about summary refs log tree commit diff homepage
path: root/lib/Core/MemoryManager.cpp
blob: 0e47500a6244e50cd89ffdd6ff6e61e3b77ac49e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
//===-- MemoryManager.cpp -------------------------------------------------===//
//
//                     The KLEE Symbolic Virtual Machine
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "MemoryManager.h"

#include "CoreStats.h"
#include "ExecutionState.h"
#include "Memory.h"

#include "klee/Expr/Expr.h"
#include "klee/Support/ErrorHandling.h"

#include "llvm/IR/GlobalVariable.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/MathExtras.h"
#if LLVM_VERSION_CODE >= LLVM_VERSION(10, 0)
#include "llvm/Support/Alignment.h"
#else
#include "llvm/Support/MathExtras.h"
#endif

#include <cinttypes>
#include <algorithm>
#include <sys/mman.h>
#include <tuple>
#include <string>

using namespace klee;

namespace klee {
std::uint32_t MemoryManager::quarantine;

std::size_t MemoryManager::pageSize = sysconf(_SC_PAGE_SIZE);

bool MemoryManager::isDeterministic;
} // namespace klee

namespace {
llvm::cl::OptionCategory MemoryCat("Memory management options",
                                   "These options control memory management.");

llvm::cl::opt<bool, true> DeterministicAllocation(
    "kdalloc",
    llvm::cl::desc("Allocate memory deterministically (default=false)"),
    llvm::cl::location(MemoryManager::isDeterministic), llvm::cl::init(false),
    llvm::cl::cat(MemoryCat));

llvm::cl::opt<bool> DeterministicAllocationMarkAsUnneeded(
    "kdalloc-mark-as-unneeded",
    llvm::cl::desc("Mark allocations as unneeded after external function calls "
                   "(default=true)"),
    llvm::cl::init(true), llvm::cl::cat(MemoryCat));

llvm::cl::opt<unsigned> DeterministicAllocationGlobalsSize(
    "kdalloc-globals-size",
    llvm::cl::desc("Reserved memory for globals in GiB (default=10)"),
    llvm::cl::init(10), llvm::cl::cat(MemoryCat));

llvm::cl::opt<unsigned> DeterministicAllocationConstantsSize(
    "kdalloc-constants-size",
    llvm::cl::desc("Reserved memory for constant globals in GiB (default=10)"),
    llvm::cl::init(10), llvm::cl::cat(MemoryCat));

llvm::cl::opt<unsigned> DeterministicAllocationHeapSize(
    "kdalloc-heap-size",
    llvm::cl::desc("Reserved memory for heap in GiB (default=1024)"),
    llvm::cl::init(1024), llvm::cl::cat(MemoryCat));

llvm::cl::opt<unsigned> DeterministicAllocationStackSize(
    "kdalloc-stack-size",
    llvm::cl::desc("Reserved memory for stack in GiB (default=100)"),
    llvm::cl::init(128), llvm::cl::cat(MemoryCat));

llvm::cl::opt<std::uintptr_t> DeterministicAllocationGlobalsStartAddress(
    "kdalloc-globals-start-address",
    llvm::cl::desc(
        "Start address for globals segment (has to be page aligned)"),
    llvm::cl::cat(MemoryCat));

llvm::cl::opt<std::uintptr_t> DeterministicAllocationConstantsStartAddress(
    "kdalloc-constants-start-address",
    llvm::cl::desc(
        "Start address for constant globals segment (has to be page aligned)"),
    llvm::cl::cat(MemoryCat));

llvm::cl::opt<std::uintptr_t> DeterministicAllocationHeapStartAddress(
    "kdalloc-heap-start-address",
    llvm::cl::desc("Start address for heap segment (has to be page aligned)"),
    llvm::cl::cat(MemoryCat));

llvm::cl::opt<std::uintptr_t> DeterministicAllocationStackStartAddress(
    "kdalloc-stack-start-address",
    llvm::cl::desc("Start address for stack segment (has to be page aligned)"),
    llvm::cl::cat(MemoryCat));

struct QuarantineSizeParser : public llvm::cl::parser<std::uint32_t> {
  explicit QuarantineSizeParser(llvm::cl::Option &O)
      : llvm::cl::parser<std::uint32_t>(O) {}

  bool parse(llvm::cl::Option &O, llvm::StringRef ArgName, llvm::StringRef Arg,
             std::uint32_t &Val) {
    if (Arg == "-1") {
      Val = kdalloc::Allocator::unlimitedQuarantine;
    } else if (Arg.getAsInteger(0, Val)) {
      return O.error("'" + Arg + "' value invalid!");
    }

    return false;
  }
};

llvm::cl::opt<std::uint32_t, true, QuarantineSizeParser>
    DeterministicAllocationQuarantineSize(
        "kdalloc-quarantine",
        llvm::cl::desc("Size of quarantine queues in allocator (default=8, "
                       "disabled=0, unlimited=-1)"),
        llvm::cl::location(klee::MemoryManager::quarantine),
        llvm::cl::value_desc("size"), llvm::cl::init(8),
        llvm::cl::cat(MemoryCat));

llvm::cl::opt<bool> NullOnZeroMalloc(
    "return-null-on-zero-malloc",
    llvm::cl::desc("Returns NULL if malloc(0) is called (default=false)"),
    llvm::cl::init(false), llvm::cl::cat(MemoryCat));
} // namespace

