1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
|
//===-- ArrayExprVisitor.cpp ----------------------------------------------===//
//
// The KLEE Symbolic Virtual Machine
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "klee/Expr/ArrayExprVisitor.h"
#include "klee/Support/ErrorHandling.h"
#include <algorithm>
using namespace klee;
//------------------------------ HELPER FUNCTIONS ---------------------------//
bool ArrayExprHelper::isReadExprAtOffset(ref<Expr> e, const ReadExpr *base,
ref<Expr> offset) {
const ReadExpr *re = dyn_cast<ReadExpr>(e.get());
if (!re || (re->getWidth() != Expr::Int8))
return false;
return SubExpr::create(re->index, base->index) == offset;
}
ReadExpr *ArrayExprHelper::hasOrderedReads(const ConcatExpr &ce) {
const ReadExpr *base = dyn_cast<ReadExpr>(ce.getKid(0));
// right now, all Reads are byte reads but some
// transformations might change this
if (!base || base->getWidth() != Expr::Int8)
return nullptr;
// Get stride expr in proper index width.
Expr::Width idxWidth = base->index->getWidth();
ref<Expr> strideExpr = ConstantExpr::alloc(-1, idxWidth);
ref<Expr> offset = ConstantExpr::create(0, idxWidth);
ref<Expr> e = ce.getKid(1);
// concat chains are unbalanced to the right
while (e->getKind() == Expr::Concat) {
offset = AddExpr::create(offset, strideExpr);
if (!isReadExprAtOffset(e->getKid(0), base, offset))
return nullptr;
e = e->getKid(1);
}
offset = AddExpr::create(offset, strideExpr);
if (!isReadExprAtOffset(e, base, offset))
return nullptr;
return cast<ReadExpr>(e.get());
}
//--------------------------- INDEX-BASED OPTIMIZATION-----------------------//
ExprVisitor::Action
ConstantArrayExprVisitor::visitConcat(const ConcatExpr &ce) {
ReadExpr *base = ArrayExprHelper::hasOrderedReads(ce);
return base ? visitRead(*base) : Action::doChildren();
}
ExprVisitor::Action ConstantArrayExprVisitor::visitRead(const ReadExpr &re) {
// It is an interesting ReadExpr if it contains a concrete array
// that is read at a symbolic index
if (re.updates.root->isConstantArray() && !isa<ConstantExpr>(re.index)) {
for (const auto *un = re.updates.head.get(); un; un = un->next.get()) {
if (!isa<ConstantExpr>(un->index) || !isa<ConstantExpr>(un->value)) {
incompatible = true;
return Action::skipChildren();
}
}
IndexCompatibilityExprVisitor compatible;
compatible.visit(re.index);
if (compatible.isCompatible()) {
if (arrays.count(re.updates.root) > 0) {
const auto &indices = arrays[re.updates.root];
if (!indices.empty() && indices.front() != re.index) {
// Another possible index to resolve, currently unsupported
incompatible = true;
return Action::skipChildren();
}
}
arrays[re.updates.root].push_back(re.index);
} else if (compatible.hasInnerReads()) {
// This Read has an inner Read, we want to optimize the inner one
// to create a cascading effect during assignment evaluation
return Action::doChildren();
}
return Action::skipChildren();
} else if (re.updates.root->isSymbolicArray()) {
incompatible = true;
}
return Action::doChildren();
}
ExprVisitor::Action
IndexCompatibilityExprVisitor::visitRead(const ReadExpr &re) {
if (re.updates.head) {
compatible = false;
return Action::skipChildren();
} else if (re.updates.root->isConstantArray() &&
!isa<ConstantExpr>(re.index)) {
compatible = false;
inner = true;
return Action::skipChildren();
}
return Action::doChildren();
}
ExprVisitor::Action IndexCompatibilityExprVisitor::visitURem(const URemExpr &) {
compatible = false;
return Action::skipChildren();
}
