1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
|
//===-- KModule.cpp -------------------------------------------------------===//
//
// The KLEE Symbolic Virtual Machine
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// FIXME: This does not belong here.
#include "../Core/Common.h"
#include "klee/Internal/Module/KModule.h"
#include "Passes.h"
#include "klee/Interpreter.h"
#include "klee/Internal/Module/Cell.h"
#include "klee/Internal/Module/KInstruction.h"
#include "klee/Internal/Module/InstructionInfoTable.h"
#include "klee/Internal/Support/ModuleUtil.h"
#include "llvm/Bitcode/ReaderWriter.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/PassManager.h"
#include "llvm/ValueSymbolTable.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/System/Path.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Transforms/Scalar.h"
#include <sstream>
using namespace llvm;
using namespace klee;
namespace {
enum SwitchImplType {
eSwitchTypeSimple,
eSwitchTypeLLVM,
eSwitchTypeInternal
};
cl::list<std::string>
MergeAtExit("merge-at-exit");
cl::opt<bool>
NoTruncateSourceLines("no-truncate-source-lines",
cl::desc("Don't truncate long lines in the output source"));
cl::opt<bool>
OutputSource("output-source",
cl::desc("Write the assembly for the final transformed source"),
cl::init(true));
cl::opt<bool>
OutputModule("output-module",
cl::desc("Write the bitcode for the final transformed module"),
cl::init(false));
cl::opt<SwitchImplType>
SwitchType("switch-type", cl::desc("Select the implementation of switch"),
cl::values(clEnumValN(eSwitchTypeSimple, "simple",
"lower to ordered branches"),
clEnumValN(eSwitchTypeLLVM, "llvm",
"lower using LLVM"),
clEnumValN(eSwitchTypeInternal, "internal",
"execute switch internally"),
clEnumValEnd),
cl::init(eSwitchTypeInternal));
cl::opt<bool>
DebugPrintEscapingFunctions("debug-print-escaping-functions",
cl::desc("Print functions whose address is taken."));
}
KModule::KModule(Module *_module)
: module(_module),
targetData(new TargetData(module)),
dbgStopPointFn(0),
kleeMergeFn(0),
infos(0),
constantTable(0) {
}
KModule::~KModule() {
delete[] constantTable;
delete infos;
for (std::vector<KFunction*>::iterator it = functions.begin(),
ie = functions.end(); it != ie; ++it)
delete *it;
delete targetData;
delete module;
}
/***/
namespace llvm {
extern void Optimize(Module*);
}
// what a hack
static Function *getStubFunctionForCtorList(Module *m,
GlobalVariable *gv,
std::string name) {
assert(!gv->isDeclaration() && !gv->hasInternalLinkage() &&
"do not support old LLVM style constructor/destructor lists");
std::vector<const Type*> nullary;
Function *fn = Function::Create(FunctionType::get(Type::VoidTy,
nullary, false),
GlobalVariable::InternalLinkage,
name,
m);
BasicBlock *bb = BasicBlock::Create("entry", fn);
// From lli:
// Should be an array of '{ int, void ()* }' structs. The first value is
// the init priority, which we ignore.