/***/
MemoryManager::MemoryManager(ArrayCache *_arrayCache)
    : arrayCache(_arrayCache) {
  if (DeterministicAllocation) {
    if (DeterministicAllocationQuarantineSize ==
        kdalloc::Allocator::unlimitedQuarantine) {
      klee_message("Deterministic allocator: Using unlimited quarantine");
    } else if (DeterministicAllocationQuarantineSize != 0) {
      klee_message("Deterministic allocator: Using quarantine queue size %u",
                   DeterministicAllocationQuarantineSize.getValue());
    }

    std::vector<std::tuple<std::string,
                           std::uintptr_t, // start address (0 if none
                                           // requested)
                           std::size_t,    // size of segment
                           std::reference_wrapper<kdalloc::AllocatorFactory>,
                           kdalloc::Allocator *>>
        requestedSegments;
    requestedSegments.emplace_back(
        "globals",
        DeterministicAllocationGlobalsStartAddress
            ? DeterministicAllocationGlobalsStartAddress.getValue()
            : 0,
        static_cast<std::size_t>(
            DeterministicAllocationGlobalsSize.getValue()) *
            1024 * 1024 * 1024,
        globalsFactory, &globalsAllocator);
    requestedSegments.emplace_back(
        "constants",
        DeterministicAllocationConstantsStartAddress
            ? DeterministicAllocationConstantsStartAddress.getValue()
            : 0,
        static_cast<std::size_t>(
            DeterministicAllocationConstantsSize.getValue()) *
            1024 * 1024 * 1024,
        constantsFactory, &constantsAllocator);
    requestedSegments.emplace_back(
        "heap",
        DeterministicAllocationHeapStartAddress
            ? DeterministicAllocationHeapStartAddress.getValue()
            : 0,
        static_cast<std::size_t>(DeterministicAllocationHeapSize.getValue()) *
            1024 * 1024 * 1024,
        heapFactory, nullptr);
    requestedSegments.emplace_back(
        "stack",
        DeterministicAllocationStackStartAddress
            ? DeterministicAllocationStackStartAddress.getValue()
            : 0,
        static_cast<std::size_t>(DeterministicAllocationStackSize.getValue()) *
            1024 * 1024 * 1024,
        stackFactory, nullptr);

    // check invariants
#if LLVM_VERSION_CODE >= LLVM_VERSION(10, 0)
    llvm::Align pageAlignment(pageSize);
#endif
    for (auto &requestedSegment : requestedSegments) {
      auto &segment1 = std::get<0>(requestedSegment);
      auto &start1 = std::get<1>(requestedSegment);
      auto &size1 = std::get<2>(requestedSegment);
      // check for page alignment
      // NOTE: sizes are assumed to be page aligned due to multiplication
#if LLVM_VERSION_CODE >= LLVM_VERSION(10, 0)
      if (start1 != 0 && !llvm::isAligned(pageAlignment, start1)) {
        klee_error("Deterministic allocator: Requested start address for %s "
                   "is not page aligned (page size: %zu B)",
                   segment1.c_str(), pageAlignment.value());
      }
#else
      if (start1 != 0 && llvm::OffsetToAlignment(start1, pageSize) != 0) {
        klee_error("Deterministic allocator: Requested start address for %s "
                   "is not page aligned (page size: %zu B)",
                   segment1.c_str(), pageSize);
      }
#endif

      // check for overlap of segments
      std::uintptr_t end1 = start1 + size1;
      for (auto &requestedSegment : requestedSegments) {
        auto &segment2 = std::get<0>(requestedSegment);
        auto &start2 = std::get<1>(requestedSegment);
        auto &size2 = std::get<2>(requestedSegment);
        if (start1 != 0 && start2 != 0 && segment1 != segment2) {
          std::uintptr_t end2 = start2 + size2;
          if (!(end1 <= start2 || start1 >= end2)) {
            klee_error("Deterministic allocator: Requested mapping for %s "
                       "(start-address=0x%" PRIxPTR " size=%zu GiB) "
                       "overlaps with that for %s "
                       "(start-address=0x%" PRIxPTR " size=%zu GiB)",
                       segment1.c_str(), start1, size1 / (1024 * 1024 * 1024),
                       segment2.c_str(), start2, size2 / (1024 * 1024 * 1024));
          }
        }
      }
    }

