1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
|
//===-- ArrayExprOptimizer.cpp --------------------------------------------===//
//
// The KLEE Symbolic Virtual Machine
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "ArrayExprOptimizer.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <llvm/ADT/APInt.h>
#include <llvm/Support/Casting.h>
#include <llvm/Support/CommandLine.h>
#include <set>
#include "ArrayExprRewriter.h"
#include "ArrayExprVisitor.h"
#include "AssignmentGenerator.h"
#include "klee/Config/Version.h"
#include "klee/ExprBuilder.h"
#include "klee/Internal/Support/ErrorHandling.h"
#include "klee/util/Assignment.h"
#include "klee/util/BitArray.h"
using namespace klee;
namespace klee {
llvm::cl::opt<ArrayOptimizationType> OptimizeArray(
"optimize-array",
llvm::cl::values(
clEnumValN(ALL, "all", "Combining index and value transformations"),
clEnumValN(INDEX, "index", "Index-based transformation"),
clEnumValN(VALUE, "value", "Value-based transformation at branch (both "
"concrete and concrete/symbolic)")
KLEE_LLVM_CL_VAL_END),
llvm::cl::init(NONE),
llvm::cl::desc("Optimize accesses to either concrete or concrete/symbolic "
"arrays. (default=off)"));
llvm::cl::opt<double> ArrayValueRatio(
"array-value-ratio",
llvm::cl::desc("Maximum ratio of unique values to array size for which the "
"value-based transformations are applied."),
llvm::cl::init(1.0), llvm::cl::value_desc("Unique Values / Array Size"));
llvm::cl::opt<double> ArrayValueSymbRatio(
"array-value-symb-ratio",
llvm::cl::desc("Maximum ratio of symbolic values to array size for which "
"the mixed value-based transformations are applied."),
llvm::cl::init(1.0), llvm::cl::value_desc("Symbolic Values / Array Size"));
};
ref<Expr> extendRead(const UpdateList &ul, const ref<Expr> index,
Expr::Width w) {
switch (w) {
default:
assert(0 && "invalid width");
case Expr::Int8:
return ReadExpr::alloc(ul, index);
case Expr::Int16:
return ConcatExpr::create(
ReadExpr::alloc(
ul, AddExpr::create(ConstantExpr::create(1, Expr::Int32), index)),
ReadExpr::alloc(ul, index));
case Expr::Int32:
return ConcatExpr::create4(
ReadExpr::alloc(
ul, AddExpr::create(ConstantExpr::create(3, Expr::Int32), index)),
ReadExpr::alloc(
ul, AddExpr::create(ConstantExpr::create(2, Expr::Int32), index)),
ReadExpr::alloc(
ul, AddExpr::create(ConstantExpr::create(1, Expr::Int32), index)),
ReadExpr::alloc(ul, index));
case Expr::Int64:
return ConcatExpr::create8(
ReadExpr::alloc(
ul, AddExpr::create(ConstantExpr::create(7, Expr::Int32), index)),
ReadExpr::alloc(
ul, AddExpr::create(ConstantExpr::create(6, Expr::Int32), index)),
ReadExpr::alloc(
ul, AddExpr::create(ConstantExpr::create(5, Expr::Int32), index)),
ReadExpr::alloc(
ul, AddExpr::create(ConstantExpr::create(4, Expr::Int32), index)),
ReadExpr::alloc(
ul, AddExpr::create(ConstantExpr::create(3, Expr::Int32), index)),
ReadExpr::alloc(
ul, AddExpr::create(ConstantExpr::create(2, Expr::Int32), index)),
ReadExpr::alloc(
ul, AddExpr::create(ConstantExpr::create(1, Expr::Int32), index)),
ReadExpr::alloc(ul, index));
}
}
ref<Expr> ExprOptimizer::optimizeExpr(const ref<Expr> &e, bool valueOnly) {
