1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
|
//===-- Memory.h ------------------------------------------------*- C++ -*-===//
//
// The KLEE Symbolic Virtual Machine
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef KLEE_MEMORY_H
#define KLEE_MEMORY_H
#include "Context.h"
#include "TimingSolver.h"
#include "klee/Expr/Expr.h"
#include "llvm/ADT/StringExtras.h"
#include <string>
#include <vector>
namespace llvm {
class Value;
}
namespace klee {
class ArrayCache;
class BitArray;
class ExecutionState;
class Executor;
class MemoryManager;
class Solver;
class MemoryObject {
friend class STPBuilder;
friend class ObjectState;
friend class ExecutionState;
friend class ref<MemoryObject>;
friend class ref<const MemoryObject>;
private:
static int counter;
/// @brief Required by klee::ref-managed objects
mutable class ReferenceCounter _refCount;
public:
unsigned id;
uint64_t address;
/// size in bytes
unsigned size;
unsigned alignment;
mutable std::string name;
bool isLocal;
mutable bool isGlobal;
bool isFixed;
bool isUserSpecified;
MemoryManager *parent;
/// "Location" for which this memory object was allocated. This
/// should be either the allocating instruction or the global object
/// it was allocated for (or whatever else makes sense).
const llvm::Value *allocSite;
// DO NOT IMPLEMENT
MemoryObject(const MemoryObject &b);
MemoryObject &operator=(const MemoryObject &b);
public:
// XXX this is just a temp hack, should be removed
explicit
MemoryObject(uint64_t _address)
: id(counter++),
address(_address),
size(0),
alignment(0),
isFixed(true),
parent(NULL),
allocSite(0) {
}
MemoryObject(uint64_t _address, unsigned _size, unsigned _alignment,
bool _isLocal, bool _isGlobal, bool _isFixed,
const llvm::Value *_allocSite,
MemoryManager *_parent)
: id(counter++),
address(_address),
size(_size),
alignment(_alignment),
name("unnamed"),
isLocal(_isLocal),
isGlobal(_isGlobal),
isFixed(_isFixed),
isUserSpecified(false),
parent(_parent),
allocSite(_allocSite) {
}
~MemoryObject();
/// Get an identifying string for this allocation.
void getAllocInfo(std::string &result) const;
void setName(std::string name) const {
this->name = name;
}
ref<ConstantExpr> getBaseExpr() const {
return ConstantExpr::create(address, Context::get().getPointerWidth());
}
ref<ConstantExpr> getSizeExpr() const {
return ConstantExpr::create(size, Context::get().getPointerWidth());
}
ref<Expr> getOffsetExpr(ref<Expr> pointer) const {
return SubExpr::create(pointer, getBaseExpr());
}
ref<Expr> getBoundsCheckPointer(ref<Expr> pointer) const {
return getBoundsCheckOffset(getOffsetExpr(pointer));
}
ref<Expr> getBoundsCheckPointer(ref<Expr> pointer, unsigned bytes) const {
return getBoundsCheckOffset(getOffsetExpr(pointer), bytes);
}
ref<Expr> getBoundsCheckOffset(ref<Expr> offset) const {
if (size==0) {
return EqExpr::create(offset,
ConstantExpr::alloc(0, Context::get().getPointerWidth()));
} else {
return UltExpr::create(offset, getSizeExpr());
}
}
ref<Expr> getBoundsCheckOffset(ref<Expr> offset, unsigned bytes) const {
if (bytes<=size) {
return UltExpr::create(offset,
ConstantExpr::alloc(size - bytes + 1,
Context::get().getPointerWidth()));
} else {
return ConstantExpr::alloc(0, Expr::Bool);
}
}
/// Compare this object with memory object b.
