ifdef WINDOWS
std::map<std::string, void *>::iterator it2 =
preboundFunctions.find(f->getName());
if (it2 != preboundFunctions.end()) {
// only bind once
if (it2->second) {
executionEngine->addGlobalMapping(f, it2->second);
it2->second = 0;
}
}
#endif
Module *dispatchModule = NULL;
// The MCJIT generates whole modules at a time so for every call that we
// haven't made before we need to create a new Module.
dispatchModule = new Module(getFreshModuleID(), ctx);
dispatcher = createDispatcher(callable, i, dispatchModule);
dispatchers.insert(std::make_pair(i, dispatcher));
// Force the JIT execution engine to go ahead and build the function. This
// ensures that any errors or assertions in the compilation process will
// trigger crashes instead of being caught as aborts in the external
// function.
if (dispatcher) {
// The dispatchModule is now ready so tell MCJIT to generate the code for
// it.
auto dispatchModuleUniq = std::unique_ptr<Module>(dispatchModule);
executionEngine->addModule(
std::move(dispatchModuleUniq)); // MCJIT takes ownership
// Force code generation
uint64_t fnAddr =
executionEngine->getFunctionAddress(dispatcher->getName().str());
executionEngine->finalizeObject();
assert(fnAddr && "failed to get function address");
(void)fnAddr;
} else {
// MCJIT didn't take ownership of the module so delete it.
delete dispatchModule;
}
return runProtectedCall(dispatcher, args);
}
// FIXME: This is not reentrant.
static uint64_t *gTheArgsP;
bool ExternalDispatcherImpl::runProtectedCall(Function *f, uint64_t *args) {
struct sigaction segvAction, segvActionOld;
bool res;
if (!f)
return false;
std::vector<GenericValue> gvArgs;
gTheArgsP = args;
segvAction.sa_handler = nullptr;
sigemptyset(&(segvAction.sa_mask));
sigaddset(&(segvAction.sa_mask), SIGSEGV);
segvAction.sa_flags = SA_SIGINFO;
segvAction.sa_sigaction = ::sigsegv_handler;
sigaction(SIGSEGV, &segvAction, &segvActionOld);
if (sigsetjmp(escapeCallJmpBuf, 1)) {
res = false;
} else {
errno = lastErrno;
executionEngine->runFunction(f, gvArgs);
// Explicitly acquire errno information
lastErrno = errno;
res = true;
}
sigaction(SIGSEGV, &segvActionOld, nullptr);
return res;
}
// FIXME: This might have been relevant for the old JIT but the MCJIT
// has a completly different implementation so this comment below is
// likely irrelevant and misleading.
//
// For performance purposes we construct the stub in such a way that the
// arguments pointer is passed through the static global variable gTheArgsP in
// this file. This is done so that the stub function prototype trivially matches
// the special cases that the JIT knows how to directly call. If this is not
// done, then the jit will end up generating a nullary stub just to call our
// stub, for every single function call.
Function *ExternalDispatcherImpl::createDispatcher(KCallable *target,
Instruction *inst,
Module *module) {
if (isa<KFunction>(target) && !resolveSymbol(target->getName().str()))
return 0;
const CallBase &cb = cast<CallBase>(*inst);
Value **args = new Value *[cb.arg_size()];
std::vector<Type *> nullary;
// MCJIT functions need unique names, or wrong function can be called.
// The module identifier is included because for the MCJIT we need
// unique function names across all `llvm::Modules`s.
std::string fnName =
"dispatcher_" + target->getName().str() + module->getModuleIdentifier();
Function *dispatcher =
Function::Create(FunctionType::get(Type::getVoidTy(ctx), nullary, false),
GlobalVariable::ExternalLinkage, fnName, module);
BasicBlock *dBB = BasicBlock::Create(ctx, "entry", dispatcher);
llvm::IRBuilder<> Builder(dBB);
// Get a Value* for &gTheArgsP, as an i64**.
auto argI64sp = Builder.CreateIntToPtr(
ConstantInt::get(Type::getInt64Ty(ctx), (uintptr_t)(void *)&gTheArgsP),
PointerType::getUnqual(PointerType::getUnqual(Type::getInt64Ty(ctx))),
"argsp");
auto argI64s = Builder.CreateLoad(
argI64sp->getType()->getPointerElementType(), argI64sp, "args");
// Get the target function type.
FunctionType *FTy = cast<FunctionType>(
cast<PointerType>(target->getType())->getElementType());
// Each argument will be passed by writing it into gTheArgsP[i].
unsigned i = 0, idx = 2;
for (auto ai = cb.arg_begin(), ae = cb.arg_end(); ai != ae; ++ai, ++i) {
// Determine the type the argument will be passed as. This accommodates for
// the corresponding code in Executor.cpp for handling calls to bitcasted
// functions.
auto argTy =
(i < FTy->getNumParams() ? FTy->getParamType(i) : (*ai)->getType());
// fp80 must be aligned to 16 according to the System V AMD 64 ABI
if (argTy->isX86_FP80Ty() && idx & 0x01)
idx++;
auto argI64p =
Builder.CreateGEP(argI64s->getType()->getPointerElementType(), argI64s,
ConstantInt::get(Type::getInt32Ty(ctx), idx));
auto argp = Builder.CreateBitCast(argI64p, PointerType::getUnqual(argTy));
args[i] =
Builder.CreateLoad(argp->getType()->getPointerElementType(), argp);
unsigned argSize = argTy->getPrimitiveSizeInBits();
idx += ((!!argSize ? argSize : 64) + 63) / 64;
}
llvm::CallInst *result;
if (auto* func = dyn_cast<KFunction>(target)) {
auto dispatchTarget = module->getOrInsertFunction(target->getName(), FTy,
func->function->getAttributes());
result = Builder.CreateCall(dispatchTarget,
llvm::ArrayRef<Value *>(args, args + i));
} else if (auto* asmValue = dyn_cast<KInlineAsm>(target)) {
result = Builder.CreateCall(asmValue->getInlineAsm(),
llvm::ArrayRef<Value *>(args, args + i));
} else {
assert(0 && "Unhandled KCallable derived class");
}
if (result->getType() != Type::getVoidTy(ctx)) {
auto resp = Builder.CreateBitCast(
argI64s, PointerType::getUnqual(result->getType()));
Builder.CreateStore(result, resp);
}
Builder.CreateRetVoid();
delete[] args;
return dispatcher;
}
int ExternalDispatcherImpl::getLastErrno() { return lastErrno; }
void ExternalDispatcherImpl::setLastErrno(int newErrno) {
lastErrno = newErrno;
}
ExternalDispatcher::ExternalDispatcher(llvm::LLVMContext &ctx)
: impl(new ExternalDispatcherImpl(ctx)) {}
ExternalDispatcher::~ExternalDispatcher() { delete impl; }
bool ExternalDispatcher::executeCall(KCallable *callable,
llvm::Instruction *i, uint64_t *args) {
return impl->executeCall(callable, i, args);
}
void *ExternalDispatcher::resolveSymbol(const std::string &name) {
return impl->resolveSymbol(name);
}
int ExternalDispatcher::getLastErrno() { return impl->getLastErrno(); }
void ExternalDispatcher::setLastErrno(int newErrno) {
impl->setLastErrno(newErrno);
}
}
|