// Nothing to optimise for constant expressions
if (isa<ConstantExpr>(e))
return e;
// If no is optimization enabled, return early avoid cache lookup
if (OptimizeArray == NONE)
return e;
unsigned hash = e->hash();
if (cacheExprUnapplicable.find(hash) != cacheExprUnapplicable.end())
return e;
// Find cached expressions
auto cached = cacheExprOptimized.find(hash);
if (cached != cacheExprOptimized.end())
return cached->second;
ref<Expr> result;
// ----------------------- INDEX-BASED OPTIMIZATION -------------------------
if (!valueOnly && (OptimizeArray == ALL || OptimizeArray == INDEX)) {
array2idx_ty arrays;
ConstantArrayExprVisitor aev(arrays);
aev.visit(e);
if (arrays.empty() || aev.isIncompatible()) {
// We do not optimize expressions other than those with concrete
// arrays with a symbolic index
// If we cannot optimize the expression, we return a failure only
// when we are not combining the optimizations
if (OptimizeArray == INDEX) {
cacheExprUnapplicable.insert(hash);
return e;
}
} else {
mapIndexOptimizedExpr_ty idx_valIdx;
// Compute those indexes s.t. orig_expr =equisat= (k==i|k==j|..)
if (computeIndexes(arrays, e, idx_valIdx)) {
if (!idx_valIdx.empty()) {
// Create new expression on indexes
result = ExprRewriter::createOptExpr(e, arrays, idx_valIdx);
} else {
klee_warning("OPT_I: infeasible branch!");
result = ConstantExpr::create(0, Expr::Bool);
}
// Add new expression to cache
if (result.get()) {
klee_warning("OPT_I: successful");
cacheExprOptimized[hash] = result;
} else {
klee_warning("OPT_I: unsuccessful");
}
} else {
klee_warning("OPT_I: unsuccessful");
cacheExprUnapplicable.insert(hash);
}
}
}
// ----------------------- VALUE-BASED OPTIMIZATION -------------------------
if (OptimizeArray == VALUE ||
(OptimizeArray == ALL && (!result.get() || valueOnly))) {
std::vector<const ReadExpr *> reads;
std::map<const ReadExpr *, std::pair<unsigned, Expr::Width>> readInfo;
ArrayReadExprVisitor are(reads, readInfo);
are.visit(e);
std::reverse(reads.begin(), reads.end());
if (reads.empty() || are.isIncompatible()) {
cacheExprUnapplicable.insert(hash);
return e;
}
ref<Expr> selectOpt =
getSelectOptExpr(e, reads, readInfo, are.containsSymbolic());
if (selectOpt.get()) {
klee_warning("OPT_V: successful");
result = selectOpt;
cacheExprOptimized[hash] = result;
} else {
klee_warning("OPT_V: unsuccessful");
cacheExprUnapplicable.insert(hash);
}
}
if (result.isNull())
return e;
return result;
}
bool ExprOptimizer::computeIndexes(array2idx_ty &arrays, const ref<Expr> &e,
mapIndexOptimizedExpr_ty &idx_valIdx) const {
bool success = false;
// For each constant array found
for (auto &element : arrays) {
const Array *arr = element.first;
assert(arr->isConstantArray() && "Array is not concrete");
assert(element.second.size() == 1 && "Multiple indexes on the same array");
IndexTransformationExprVisitor idxt_v(arr);
idxt_v.visit(e);
assert((idxt_v.getWidth() % arr->range == 0) && "Read is not aligned");
Expr::Width width = idxt_v.getWidth() / arr->range;
if (idxt_v.getMul().get()) {
// If we have a MulExpr in the index, we can optimize our search by
// skipping all those indexes that are not multiple of such value.
