about summary refs log tree commit diff homepage
path: root/lib/Solver/STPBuilder.cpp
blob: 9a38183d6ae294346ba3109e033b5eb380185bc3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
//===-- STPBuilder.cpp ----------------------------------------------------===//
//
//                     The KLEE Symbolic Virtual Machine
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "klee/Config/config.h"
#ifdef ENABLE_STP
#include "STPBuilder.h"

#include "klee/ADT/Bits.h"
#include "klee/Expr/Expr.h"
#include "klee/Solver/Solver.h"
#include "klee/Solver/SolverStats.h"

#include "ConstantDivision.h"

#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/CommandLine.h"

#include <cstdio>

#define vc_bvBoolExtract IAMTHESPAWNOFSATAN
// unclear return
#define vc_bvLeftShiftExpr IAMTHESPAWNOFSATAN
#define vc_bvRightShiftExpr IAMTHESPAWNOFSATAN
// bad refcnt'ng
#define vc_bvVar32LeftShiftExpr IAMTHESPAWNOFSATAN
#define vc_bvVar32RightShiftExpr IAMTHESPAWNOFSATAN
#define vc_bvVar32DivByPowOfTwoExpr IAMTHESPAWNOFSATAN
#define vc_bvCreateMemoryArray IAMTHESPAWNOFSATAN
#define vc_bvReadMemoryArray IAMTHESPAWNOFSATAN
#define vc_bvWriteToMemoryArray IAMTHESPAWNOFSATAN

#include <algorithm> // max, min
#include <cassert>
#include <map>
#include <sstream>
#include <vector>

using namespace klee;

namespace {
  llvm::cl::opt<bool>
  UseConstructHash("use-construct-hash-stp",
                   llvm::cl::desc("Use hash-consing during STP query construction (default=true)"),
                   llvm::cl::init(true),
                   llvm::cl::cat(klee::ExprCat));
}

///


STPArrayExprHash::~STPArrayExprHash() {
  for (ArrayHashIter it = _array_hash.begin(); it != _array_hash.end(); ++it) {
    ::VCExpr array_expr = it->second;
    if (array_expr) {
      ::vc_DeleteExpr(array_expr);
      array_expr = 0;
    }
  }


  for (UpdateNodeHashConstIter it = _update_node_hash.begin();
      it != _update_node_hash.end(); ++it) {
    ::VCExpr un_expr = it->second;
    if (un_expr) {
      ::vc_DeleteExpr(un_expr);
      un_expr = 0;
    }
  }
}

/***/

STPBuilder::STPBuilder(::VC _vc, bool _optimizeDivides)
  : vc(_vc), optimizeDivides(_optimizeDivides) {

}

STPBuilder::~STPBuilder() {
  
}

///

/* Warning: be careful about what c_interface functions you use. Some of
   them look like they cons memory but in fact don't, which is bad when
   you call vc_DeleteExpr on them. */

::VCExpr STPBuilder::buildVar(const char *name, unsigned width) {
  // XXX don't rebuild if this stuff cons's
  ::Type t = (width==1) ? vc_boolType(vc) : vc_bvType(vc, width);
  ::VCExpr res = vc_varExpr(vc, const_cast<char*>(name), t);
  vc_DeleteExpr(t);
  return res;
}

::VCExpr STPBuilder::buildArray(const char *name, unsigned indexWidth, unsigned valueWidth) {
  // XXX don't rebuild if this stuff cons's
  ::Type t1 = vc_bvType(vc, indexWidth);
  ::Type t2 = vc_bvType(vc, valueWidth);
  ::Type t = vc_arrayType(vc, t1, t2);
  ::VCExpr res = vc_varExpr(vc, const_cast<char*>(name), t);
  vc_DeleteExpr(t);
  vc_DeleteExpr(t2);
  vc_DeleteExpr(t1);
  return res;
}

ExprHandle STPBuilder::getTrue() {
  return vc_trueExpr(vc);
}
ExprHandle STPBuilder::getFalse() {
  return vc_falseExpr(vc);
}
ExprHandle STPBuilder::bvOne(unsigned width) {
  return bvZExtConst(width, 1);
}
ExprHandle STPBuilder::bvZero(unsigned width) {
  return bvZExtConst(width, 0);
}
ExprHandle STPBuilder::bvMinusOne(unsigned width) {
  return bvSExtConst(width, (int64_t) -1);
}
ExprHandle STPBuilder::bvConst32(unsigned width, uint32_t value) {
  return vc_bvConstExprFromInt(vc, width, value);
}
ExprHandle STPBuilder::bvConst64(unsigned width, uint64_t value) {
  return vc_bvConstExprFromLL(vc, width, value);
}
ExprHandle STPBuilder::bvZExtConst(unsigned width, uint64_t value) {
  if (width <= 64)
    return bvConst64(width, value);

