1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
|
//===-- IndependentSolver.cpp ---------------------------------------------===//
//
// The KLEE Symbolic Virtual Machine
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "independent-solver"
#include "klee/Solver/Solver.h"
#include "klee/Expr/Assignment.h"
#include "klee/Expr/Constraints.h"
#include "klee/Expr/Expr.h"
#include "klee/Expr/ExprUtil.h"
#include "klee/Support/Debug.h"
#include "klee/Solver/SolverImpl.h"
#include "llvm/Support/raw_ostream.h"
#include <list>
#include <map>
#include <memory>
#include <ostream>
#include <utility>
#include <vector>
using namespace klee;
using namespace llvm;
template<class T>
class DenseSet {
typedef std::set<T> set_ty;
set_ty s;
public:
DenseSet() {}
void add(T x) {
s.insert(x);
}
void add(T start, T end) {
for (; start<end; start++)
s.insert(start);
}
// returns true iff set is changed by addition
bool add(const DenseSet &b) {
bool modified = false;
for (typename set_ty::const_iterator it = b.s.begin(), ie = b.s.end();
it != ie; ++it) {
if (modified || !s.count(*it)) {
modified = true;
s.insert(*it);
}
}
return modified;
}
bool intersects(const DenseSet &b) {
for (typename set_ty::iterator it = s.begin(), ie = s.end();
it != ie; ++it)
if (b.s.count(*it))
return true;
return false;
}
std::set<unsigned>::iterator begin(){
return s.begin();
}
std::set<unsigned>::iterator end(){
return s.end();
}
void print(llvm::raw_ostream &os) const {
bool first = true;
os << "{";
for (typename set_ty::iterator it = s.begin(), ie = s.end();
it != ie; ++it) {
if (first) {
first = false;
} else {
os << ",";
}
os << *it;
}
os << "}";
}
};
template <class T>
inline llvm::raw_ostream &operator<<(llvm::raw_ostream &os,
const ::DenseSet<T> &dis) {
dis.print(os);
return os;
}
class IndependentElementSet {
public:
typedef std::map<const Array*, ::DenseSet<unsigned> > elements_ty;
elements_ty elements; // Represents individual elements of array accesses (arr[1])
std::set<const Array*> wholeObjects; // Represents symbolically accessed arrays (arr[x])
std::vector<ref<Expr> > exprs; // All expressions that are associated with this factor
// Although order doesn't matter, we use a vector to match
// the ConstraintManager constructor that will eventually
// be invoked.
IndependentElementSet() {}
IndependentElementSet(ref<Expr> e) {
exprs.push_back(e);
// Track all reads in the program. Determines whether reads are
// concrete or symbolic. If they are symbolic, "collapses" array
// by adding it to wholeObjects. Otherwise, creates a mapping of
// the form Map<array, set<index>> which tracks which parts of the
// array are being accessed.
std::vector< ref<ReadExpr> > reads;
findReads(e, /* visitUpdates= */ true, reads);
for (unsigned i = 0; i != reads.size(); ++i) {
ReadExpr *re = reads[i].get();
const Array *array = re->updates.root;
// Reads of a constant array don't alias.