ConstantArray *arr = dyn_cast<ConstantArray>(gv->getInitializer());
if (arr) {
for (unsigned i=0; i<arr->getNumOperands(); i++) {
ConstantStruct *cs = cast<ConstantStruct>(arr->getOperand(i));
assert(cs->getNumOperands()==2 && "unexpected element in ctor initializer list");
Constant *fp = cs->getOperand(1);
if (!fp->isNullValue()) {
if (llvm::ConstantExpr *ce = dyn_cast<llvm::ConstantExpr>(fp))
fp = ce->getOperand(0);
if (Function *f = dyn_cast<Function>(fp)) {
CallInst::Create(f, "", bb);
} else {
assert(0 && "unable to get function pointer from ctor initializer list");
}
}
}
}
ReturnInst::Create(bb);
return fn;
}
static void injectStaticConstructorsAndDestructors(Module *m) {
GlobalVariable *ctors = m->getNamedGlobal("llvm.global_ctors");
GlobalVariable *dtors = m->getNamedGlobal("llvm.global_dtors");
if (ctors || dtors) {
Function *mainFn = m->getFunction("main");
assert(mainFn && "unable to find main function");
if (ctors)
CallInst::Create(getStubFunctionForCtorList(m, ctors, "klee.ctor_stub"),
"", mainFn->begin()->begin());
if (dtors) {
Function *dtorStub = getStubFunctionForCtorList(m, dtors, "klee.dtor_stub");
for (Function::iterator it = mainFn->begin(), ie = mainFn->end();
it != ie; ++it) {
if (isa<ReturnInst>(it->getTerminator()))
CallInst::Create(dtorStub, "", it->getTerminator());
}
}
}
}
static void forceImport(Module *m, const char *name, const Type *retType, ...) {
// If module lacks an externally visible symbol for the name then we
// need to create one. We have to look in the symbol table because
// we want to check everything (global variables, functions, and
// aliases).
Value *v = m->getValueSymbolTable().lookup(name);
GlobalValue *gv = dyn_cast_or_null<GlobalValue>(v);
if (!gv || gv->hasInternalLinkage()) {
va_list ap;
va_start(ap, retType);
std::vector<const Type *> argTypes;
while (const Type *t = va_arg(ap, const Type*))
argTypes.push_back(t);
va_end(ap);
m->getOrInsertFunction(name, FunctionType::get(retType, argTypes, false));
}
}
void KModule::prepare(const Interpreter::ModuleOptions &opts,
InterpreterHandler *ih) {
if (!MergeAtExit.empty()) {
Function *mergeFn = module->getFunction("klee_merge");
if (!mergeFn) {
const llvm::FunctionType *Ty =
FunctionType::get(Type::VoidTy, std::vector<const Type*>(), false);
mergeFn = Function::Create(Ty, GlobalVariable::ExternalLinkage,
"klee_merge",
module);
}
for (cl::list<std::string>::iterator it = MergeAtExit.begin(),
ie = MergeAtExit.end(); it != ie; ++it) {
std::string &name = *it;
Function *f = module->getFunction(name);
if (!f) {
klee_error("cannot insert merge-at-exit for: %s (cannot find)",
name.c_str());
} else if (f->isDeclaration()) {
klee_error("cannot insert merge-at-exit for: %s (external)",
name.c_str());
}
BasicBlock *exit = BasicBlock::Create("exit", f);
PHINode *result = 0;
if (f->getReturnType() != Type::VoidTy)
result = PHINode::Create(f->getReturnType(), "retval", exit);
CallInst::Create(mergeFn, "", exit);
ReturnInst::Create(result, exit);
llvm::cerr << "KLEE: adding klee_merge at exit of: " << name << "\n";
for (llvm::Function::iterator bbit = f->begin(), bbie = f->end();
bbit != bbie; ++bbit) {
if (&*bbit != exit) {
Instruction *i = bbit->getTerminator();
if (i->getOpcode()==Instruction::Ret) {
if (result) {
result->addIncoming(i->getOperand(0), bbit);
}
i->eraseFromParent();
BranchInst::Create(exit, bbit);
}
}
}
}
}
// Inject checks prior to optimization... we also perform the
// invariant transformations that we will end up doing later so that
// optimize is seeing what is as close as possible to the final
// module.