  ExprHandle expr = bvConst64(64, value), zero = bvConst64(64, 0);
  for (width -= 64; width > 64; width -= 64)
    expr = vc_bvConcatExpr(vc, zero, expr);
  return vc_bvConcatExpr(vc, bvConst64(width, 0), expr);
}
ExprHandle STPBuilder::bvSExtConst(unsigned width, uint64_t value) {
  if (width <= 64)
    return bvConst64(width, value);
  return vc_bvSignExtend(vc, bvConst64(64, value), width);
}

ExprHandle STPBuilder::bvBoolExtract(ExprHandle expr, int bit) {
  return vc_eqExpr(vc, bvExtract(expr, bit, bit), bvOne(1));
}
ExprHandle STPBuilder::bvExtract(ExprHandle expr, unsigned top, unsigned bottom) {
  return vc_bvExtract(vc, expr, top, bottom);
}
ExprHandle STPBuilder::eqExpr(ExprHandle a, ExprHandle b) {
  assert((vc_getBVLength(vc, a) == vc_getBVLength(vc, b)) && "a and b should be same type");
  return vc_eqExpr(vc, a, b);
}

// logical right shift
ExprHandle STPBuilder::bvRightShift(ExprHandle expr, unsigned shift) {
  unsigned width = vc_getBVLength(vc, expr);

  if (shift==0) {
    return expr;
  } else if (shift>=width) {
    return bvZero(width); // Overshift to zero
  } else {
    return vc_bvConcatExpr(vc,
                           bvZero(shift),
                           bvExtract(expr, width - 1, shift));
  }
}

// logical left shift
ExprHandle STPBuilder::bvLeftShift(ExprHandle expr, unsigned shift) {
  unsigned width = vc_getBVLength(vc, expr);

  if (shift==0) {
    return expr;
  } else if (shift>=width) {
    return bvZero(width); // Overshift to zero
  } else {
    // stp shift does "expr @ [0 x s]" which we then have to extract,
    // rolling our own gives slightly smaller exprs
    return vc_bvConcatExpr(vc, 
                           bvExtract(expr, width - shift - 1, 0),
                           bvZero(shift));
  }
}

ExprHandle STPBuilder::extractPartialShiftValue(ExprHandle shift,
                                                unsigned width,
                                                unsigned &shiftBits) {
  // Assuming width is power of 2
  llvm::APInt sw(32, width);
  shiftBits = sw.getActiveBits();

  // get the shift amount (looking only at the bits appropriate for the given
  // width)
  return vc_bvExtract(vc, shift, shiftBits - 1, 0);
}

// left shift by a variable amount on an expression of the specified width
ExprHandle STPBuilder::bvVarLeftShift(ExprHandle expr, ExprHandle shift) {
  unsigned width = vc_getBVLength(vc, expr);
  ExprHandle res = bvZero(width);

  unsigned shiftBits = 0;
  ExprHandle shift_ext = extractPartialShiftValue(shift, width, shiftBits);

  // construct a big if-then-elif-elif-... with one case per possible shift
  // amount
  for (int i = width - 1; i >= 0; i--) {
    res = vc_iteExpr(vc, eqExpr(shift_ext, bvConst32(shiftBits, i)),
                     bvLeftShift(expr, i), res);
  }

  // If overshifting, shift to zero
  ExprHandle ex =
      vc_bvLtExpr(vc, shift, bvConst32(vc_getBVLength(vc, shift), width));

  res = vc_iteExpr(vc, ex, res, bvZero(width));
  return res;
}

// logical right shift by a variable amount on an expression of the specified
// width
ExprHandle STPBuilder::bvVarRightShift(ExprHandle expr, ExprHandle shift) {
  unsigned width = vc_getBVLength(vc, expr);
  ExprHandle res = bvZero(width);

  unsigned shiftBits = 0;
  ExprHandle shift_ext = extractPartialShiftValue(shift, width, shiftBits);

  // construct a big if-then-elif-elif-... with one case per possible shift
  // amount
  for (int i = width - 1; i >= 0; i--) {
    res = vc_iteExpr(vc, eqExpr(shift_ext, bvConst32(shiftBits, i)),
                     bvRightShift(expr, i), res);
  }