// In fact, they will be rejected by the MulExpr interpreter since it
// will not find any integer solution
auto e = idxt_v.getMul();
auto ce = dyn_cast<ConstantExpr>(e);
assert(ce && "Not a constant expression");
uint64_t mulVal = (*ce->getAPValue().getRawData());
// So far we try to limit this optimization, but we may try some more
// aggressive conditions (i.e. mulVal > width)
if (width == 1 && mulVal > 1)
width = mulVal;
}
// For each concrete value 'i' stored in the array
for (size_t aIdx = 0; aIdx < arr->constantValues.size(); aIdx += width) {
auto *a = new Assignment();
std::vector<const Array *> objects;
std::vector<std::vector<unsigned char>> values;
// For each symbolic index Expr(k) found
for (auto &index_it : element.second) {
ref<Expr> idx = index_it;
ref<Expr> val = ConstantExpr::alloc(aIdx, arr->getDomain());
// We create a partial assignment on 'k' s.t. Expr(k)==i
bool assignmentSuccess =
AssignmentGenerator::generatePartialAssignment(idx, val, a);
success |= assignmentSuccess;
// If the assignment satisfies both the expression 'e' and the PC
ref<Expr> evaluation = a->evaluate(e);
if (assignmentSuccess && evaluation->isTrue()) {
if (idx_valIdx.find(idx) == idx_valIdx.end()) {
idx_valIdx.insert(std::make_pair(idx, std::vector<ref<Expr>>()));
}
idx_valIdx[idx].emplace_back(
ConstantExpr::alloc(aIdx, arr->getDomain()));
}
}
delete a;
}
}
return success;
}
ref<Expr> ExprOptimizer::getSelectOptExpr(
const ref<Expr> &e, std::vector<const ReadExpr *> &reads,
std::map<const ReadExpr *, std::pair<unsigned, Expr::Width>> &readInfo,
bool isSymbolic) {
ref<Expr> notFound;
ref<Expr> toReturn;
// Array is concrete
if (!isSymbolic) {
std::map<unsigned, ref<Expr>> optimized;
for (auto &read : reads) {
auto info = readInfo[read];
auto cached = cacheReadExprOptimized.find(read->hash());
if (cached != cacheReadExprOptimized.end()) {
optimized.insert(std::make_pair(info.first, (*cached).second));
continue;
}
Expr::Width width = read->getWidth();
if (info.second > width) {
width = info.second;
}
unsigned size = read->updates.root->getSize();
unsigned bytesPerElement = width / 8;
unsigned elementsInArray = size / bytesPerElement;
// Note: we already filtered the ReadExpr, so here we can safely
// assume that the UpdateNodes contain ConstantExpr indexes and values
assert(read->updates.root->isConstantArray() &&
"Expected concrete array, found symbolic array");
auto arrayConstValues = read->updates.root->constantValues;
for (const UpdateNode *un = read->updates.head; un; un = un->next) {
auto ce = dyn_cast<ConstantExpr>(un->index);
assert(ce && "Not a constant expression");
uint64_t index = ce->getAPValue().getZExtValue();
assert(index < arrayConstValues.size());
auto arrayValue = dyn_cast<ConstantExpr>(un->value);
assert(arrayValue && "Not a constant expression");
arrayConstValues[index] = arrayValue;
}
std::vector<uint64_t> arrayValues;
// Get the concrete values from the array
for (unsigned i = 0; i < elementsInArray; i++) {
uint64_t val = 0;
for (unsigned j = 0; j < bytesPerElement; j++) {
val |= (*(
arrayConstValues[(i * bytesPerElement) + j]
.get()
->getAPValue()
.getRawData())
<< (j * 8));
}
arrayValues.push_back(val);
}
ref<Expr> index = read->index;
IndexCleanerVisitor ice;
ice.visit(index);
if (ice.getIndex().get()) {
index = ice.getIndex();
}
ref<Expr> opt =