if (re->updates.root->isConstantArray() && !re->updates.head)
continue;
if (!wholeObjects.count(array)) {
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(re->index)) {
// if index constant, then add to set of constraints operating
// on that array (actually, don't add constraint, just set index)
::DenseSet<unsigned> &dis = elements[array];
dis.add((unsigned) CE->getZExtValue(32));
} else {
elements_ty::iterator it2 = elements.find(array);
if (it2!=elements.end())
elements.erase(it2);
wholeObjects.insert(array);
}
}
}
}
IndependentElementSet(const IndependentElementSet &ies) :
elements(ies.elements),
wholeObjects(ies.wholeObjects),
exprs(ies.exprs) {}
IndependentElementSet &operator=(const IndependentElementSet &ies) {
elements = ies.elements;
wholeObjects = ies.wholeObjects;
exprs = ies.exprs;
return *this;
}
void print(llvm::raw_ostream &os) const {
os << "{";
bool first = true;
for (std::set<const Array*>::iterator it = wholeObjects.begin(),
ie = wholeObjects.end(); it != ie; ++it) {
const Array *array = *it;
if (first) {
first = false;
} else {
os << ", ";
}
os << "MO" << array->name;
}
for (elements_ty::const_iterator it = elements.begin(), ie = elements.end();
it != ie; ++it) {
const Array *array = it->first;
const ::DenseSet<unsigned> &dis = it->second;
if (first) {
first = false;
} else {
os << ", ";
}
os << "MO" << array->name << " : " << dis;
}
os << "}";
}
// more efficient when this is the smaller set
bool intersects(const IndependentElementSet &b) {
// If there are any symbolic arrays in our query that b accesses
for (std::set<const Array*>::iterator it = wholeObjects.begin(),
ie = wholeObjects.end(); it != ie; ++it) {
const Array *array = *it;
if (b.wholeObjects.count(array) ||
b.elements.find(array) != b.elements.end())
return true;
}
for (elements_ty::iterator it = elements.begin(), ie = elements.end();
it != ie; ++it) {
const Array *array = it->first;
// if the array we access is symbolic in b
if (b.wholeObjects.count(array))
return true;
elements_ty::const_iterator it2 = b.elements.find(array);
// if any of the elements we access are also accessed by b
if (it2 != b.elements.end()) {
if (it->second.intersects(it2->second))
return true;
}
}
return false;
}
// returns true iff set is changed by addition
bool add(const IndependentElementSet &b) {
for(unsigned i = 0; i < b.exprs.size(); i ++){
ref<Expr> expr = b.exprs[i];
exprs.push_back(expr);
}
bool modified = false;
for (std::set<const Array*>::const_iterator it = b.wholeObjects.begin(),
ie = b.wholeObjects.end(); it != ie; ++it) {
const Array *array = *it;
elements_ty::iterator it2 = elements.find(array);
if (it2!=elements.end()) {
modified = true;
elements.erase(it2);
wholeObjects.insert(array);
} else {
if (!wholeObjects.count(array)) {
modified = true;
wholeObjects.insert(array);
}
}
}
for (elements_ty::const_iterator it = b.elements.begin(),
ie = b.elements.end(); it != ie; ++it) {
const Array *array = it->first;
if (!wholeObjects.count(array)) {
elements_ty::iterator it2 = elements.find(array);
if (it2==elements.end()) {
modified = true;
elements.insert(*it);
} else {
// Now need to see if there are any (z=?)'s
if (it2->second.add(it->second))
modified = true;
}
}
}
return modified;
}
};
inline llvm::raw_ostream &operator<<(llvm::raw_ostream &os,
const IndependentElementSet &ies) {
ies.print(os);
return os;
}
// Breaks down a constraint into all of it's individual pieces, returning a
// list of IndependentElementSets or the independent factors.
//
// Caller takes ownership of returned std::list.
static std::list<IndependentElementSet>*
getAllIndependentConstraintsSets(const Query &query) {
std::list<IndependentElementSet> *factors = new std::list<IndependentElementSet>();
ConstantExpr *CE = dyn_cast<ConstantExpr>(query.expr);
if (CE) {
assert(CE && CE->isFalse() && "the expr should always be false and "
"therefore not included in factors");
} else {
ref<Expr> neg = Expr::createIsZero(query.expr);
factors->push_back(IndependentElementSet(neg));
}
for (const auto &constraint : query.constraints) {
// iterate through all the previously separated constraints. Until we
// actually return, factors is treated as a queue of expressions to be
// evaluated. If the queue property isn't maintained, then the exprs
// could be returned in an order different from how they came it, negatively
// affecting later stages.
factors->push_back(IndependentElementSet(constraint));
}
bool doneLoop = false;
do {
doneLoop = true;
std::list<IndependentElementSet> *done =
new std::list<IndependentElementSet>;
while (factors->size() > 0) {
IndependentElementSet current = factors->front();
factors->pop_front();
// This list represents the set of factors that are separate from current.
// Those that are not inserted into this list (queue) intersect with
// current.
std::list<IndependentElementSet> *keep =
new std::list<IndependentElementSet>;
while (factors->size() > 0) {
IndependentElementSet compare = factors->front();
factors->pop_front();
if (current.intersects(compare)) {
if (current.add(compare)) {
// Means that we have added (z=y)added to (x=y)
// Now need to see if there are any (z=?)'s
doneLoop = false;
}
} else {
keep->push_back(compare);
}
}
done->push_back(current);
delete factors;
factors = keep;
}
delete factors;
factors = done;
} while (!doneLoop);
return factors;
}
static
IndependentElementSet getIndependentConstraints(const Query& query,
std::vector< ref<Expr> > &result) {
IndependentElementSet eltsClosure(query.expr);
std::vector< std::pair<ref<Expr>, IndependentElementSet> > worklist;
for (const auto &constraint : query.constraints)
worklist.push_back(
std::make_pair(constraint, IndependentElementSet(constraint)));
// XXX This should be more efficient (in terms of low level copy stuff).