  // If overshifting, shift to zero
  // If overshifting, shift to zero
  ExprHandle ex =
      vc_bvLtExpr(vc, shift, bvConst32(vc_getBVLength(vc, shift), width));
  res = vc_iteExpr(vc, ex, res, bvZero(width));

  return res;
}

// arithmetic right shift by a variable amount on an expression of the specified
// width
ExprHandle STPBuilder::bvVarArithRightShift(ExprHandle expr, ExprHandle shift) {
  unsigned width = vc_getBVLength(vc, expr);

  unsigned shiftBits = 0;
  ExprHandle shift_ext = extractPartialShiftValue(shift, width, shiftBits);

  // get the sign bit to fill with
  ExprHandle signedBool = bvBoolExtract(expr, width - 1);

  // start with the result if shifting by width-1
  ExprHandle res = constructAShrByConstant(expr, width - 1, signedBool);

  // construct a big if-then-elif-elif-... with one case per possible shift
  // amount
  // XXX more efficient to move the ite on the sign outside all exprs?
  // XXX more efficient to sign extend, right shift, then extract lower bits?
  for (int i = width - 2; i >= 0; i--) {
    res = vc_iteExpr(vc, eqExpr(shift_ext, bvConst32(shiftBits, i)),
                     constructAShrByConstant(expr, i, signedBool), res);
  }

  // If overshifting, shift to zero
  ExprHandle ex =
      vc_bvLtExpr(vc, shift, bvConst32(vc_getBVLength(vc, shift), width));
  res = vc_iteExpr(vc, ex, res, bvZero(width));
  return res;
}

ExprHandle STPBuilder::constructAShrByConstant(ExprHandle expr,
                                               unsigned shift,
                                               ExprHandle isSigned) {
  unsigned width = vc_getBVLength(vc, expr);

  if (shift==0) {
    return expr;
  } else if (shift>=width) {
    return bvZero(width); // Overshift to zero
  } else {
    return vc_iteExpr(vc,
                      isSigned,
                      ExprHandle(vc_bvConcatExpr(vc,
                                                 bvMinusOne(shift),
                                                 bvExtract(expr, width - 1, shift))),
                      bvRightShift(expr, shift));
  }
}

ExprHandle STPBuilder::constructMulByConstant(ExprHandle expr, unsigned width, uint64_t x) {
  uint64_t add, sub;
  ExprHandle res = 0;

  // expr*x == expr*(add-sub) == expr*add - expr*sub
  ComputeMultConstants64(x, add, sub);

  // legal, these would overflow completely
  add = bits64::truncateToNBits(add, width);
  sub = bits64::truncateToNBits(sub, width);

  for (int j=63; j>=0; j--) {
    uint64_t bit = 1LL << j;

    if ((add&bit) || (sub&bit)) {
      assert(!((add&bit) && (sub&bit)) && "invalid mult constants");
      ExprHandle op = bvLeftShift(expr, j);
      
      if (add&bit) {
        if (res) {
          res = vc_bvPlusExpr(vc, width, res, op);
        } else {
          res = op;
        }
      } else {
        if (res) {
          res = vc_bvMinusExpr(vc, width, res, op);
        } else {
          res = vc_bvUMinusExpr(vc, op);
        }
      }
    }
  }

  if (!res) 
    res = bvZero(width);

  return res;
}

/* 
 * Compute the 32-bit unsigned integer division of n by a divisor d based on 
 * the constants derived from the constant divisor d.
 *
 * Returns n/d without doing explicit division.  The cost is 2 adds, 3 shifts, 
 * and a (64-bit) multiply.
 *
 * @param n      numerator (dividend) as an expression
 * @param width  number of bits used to represent the value
 * @param d      the divisor
 *
 * @return n/d without doing explicit division
 */
ExprHandle STPBuilder::constructUDivByConstant(ExprHandle expr_n, unsigned width, uint64_t d) {
  assert(width==32 && "can only compute udiv constants for 32-bit division");

  // Compute the constants needed to compute n/d for constant d w/o
  // division by d.
  uint32_t mprime, sh1, sh2;
  ComputeUDivConstants32(d, mprime, sh1, sh2);
  ExprHandle expr_sh1    = bvConst32( 32, sh1);
  ExprHandle expr_sh2    = bvConst32( 32, sh2);