buildConstantSelectExpr(index, arrayValues, width, elementsInArray);
if (opt.get()) {
cacheReadExprOptimized[read->hash()] = opt;
optimized.insert(std::make_pair(info.first, opt));
}
}
ArrayValueOptReplaceVisitor replacer(optimized);
toReturn = replacer.visit(e);
}
// Array is mixed concrete/symbolic
// \pre: array is concrete && updatelist contains at least one symbolic value
// OR
// array is symbolic && updatelist contains at least one concrete value
else {
std::map<unsigned, ref<Expr>> optimized;
for (auto &read : reads) {
auto info = readInfo[read];
auto cached = cacheReadExprOptimized.find(read->hash());
if (cached != cacheReadExprOptimized.end()) {
optimized.insert(std::make_pair(info.first, (*cached).second));
continue;
}
Expr::Width width = read->getWidth();
if (info.second > width) {
width = info.second;
}
unsigned size = read->updates.root->getSize();
unsigned bytesPerElement = width / 8;
unsigned elementsInArray = size / bytesPerElement;
bool symbArray = read->updates.root->isSymbolicArray();
BitArray ba(size, symbArray);
// Note: we already filtered the ReadExpr, so here we can safely
// assume that the UpdateNodes contain ConstantExpr indexes, but in
// this case we *cannot* assume anything on the values
auto arrayConstValues = read->updates.root->constantValues;
if (arrayConstValues.size() < size) {
// We need to "force" initialization of the values
for (size_t i = arrayConstValues.size(); i < size; i++) {
arrayConstValues.push_back(ConstantExpr::create(0, Expr::Int8));
}
}
for (const UpdateNode *un = read->updates.head; un; un = un->next) {
auto ce = dyn_cast<ConstantExpr>(un->index);
assert(ce && "Not a constant expression");
uint64_t index = ce->getAPValue().getLimitedValue();
if (!isa<ConstantExpr>(un->value)) {
ba.set(index);
} else {
ba.unset(index);
auto arrayValue =
dyn_cast<ConstantExpr>(un->value);
assert(arrayValue && "Not a constant expression");
arrayConstValues[index] = arrayValue;
}
}
std::vector<std::pair<uint64_t, bool>> arrayValues;
unsigned symByteNum = 0;
for (unsigned i = 0; i < elementsInArray; i++) {
uint64_t val = 0;
bool elementIsConcrete = true;
for (unsigned j = 0; j < bytesPerElement; j++) {
if (ba.get((i * bytesPerElement) + j)) {
elementIsConcrete = false;
break;
} else {
val |= (*(
arrayConstValues[(i * bytesPerElement) + j]
.get()
->getAPValue()
.getRawData())
<< (j * 8));
}
}
if (elementIsConcrete) {
arrayValues.emplace_back(val, true);
} else {
symByteNum++;
arrayValues.emplace_back(0, false);
}
}
if (((double)symByteNum / (double)elementsInArray) <=
ArrayValueSymbRatio) {
// If the optimization can be applied we apply it
// Build the dynamic select expression
ref<Expr> opt =
buildMixedSelectExpr(read, arrayValues, width, elementsInArray);
if (opt.get()) {
cacheReadExprOptimized[read->hash()] = opt;
optimized.insert(std::make_pair(info.first, opt));
}
}
}
ArrayValueOptReplaceVisitor replacer(optimized, false);
toReturn = replacer.visit(e);
}
return toReturn.get() ? toReturn : notFound;
}
ref<Expr> ExprOptimizer::buildConstantSelectExpr(
const ref<Expr> &index, std::vector<uint64_t> &arrayValues,
Expr::Width width, unsigned arraySize) const {
std::vector<std::pair<uint64_t, uint64_t>> ranges;
std::vector<uint64_t> values;
std::set<uint64_t> unique_array_values;
ExprBuilder *builder = createDefaultExprBuilder();
Expr::Width valWidth = width;