    // initialize factories and allocators
    for (auto &requestedSegment : requestedSegments) {
      auto &segment = std::get<0>(requestedSegment);
      auto &start = std::get<1>(requestedSegment);
      auto &size = std::get<2>(requestedSegment);
      auto &factory = std::get<3>(requestedSegment);
      auto &allocator = std::get<4>(requestedSegment);
      factory.get() = kdalloc::AllocatorFactory(
          start, size, DeterministicAllocationQuarantineSize);

      if (!factory.get()) {
        klee_error(
            "Deterministic allocator: Could not allocate mapping for %s: %s",
            segment.c_str(), strerror(errno));
      }
      if (start && factory.get().getMapping().getBaseAddress() !=
                       reinterpret_cast<void *>(start)) {
        klee_error("Deterministic allocator: Could not allocate mapping for %s "
                   "at requested address",
                   segment.c_str());
      }
      if (factory.get().getMapping().getSize() != size) {
        klee_error("Deterministic allocator: Could not allocate mapping for %s "
                   "with the requested size",
                   segment.c_str());
      }

      klee_message("Deterministic allocator: %s "
                   "(start-address=0x%" PRIxPTR " size=%zu GiB)",
                   segment.c_str(),
                   reinterpret_cast<std::uintptr_t>(
                       factory.get().getMapping().getBaseAddress()),
                   size / (1024 * 1024 * 1024));
      if (allocator) {
        *allocator = factory.get().makeAllocator();
      }
    }
  }
}

MemoryManager::~MemoryManager() {
  while (!objects.empty()) {
    MemoryObject *mo = *objects.begin();
    if (!mo->isFixed && !DeterministicAllocation)
      free((void *)mo->address);
    objects.erase(mo);
    delete mo;
  }
}

MemoryObject *MemoryManager::allocate(uint64_t size, bool isLocal,
                                      bool isGlobal, ExecutionState *state,
                                      const llvm::Value *allocSite,
                                      size_t alignment) {
  if (size > 10 * 1024 * 1024)
    klee_warning_once(0, "Large alloc: %" PRIu64
                         " bytes.  KLEE may run out of memory.",
                      size);

  // Return NULL if size is zero, this is equal to error during allocation
  if (NullOnZeroMalloc && size == 0)
    return 0;

  if (!llvm::isPowerOf2_64(alignment)) {
    klee_warning("Only alignment of power of two is supported");
    return 0;
  }

  uint64_t address = 0;
  if (DeterministicAllocation) {
    void *allocAddress;

    if (isGlobal) {
      const llvm::GlobalVariable *gv =
          dyn_cast<llvm::GlobalVariable>(allocSite);
      if (isa<llvm::Function>(allocSite) || (gv && gv->isConstant())) {
        allocAddress = constantsAllocator.allocate(
            std::max(size, static_cast<std::uint64_t>(alignment)));
      } else {
        allocAddress = globalsAllocator.allocate(
            std::max(size, static_cast<std::uint64_t>(alignment)));
      }
    } else {
      if (isLocal) {
        allocAddress = state->stackAllocator.allocate(
            std::max(size, static_cast<std::uint64_t>(alignment)));
      } else {
        allocAddress = state->heapAllocator.allocate(
            std::max(size, static_cast<std::uint64_t>(alignment)));
      }
    }

    address = reinterpret_cast<std::uint64_t>(allocAddress);
  } else {
    // Use malloc for the standard case
    if (alignment <= 8)
      address = (uint64_t)malloc(size);
    else {
      int res = posix_memalign((void **)&address, alignment, size);
      if (res < 0) {
        klee_warning("Allocating aligned memory failed.");
        address = 0;
      }
    }
  }

  if (!address)
    return 0;

  ++stats::allocations;
  MemoryObject *res = new MemoryObject(address, size, alignment, isLocal,
                                       isGlobal, false, allocSite, this);
  objects.insert(res);
  return res;
}

MemoryObject *MemoryManager::allocateFixed(uint64_t address, uint64_t size,
                                           const llvm::Value *allocSite) {
#ifndef NDEBUG
  for (objects_ty::iterator it = objects.begin(), ie = objects.end(); it != ie;
       ++it) {
    MemoryObject *mo = *it;
    if (address + size > mo->address && address < mo->address + mo->size)
      klee_error("Trying to allocate an overlapping object");
  }
#endif

  ++stats::allocations;
  MemoryObject *res =
      new MemoryObject(address, size, 0, false, true, true, allocSite, this);
  objects.insert(res);
  return res;
}

void MemoryManager::markFreed(MemoryObject *mo) {
  if (objects.find(mo) != objects.end()) {
    if (!mo->isFixed && !DeterministicAllocation)
      free((void *)mo->address);
    objects.erase(mo);
  }
}

bool MemoryManager::markMappingsAsUnneeded() {
  if (!DeterministicAllocation)
    return false;

  if (!DeterministicAllocationMarkAsUnneeded)
    return false;

  globalsFactory.getMapping().clear();
  heapFactory.getMapping().clear();
  stackFactory.getMapping().clear();

  return true;
}

size_t MemoryManager::getUsedDeterministicSize() {
  // TODO: implement
  return 0;
}