bool done = false;
do {
done = true;
std::vector< std::pair<ref<Expr>, IndependentElementSet> > newWorklist;
for (std::vector< std::pair<ref<Expr>, IndependentElementSet> >::iterator
it = worklist.begin(), ie = worklist.end(); it != ie; ++it) {
if (it->second.intersects(eltsClosure)) {
if (eltsClosure.add(it->second))
done = false;
result.push_back(it->first);
// Means that we have added (z=y)added to (x=y)
// Now need to see if there are any (z=?)'s
} else {
newWorklist.push_back(*it);
}
}
worklist.swap(newWorklist);
} while (!done);
KLEE_DEBUG(
std::set< ref<Expr> > reqset(result.begin(), result.end());
errs() << "--\n";
errs() << "Q: " << query.expr << "\n";
errs() << "\telts: " << IndependentElementSet(query.expr) << "\n";
int i = 0;
for (const auto &constraint: query.constraints) {
errs() << "C" << i++ << ": " << constraint;
errs() << " " << (reqset.count(constraint) ? "(required)" : "(independent)") << "\n";
errs() << "\telts: " << IndependentElementSet(constraint) << "\n";
}
errs() << "elts closure: " << eltsClosure << "\n";
);
return eltsClosure;
}
// Extracts which arrays are referenced from a particular independent set. Examines both
// the actual known array accesses arr[1] plus the undetermined accesses arr[x].
static
void calculateArrayReferences(const IndependentElementSet & ie,
std::vector<const Array *> &returnVector){
std::set<const Array*> thisSeen;
for(std::map<const Array*, ::DenseSet<unsigned> >::const_iterator it = ie.elements.begin();
it != ie.elements.end(); it ++){
thisSeen.insert(it->first);
}
for(std::set<const Array *>::iterator it = ie.wholeObjects.begin();
it != ie.wholeObjects.end(); it ++){
thisSeen.insert(*it);
}
for(std::set<const Array *>::iterator it = thisSeen.begin(); it != thisSeen.end();
it ++){
returnVector.push_back(*it);
}
}
class IndependentSolver : public SolverImpl {
private:
std::unique_ptr<Solver> solver;
public:
IndependentSolver(Solver *_solver) : solver(_solver) {}
bool computeTruth(const Query&, bool &isValid);
bool computeValidity(const Query&, Solver::Validity &result);
bool computeValue(const Query&, ref<Expr> &result);
bool computeInitialValues(const Query& query,
const std::vector<const Array*> &objects,
std::vector< std::vector<unsigned char> > &values,
bool &hasSolution);
SolverRunStatus getOperationStatusCode();
char *getConstraintLog(const Query&);
void setCoreSolverTimeout(time::Span timeout);
};
bool IndependentSolver::computeValidity(const Query& query,
Solver::Validity &result) {
std::vector< ref<Expr> > required;
IndependentElementSet eltsClosure =
getIndependentConstraints(query, required);
ConstraintSet tmp(required);
return solver->impl->computeValidity(Query(tmp, query.expr),
result);
}
bool IndependentSolver::computeTruth(const Query& query, bool &isValid) {
std::vector< ref<Expr> > required;
IndependentElementSet eltsClosure =
getIndependentConstraints(query, required);
ConstraintSet tmp(required);
return solver->impl->computeTruth(Query(tmp, query.expr),
isValid);
}
bool IndependentSolver::computeValue(const Query& query, ref<Expr> &result) {
std::vector< ref<Expr> > required;
IndependentElementSet eltsClosure =
getIndependentConstraints(query, required);
ConstraintSet tmp(required);
return solver->impl->computeValue(Query(tmp, query.expr), result);
}
// Helper function used only for assertions to make sure point created
// during computeInitialValues is in fact correct. The ``retMap`` is used
// in the case ``objects`` doesn't contain all the assignments needed.
bool assertCreatedPointEvaluatesToTrue(
const Query &query, const std::vector<const Array *> &objects,
std::vector<std::vector<unsigned char>> &values,
std::map<const Array *, std::vector<unsigned char>> &retMap) {
// _allowFreeValues is set to true so that if there are missing bytes in the
// assignment we will end up with a non ConstantExpr after evaluating the
// assignment and fail
Assignment assign = Assignment(objects, values, /*_allowFreeValues=*/true);
// Add any additional bindings.