ref<Expr> result;
ref<Expr> actualIndex;
if (index->getWidth() > Expr::Int32) {
actualIndex = ExtractExpr::alloc(index, 0, Expr::Int32);
} else {
actualIndex = index;
}
Expr::Width idxWidth = actualIndex->getWidth();
// Calculate the repeating values ranges in the constant array
unsigned curr_idx = 0;
uint64_t curr_val = arrayValues[0];
for (unsigned i = 0; i < arraySize; i++) {
uint64_t temp = arrayValues[i];
unique_array_values.insert(curr_val);
if (temp != curr_val) {
ranges.emplace_back(curr_idx, i);
values.push_back(curr_val);
curr_val = temp;
curr_idx = i;
if (i == (arraySize - 1)) {
ranges.emplace_back(curr_idx, i + 1);
values.push_back(curr_val);
}
} else if (i == (arraySize - 1)) {
ranges.emplace_back(curr_idx, i + 1);
values.push_back(curr_val);
}
}
if (((double)unique_array_values.size() / (double)(arraySize)) >=
ArrayValueRatio) {
return result;
}
std::map<uint64_t, std::vector<std::pair<uint64_t, uint64_t>>> exprMap;
for (size_t i = 0; i < ranges.size(); i++) {
if (exprMap.find(values[i]) != exprMap.end()) {
exprMap[values[i]].emplace_back(ranges[i].first, ranges[i].second);
} else {
if (exprMap.find(values[i]) == exprMap.end()) {
exprMap.insert(std::make_pair(
values[i], std::vector<std::pair<uint64_t, uint64_t>>()));
}
exprMap.find(values[i])->second.emplace_back(ranges[i].first,
ranges[i].second);
}
}
int ct = 0;
// For each range appropriately build the Select expression.
for (auto range : exprMap) {
ref<Expr> temp;
if (ct == 0) {
temp = builder->Constant(llvm::APInt(valWidth, range.first, false));
} else {
if (range.second.size() == 1) {
if (range.second[0].first == (range.second[0].second - 1)) {
temp = SelectExpr::create(
EqExpr::create(actualIndex,
builder->Constant(llvm::APInt(
idxWidth, range.second[0].first, false))),
builder->Constant(llvm::APInt(valWidth, range.first, false)),
result);
} else {
temp = SelectExpr::create(
AndExpr::create(
SgeExpr::create(actualIndex,
builder->Constant(llvm::APInt(
idxWidth, range.second[0].first, false))),
SltExpr::create(
actualIndex,
builder->Constant(llvm::APInt(
idxWidth, range.second[0].second, false)))),
builder->Constant(llvm::APInt(valWidth, range.first, false)),
result);
}
} else {
ref<Expr> currOr;
if (range.second[0].first == (range.second[0].second - 1)) {
currOr = EqExpr::create(actualIndex,
builder->Constant(llvm::APInt(
idxWidth, range.second[0].first, false)));
} else {
currOr = AndExpr::create(
SgeExpr::create(actualIndex,
builder->Constant(llvm::APInt(
idxWidth, range.second[0].first, false))),
SltExpr::create(actualIndex,
builder->Constant(llvm::APInt(
idxWidth, range.second[0].second, false))));
}
for (size_t i = 1; i < range.second.size(); i++) {
ref<Expr> tempOr;
if (range.second[i].first == (range.second[i].second - 1)) {
tempOr = OrExpr::create(
EqExpr::create(actualIndex,
builder->Constant(llvm::APInt(
idxWidth, range.second[i].first, false))),
currOr);
} else {
tempOr = OrExpr::create(
AndExpr::create(
SgeExpr::create(
actualIndex,
builder->Constant(llvm::APInt(
idxWidth, range.second[i].first, false))),
SltExpr::create(
actualIndex,
builder->Constant(llvm::APInt(
idxWidth, range.second[i].second, false)))),
currOr);
}
currOr = tempOr;
}
temp = SelectExpr::create(currOr, builder->Constant(llvm::APInt(
valWidth, range.first, false)),
result);
}
}
result = temp;
ct++;
}
delete (builder);