PassManager pm;
pm.add(new RaiseAsmPass());
if (opts.CheckDivZero) pm.add(new DivCheckPass());
// FIXME: This false here is to work around a bug in
// IntrinsicLowering which caches values which may eventually be
// deleted (via RAUW). This can be removed once LLVM fixes this
// issue.
pm.add(new IntrinsicCleanerPass(*targetData, false));
pm.run(*module);
if (opts.Optimize)
Optimize(module);
// Force importing functions required by intrinsic lowering. Kind of
// unfortunate clutter when we don't need them but we won't know
// that until after all linking and intrinsic lowering is
// done. After linking and passes we just try to manually trim these
// by name. We only add them if such a function doesn't exist to
// avoid creating stale uses.
forceImport(module, "memcpy", PointerType::getUnqual(Type::Int8Ty),
PointerType::getUnqual(Type::Int8Ty),
PointerType::getUnqual(Type::Int8Ty),
targetData->getIntPtrType(), (Type*) 0);
forceImport(module, "memmove", PointerType::getUnqual(Type::Int8Ty),
PointerType::getUnqual(Type::Int8Ty),
PointerType::getUnqual(Type::Int8Ty),
targetData->getIntPtrType(), (Type*) 0);
forceImport(module, "memset", PointerType::getUnqual(Type::Int8Ty),
PointerType::getUnqual(Type::Int8Ty),
Type::Int32Ty,
targetData->getIntPtrType(), (Type*) 0);
// FIXME: Missing force import for various math functions.
// FIXME: Find a way that we can test programs without requiring
// this to be linked in, it makes low level debugging much more
// annoying.
llvm::sys::Path path(opts.LibraryDir);
path.appendComponent("libintrinsic.bca");
module = linkWithLibrary(module, path.c_str());
// Needs to happen after linking (since ctors/dtors can be modified)
// and optimization (since global optimization can rewrite lists).
injectStaticConstructorsAndDestructors(module);
// Finally, run the passes that maintain invariants we expect during
// interpretation. We run the intrinsic cleaner just in case we
// linked in something with intrinsics but any external calls are
// going to be unresolved. We really need to handle the intrinsics
// directly I think?
PassManager pm3;
pm3.add(createCFGSimplificationPass());
switch(SwitchType) {
case eSwitchTypeInternal: break;
case eSwitchTypeSimple: pm3.add(new LowerSwitchPass()); break;
case eSwitchTypeLLVM: pm3.add(createLowerSwitchPass()); break;
default: klee_error("invalid --switch-type");
}
pm3.add(new IntrinsicCleanerPass(*targetData));
pm3.add(new PhiCleanerPass());
pm3.run(*module);
// For cleanliness see if we can discard any of the functions we
// forced to import.
Function *f;
f = module->getFunction("memcpy");
if (f && f->use_empty()) f->eraseFromParent();
f = module->getFunction("memmove");
if (f && f->use_empty()) f->eraseFromParent();
f = module->getFunction("memset");
if (f && f->use_empty()) f->eraseFromParent();
// Write out the .ll assembly file. We truncate long lines to work
// around a kcachegrind parsing bug (it puts them on new lines), so
// that source browsing works.
if (OutputSource) {
std::ostream *os = ih->openOutputFile("assembly.ll");
assert(os && os->good() && "unable to open source output");
// We have an option for this in case the user wants a .ll they
// can compile.