// The semantics of std::map should be to not insert a (key, value)
// pair if it already exists so we should continue to use the assignment
// from ``objects`` and ``values``.
if (retMap.size() > 0)
assign.bindings.insert(retMap.begin(), retMap.end());
for (auto const &constraint : query.constraints) {
ref<Expr> ret = assign.evaluate(constraint);
assert(isa<ConstantExpr>(ret) &&
"assignment evaluation did not result in constant");
ref<ConstantExpr> evaluatedConstraint = dyn_cast<ConstantExpr>(ret);
if (evaluatedConstraint->isFalse()) {
return false;
}
}
ref<Expr> neg = Expr::createIsZero(query.expr);
ref<Expr> q = assign.evaluate(neg);
assert(isa<ConstantExpr>(q) &&
"assignment evaluation did not result in constant");
return cast<ConstantExpr>(q)->isTrue();
}
bool IndependentSolver::computeInitialValues(const Query& query,
const std::vector<const Array*> &objects,
std::vector< std::vector<unsigned char> > &values,
bool &hasSolution){
// We assume the query has a solution except proven differently
// This is important in case we don't have any constraints but
// we need initial values for requested array objects.
hasSolution = true;
// FIXME: When we switch to C++11 this should be a std::unique_ptr so we don't need
// to remember to manually call delete
std::list<IndependentElementSet> *factors = getAllIndependentConstraintsSets(query);
//Used to rearrange all of the answers into the correct order
std::map<const Array*, std::vector<unsigned char> > retMap;
for (std::list<IndependentElementSet>::iterator it = factors->begin();
it != factors->end(); ++it) {
std::vector<const Array*> arraysInFactor;
calculateArrayReferences(*it, arraysInFactor);
// Going to use this as the "fresh" expression for the Query() invocation below
assert(it->exprs.size() >= 1 && "No null/empty factors");
if (arraysInFactor.size() == 0){
continue;
}
ConstraintSet tmp(it->exprs);
std::vector<std::vector<unsigned char> > tempValues;
if (!solver->impl->computeInitialValues(Query(tmp, ConstantExpr::alloc(0, Expr::Bool)),
arraysInFactor, tempValues, hasSolution)){
values.clear();
delete factors;
return false;
} else if (!hasSolution){
values.clear();
delete factors;
return true;
} else {
assert(tempValues.size() == arraysInFactor.size() &&
"Should be equal number arrays and answers");
for (unsigned i = 0; i < tempValues.size(); i++){
if (retMap.count(arraysInFactor[i])){
// We already have an array with some partially correct answers,
// so we need to place the answers to the new query into the right
// spot while avoiding the undetermined values also in the array
std::vector<unsigned char> * tempPtr = &retMap[arraysInFactor[i]];
assert(tempPtr->size() == tempValues[i].size() &&
"we're talking about the same array here");
::DenseSet<unsigned> * ds = &(it->elements[arraysInFactor[i]]);
for (std::set<unsigned>::iterator it2 = ds->begin(); it2 != ds->end(); it2++){
unsigned index = * it2;
(* tempPtr)[index] = tempValues[i][index];
}
} else {
// Dump all the new values into the array
retMap[arraysInFactor[i]] = tempValues[i];
}
}
}
}
for (std::vector<const Array *>::const_iterator it = objects.begin();
it != objects.end(); it++){
const Array * arr = * it;
if (!retMap.count(arr)){
// this means we have an array that is somehow related to the
// constraint, but whose values aren't actually required to
// satisfy the query.
std::vector<unsigned char> ret(arr->size);
values.push_back(ret);
} else {
values.push_back(retMap[arr]);
}
}
assert(assertCreatedPointEvaluatesToTrue(query, objects, values, retMap) && "should satisfy the equation");
delete factors;
return true;
}
SolverImpl::SolverRunStatus IndependentSolver::getOperationStatusCode() {
return solver->impl->getOperationStatusCode();
}
char *IndependentSolver::getConstraintLog(const Query& query) {
return solver->impl->getConstraintLog(query);
}
void IndependentSolver::setCoreSolverTimeout(time::Span timeout) {
solver->impl->setCoreSolverTimeout(timeout);
}
Solver *klee::createIndependentSolver(Solver *s) {
return new Solver(new IndependentSolver(s));
}
|