return result;
}
ref<Expr> ExprOptimizer::buildMixedSelectExpr(
const ReadExpr *re, std::vector<std::pair<uint64_t, bool>> &arrayValues,
Expr::Width width, unsigned elementsInArray) const {
ExprBuilder *builder = createDefaultExprBuilder();
std::vector<uint64_t> values;
std::vector<std::pair<uint64_t, uint64_t>> ranges;
std::vector<uint64_t> holes;
std::set<uint64_t> unique_array_values;
unsigned arraySize = elementsInArray;
unsigned curr_idx = 0;
uint64_t curr_val = arrayValues[0].first;
bool emptyRange = true;
// Calculate Range values
for (size_t i = 0; i < arrayValues.size(); i++) {
// If the value is concrete
if (arrayValues[i].second) {
// The range contains a concrete value
emptyRange = false;
uint64_t temp = arrayValues[i].first;
unique_array_values.insert(temp);
if (temp != curr_val) {
ranges.emplace_back(curr_idx, i);
values.push_back(curr_val);
curr_val = temp;
curr_idx = i;
if (i == (arraySize - 1)) {
ranges.emplace_back(curr_idx, curr_idx + 1);
values.push_back(curr_val);
}
} else if (i == (arraySize - 1)) {
ranges.emplace_back(curr_idx, i + 1);
values.push_back(curr_val);
}
} else {
holes.push_back(i);
// If this is not an empty range
if (!emptyRange) {
ranges.emplace_back(curr_idx, i);
values.push_back(curr_val);
}
curr_val = arrayValues[i + 1].first;
curr_idx = i + 1;
emptyRange = true;
}
}
assert(!unique_array_values.empty() && "No unique values");
assert(!ranges.empty() && "No ranges");
ref<Expr> result;
if (((double)unique_array_values.size() / (double)(arraySize)) <=
ArrayValueRatio) {
// The final "else" expression will be the original unoptimized array read
// expression
unsigned range_start = 0;
if (holes.empty()) {
result = builder->Constant(llvm::APInt(width, values[0], false));
range_start = 1;
} else {
ref<Expr> firstIndex = MulExpr::create(
ConstantExpr::create(holes[0], re->index->getWidth()),
ConstantExpr::create(width / 8, re->index->getWidth()));
result = extendRead(re->updates, firstIndex, width);
for (size_t i = 1; i < holes.size(); i++) {
ref<Expr> temp_idx = MulExpr::create(
ConstantExpr::create(holes[i], re->index->getWidth()),
ConstantExpr::create(width / 8, re->index->getWidth()));
ref<Expr> cond = EqExpr::create(
re->index, ConstantExpr::create(holes[i], re->index->getWidth()));
ref<Expr> temp = SelectExpr::create(
cond, extendRead(re->updates, temp_idx, width), result);
result = temp;
}
}
ref<Expr> new_index = re->index;
IndexCleanerVisitor ice;
ice.visit(new_index);
if (ice.getIndex().get()) {
new_index = ice.getIndex();
}
int new_index_width = new_index->getWidth();
// Iterate through all the ranges
for (size_t i = range_start; i < ranges.size(); i++) {
ref<Expr> temp;
if (ranges[i].second - 1 == ranges[i].first) {
ref<Expr> cond = EqExpr::create(
new_index, ConstantExpr::create(ranges[i].first, new_index_width));
ref<Expr> t = ConstantExpr::create(values[i], width);
ref<Expr> f = result;
temp = SelectExpr::create(cond, t, f);
} else {
// Create the select constraint
ref<Expr> cond = AndExpr::create(
SgeExpr::create(new_index, ConstantExpr::create(ranges[i].first,
new_index_width)),
SltExpr::create(new_index, ConstantExpr::create(ranges[i].second,
new_index_width)));
ref<Expr> t = ConstantExpr::create(values[i], width);
ref<Expr> f = result;
temp = SelectExpr::create(cond, t, f);
}
result = temp;
}
}
delete (builder);
return result;
}
|