if (NoTruncateSourceLines) {
*os << *module;
} else {
bool truncated = false;
std::stringstream buffer;
buffer << *module;
std::string string = buffer.str();
const char *position = string.c_str();
for (;;) {
const char *end = index(position, '\n');
if (!end) {
*os << position;
break;
} else {
unsigned count = (end - position) + 1;
if (count<255) {
os->write(position, count);
} else {
os->write(position, 254);
*os << "\n";
truncated = true;
}
position = end+1;
}
}
}
delete os;
}
if (OutputModule) {
std::ostream *f = ih->openOutputFile("final.bc");
WriteBitcodeToFile(module, *f);
delete f;
}
dbgStopPointFn = module->getFunction("llvm.dbg.stoppoint");
kleeMergeFn = module->getFunction("klee_merge");
/* Build shadow structures */
infos = new InstructionInfoTable(module);
for (Module::iterator it = module->begin(), ie = module->end();
it != ie; ++it) {
if (it->isDeclaration())
continue;
KFunction *kf = new KFunction(it, this);
for (unsigned i=0; i<kf->numInstructions; ++i) {
KInstruction *ki = kf->instructions[i];
ki->info = &infos->getInfo(ki->inst);
}
functions.push_back(kf);
functionMap.insert(std::make_pair(it, kf));
}
/* Compute various interesting properties */
for (std::vector<KFunction*>::iterator it = functions.begin(),
ie = functions.end(); it != ie; ++it) {
KFunction *kf = *it;
if (functionEscapes(kf->function))
escapingFunctions.insert(kf->function);
}
if (DebugPrintEscapingFunctions && !escapingFunctions.empty()) {
llvm::cerr << "KLEE: escaping functions: [";
for (std::set<Function*>::iterator it = escapingFunctions.begin(),
ie = escapingFunctions.end(); it != ie; ++it) {
llvm::cerr << (*it)->getName() << ", ";
}
llvm::cerr << "]\n";
}
}
KConstant* KModule::getKConstant(Constant *c) {
std::map<llvm::Constant*, KConstant*>::iterator it = constantMap.find(c);
if (it != constantMap.end())
return it->second;
return NULL;
}
unsigned KModule::getConstantID(Constant *c, KInstruction* ki) {
KConstant *kc = getKConstant(c);
if (kc)
return kc->id;
unsigned id = constants.size();
kc = new KConstant(c, id, ki);
constantMap.insert(std::make_pair(c, kc));
constants.push_back(c);
return id;
}
/***/
KConstant::KConstant(llvm::Constant* _ct, unsigned _id, KInstruction* _ki) {
ct = _ct;
id = _id;
ki = _ki;
}
/***/
KFunction::KFunction(llvm::Function *_function,
KModule *km)
: function(_function),
numArgs(function->arg_size()),
numInstructions(0),
trackCoverage(true) {
for (llvm::Function::iterator bbit = function->begin(),
bbie = function->end(); bbit != bbie; ++bbit) {
BasicBlock *bb = bbit;
basicBlockEntry[bb] = numInstructions;
numInstructions += bb->size();
}
instructions = new KInstruction*[numInstructions];
std::map<Instruction*, unsigned> registerMap;
// The first arg_size() registers are reserved for formals.
unsigned rnum = numArgs;
for (llvm::Function::iterator bbit = function->begin(),
bbie = function->end(); bbit != bbie; ++bbit) {
for (llvm::BasicBlock::iterator it = bbit->begin(), ie = bbit->end();
it != ie; ++it)
registerMap[it] = rnum++;
}
numRegisters = rnum;
unsigned i = 0;
for (llvm::Function::iterator bbit = function->begin(),
bbie = function->end(); bbit != bbie; ++bbit) {
for (llvm::BasicBlock::iterator it = bbit->begin(), ie = bbit->end();
it != ie; ++it) {
KInstruction *ki;
switch(it->getOpcode()) {
case Instruction::GetElementPtr:
ki = new KGEPInstruction(); break;
default:
ki = new KInstruction(); break;
}
unsigned numOperands = it->getNumOperands();
ki->inst = it;
ki->operands = new int[numOperands];
ki->dest = registerMap[it];
for (unsigned j=0; j<numOperands; j++) {
Value *v = it->getOperand(j);
if (Instruction *inst = dyn_cast<Instruction>(v)) {
ki->operands[j] = registerMap[inst];
} else if (Argument *a = dyn_cast<Argument>(v)) {
ki->operands[j] = a->getArgNo();
} else if (isa<BasicBlock>(v) || isa<InlineAsm>(v)) {
ki->operands[j] = -1;
} else {
assert(isa<Constant>(v));
Constant *c = cast<Constant>(v);
ki->operands[j] = -(km->getConstantID(c, ki) + 2);
}
}
instructions[i++] = ki;
}
}
}
KFunction::~KFunction() {
for (unsigned i=0; i<numInstructions; ++i)
delete instructions[i];
delete[] instructions;
}
|