/// \param b memory object to compare with
/// \return <0 if this is smaller, 0 if both are equal, >0 if b is smaller
int compare(const MemoryObject &b) const {
// Short-cut with id
if (id == b.id)
return 0;
if (address != b.address)
return (address < b.address ? -1 : 1);
if (size != b.size)
return (size < b.size ? -1 : 1);
if (allocSite != b.allocSite)
return (allocSite < b.allocSite ? -1 : 1);
return 0;
}
};
class ObjectState {
private:
friend class AddressSpace;
friend class ref<ObjectState>;
unsigned copyOnWriteOwner; // exclusively for AddressSpace
/// @brief Required by klee::ref-managed objects
class ReferenceCounter _refCount;
ref<const MemoryObject> object;
/// @brief Holds all known concrete bytes
uint8_t *concreteStore;
/// @brief concreteMask[byte] is set if byte is known to be concrete
BitArray *concreteMask;
/// knownSymbolics[byte] holds the symbolic expression for byte,
/// if byte is known to be symbolic
ref<Expr> *knownSymbolics;
/// unflushedMask[byte] is set if byte is unflushed
/// mutable because may need flushed during read of const
mutable BitArray *unflushedMask;
// mutable because we may need flush during read of const
mutable UpdateList updates;
public:
unsigned size;
bool readOnly;
public:
/// Create a new object state for the given memory object with concrete
/// contents. The initial contents are undefined, it is the callers
/// responsibility to initialize the object contents appropriately.
ObjectState(const MemoryObject *mo);
/// Create a new object state for the given memory object with symbolic
/// contents.
ObjectState(const MemoryObject *mo, const Array *array);
ObjectState(const ObjectState &os);
~ObjectState();
const MemoryObject *getObject() const { return object.get(); }
void setReadOnly(bool ro) { readOnly = ro; }
/// Make contents all concrete and zero
void initializeToZero();
/// Make contents all concrete and random
void initializeToRandom();
ref<Expr> read(ref<Expr> offset, Expr::Width width) const;
ref<Expr> read(unsigned offset, Expr::Width width) const;
ref<Expr> read8(unsigned offset) const;
void write(unsigned offset, ref<Expr> value);
void write(ref<Expr> offset, ref<Expr> value);
void write8(unsigned offset, uint8_t value);
void write16(unsigned offset, uint16_t value);
void write32(unsigned offset, uint32_t value);
void write64(unsigned offset, uint64_t value);
void print() const;
/// Generate concrete values for each symbolic byte of the object and put them
/// in the concrete store.
///
/// \param executor
/// \param state
/// \param concretize if true, constraints for concretised bytes are added if
/// necessary
void flushToConcreteStore(Executor &executor, ExecutionState &state,
bool concretize);
private:
const UpdateList &getUpdates() const;
void makeConcrete();
void makeSymbolic();
ref<Expr> read8(ref<Expr> offset) const;
void write8(unsigned offset, ref<Expr> value);
void write8(ref<Expr> offset, ref<Expr> value);
void fastRangeCheckOffset(ref<Expr> offset, unsigned *base_r,
unsigned *size_r) const;
void flushRangeForRead(unsigned rangeBase, unsigned rangeSize) const;
void flushRangeForWrite(unsigned rangeBase, unsigned rangeSize);
/// isByteConcrete ==> !isByteKnownSymbolic
bool isByteConcrete(unsigned offset) const;
/// isByteKnownSymbolic ==> !isByteConcrete
bool isByteKnownSymbolic(unsigned offset) const;
/// isByteUnflushed(i) => (isByteConcrete(i) || isByteKnownSymbolic(i))
bool isByteUnflushed(unsigned offset) const;
void markByteConcrete(unsigned offset);
void markByteSymbolic(unsigned offset);
void markByteFlushed(unsigned offset);
void markByteUnflushed(unsigned offset);
void setKnownSymbolic(unsigned offset, Expr *value);
ArrayCache *getArrayCache() const;
};
} // End klee namespace
#endif /* KLEE_MEMORY_H */
|