ExprVisitor::Action IndexCompatibilityExprVisitor::visitSRem(const SRemExpr &) {
compatible = false;
return Action::skipChildren();
}
ExprVisitor::Action IndexCompatibilityExprVisitor::visitOr(const OrExpr &) {
compatible = false;
return Action::skipChildren();
}
ExprVisitor::Action
IndexTransformationExprVisitor::visitConcat(const ConcatExpr &ce) {
if (ReadExpr *re = dyn_cast<ReadExpr>(ce.getKid(0))) {
if (re->updates.root->hash() == array->hash() && width < ce.getWidth()) {
if (width == Expr::InvalidWidth)
width = ce.getWidth();
}
} else if (ReadExpr *re = dyn_cast<ReadExpr>(ce.getKid(1))) {
if (re->updates.root->hash() == array->hash() && width < ce.getWidth()) {
if (width == Expr::InvalidWidth)
width = ce.getWidth();
}
}
return Action::doChildren();
}
ExprVisitor::Action IndexTransformationExprVisitor::visitMul(const MulExpr &e) {
if (isa<ConstantExpr>(e.getKid(0)))
mul = e.getKid(0);
else if (isa<ConstantExpr>(e.getKid(0)))
mul = e.getKid(1);
return Action::doChildren();
}
//-------------------------- VALUE-BASED OPTIMIZATION------------------------//
ExprVisitor::Action ArrayReadExprVisitor::visitConcat(const ConcatExpr &ce) {
ReadExpr *base = ArrayExprHelper::hasOrderedReads(ce);
if (base) {
return inspectRead(const_cast<ConcatExpr *>(&ce), ce.getWidth(), *base);
}
return Action::doChildren();
}
ExprVisitor::Action ArrayReadExprVisitor::visitRead(const ReadExpr &re) {
return inspectRead(const_cast<ReadExpr *>(&re), re.getWidth(), re);
}
// This method is a mess because I want to avoid looping over the UpdateList
// values twice
ExprVisitor::Action ArrayReadExprVisitor::inspectRead(ref<Expr> hash,
Expr::Width width,
const ReadExpr &re) {
// pre(*): index is symbolic
if (!isa<ConstantExpr>(re.index)) {
if (readInfo.find(&re) == readInfo.end()) {
if (re.updates.root->isSymbolicArray() && !re.updates.head) {
return Action::doChildren();
}
if (re.updates.head) {
// Check preconditions on UpdateList nodes
bool hasConcreteValues = false;
for (const auto *un = re.updates.head.get(); un; un = un->next.get()) {
// Symbolic case - \inv(update): index is concrete
if (!isa<ConstantExpr>(un->index)) {
incompatible = true;
break;
} else if (!isa<ConstantExpr>(un->value)) {
// We tell the optimization that there is a symbolic value,
// otherwise we rely on the concrete optimization procedure
symbolic = true;
} else if (re.updates.root->isSymbolicArray() &&
isa<ConstantExpr>(un->value)) {
// We can optimize symbolic array, but only if they have
// at least one concrete value
hasConcreteValues = true;
}
}
// Symbolic case - if array is symbolic, then we need at least one
// concrete value
if (re.updates.root->isSymbolicArray()) {
if (hasConcreteValues)
symbolic = true;
else
incompatible = true;
}
if (incompatible)
return Action::skipChildren();
}
symbolic |= re.updates.root->isSymbolicArray();
reads.push_back(&re);
readInfo.emplace(&re, std::make_pair(hash, width));
}
return Action::skipChildren();
}
return Action::doChildren();
}
ExprVisitor::Action
ArrayValueOptReplaceVisitor::visitConcat(const ConcatExpr &ce) {
auto found = optimized.find(const_cast<ConcatExpr *>(&ce));
if (found != optimized.end()) {
return Action::changeTo((*found).second.get());
}
return Action::doChildren();
}
ExprVisitor::Action ArrayValueOptReplaceVisitor::visitRead(const ReadExpr &re) {
auto found = optimized.find(const_cast<ReadExpr *>(&re));
if (found != optimized.end()) {
return Action::changeTo((*found).second.get());
}
return Action::doChildren();
}
|