  // t1  = MULUH(mprime, n) = ( (uint64_t)mprime * (uint64_t)n ) >> 32
  ExprHandle expr_n_64   = vc_bvConcatExpr( vc, bvZero(32), expr_n ); //extend to 64 bits
  ExprHandle t1_64bits   = constructMulByConstant( expr_n_64, 64, (uint64_t)mprime );
  ExprHandle t1          = vc_bvExtract( vc, t1_64bits, 63, 32 ); //upper 32 bits

  // n/d = (((n - t1) >> sh1) + t1) >> sh2;
  ExprHandle n_minus_t1  = vc_bvMinusExpr( vc, width, expr_n, t1 );
  ExprHandle shift_sh1   = bvVarRightShift( n_minus_t1, expr_sh1);
  ExprHandle plus_t1     = vc_bvPlusExpr( vc, width, shift_sh1, t1 );
  ExprHandle res         = bvVarRightShift( plus_t1, expr_sh2);

  return res;
}

/* 
 * Compute the 32-bitnsigned integer division of n by a divisor d based on 
 * the constants derived from the constant divisor d.
 *
 * Returns n/d without doing explicit division.  The cost is 3 adds, 3 shifts, 
 * a (64-bit) multiply, and an XOR.
 *
 * @param n      numerator (dividend) as an expression
 * @param width  number of bits used to represent the value
 * @param d      the divisor
 *
 * @return n/d without doing explicit division
 */
ExprHandle STPBuilder::constructSDivByConstant(ExprHandle expr_n, unsigned width, uint64_t d) {
  // Refactor using APInt::ms APInt::magic();
  assert(width==32 && "can only compute udiv constants for 32-bit division");

  // Compute the constants needed to compute n/d for constant d w/o division by d.
  int32_t mprime, dsign, shpost;
  ComputeSDivConstants32(d, mprime, dsign, shpost);
  ExprHandle expr_dsign   = bvConst32( 32, dsign);
  ExprHandle expr_shpost  = bvConst32( 32, shpost);

  // q0 = n + MULSH( mprime, n ) = n + (( (int64_t)mprime * (int64_t)n ) >> 32)
  int64_t mprime_64     = (int64_t)mprime;

  ExprHandle expr_n_64    = vc_bvSignExtend( vc, expr_n, 64 );
  ExprHandle mult_64      = constructMulByConstant( expr_n_64, 64, mprime_64 );
  ExprHandle mulsh        = vc_bvExtract( vc, mult_64, 63, 32 ); //upper 32-bits
  ExprHandle n_plus_mulsh = vc_bvPlusExpr( vc, width, expr_n, mulsh );

  // Improved variable arithmetic right shift: sign extend, shift,
  // extract.
  ExprHandle extend_npm   = vc_bvSignExtend( vc, n_plus_mulsh, 64 );
  ExprHandle shift_npm    = bvVarRightShift( extend_npm, expr_shpost);
  ExprHandle shift_shpost = vc_bvExtract( vc, shift_npm, 31, 0 ); //lower 32-bits

  // XSIGN(n) is -1 if n is negative, positive one otherwise
  ExprHandle is_signed    = bvBoolExtract( expr_n, 31 );
  ExprHandle neg_one      = bvMinusOne(32);
  ExprHandle xsign_of_n   = vc_iteExpr( vc, is_signed, neg_one, bvZero(32) );

  // q0 = (n_plus_mulsh >> shpost) - XSIGN(n)
  ExprHandle q0           = vc_bvMinusExpr( vc, width, shift_shpost, xsign_of_n );
  
  // n/d = (q0 ^ dsign) - dsign
  ExprHandle q0_xor_dsign = vc_bvXorExpr( vc, q0, expr_dsign );
  ExprHandle res          = vc_bvMinusExpr( vc, width, q0_xor_dsign, expr_dsign );

  return res;
}

::VCExpr STPBuilder::getInitialArray(const Array *root) {
  
  assert(root);
  ::VCExpr array_expr;
  bool hashed = _arr_hash.lookupArrayExpr(root, array_expr);
  
  if (!hashed) {
    // STP uniques arrays by name, so we make sure the name is unique by
    // using the size of the array hash as a counter.
    std::string unique_id = llvm::utostr(_arr_hash._array_hash.size());
    std::string unique_name = root->name + unique_id;

    array_expr = buildArray(unique_name.c_str(), root->getDomain(),
                            root->getRange());

    if (root->isConstantArray()) {
      // FIXME: Flush the concrete values into STP. Ideally we would do this
      // using assertions, which is much faster, but we need to fix the caching
      // to work correctly in that case.
      for (unsigned i = 0, e = root->size; i != e; ++i) {
	::VCExpr prev = array_expr;
	array_expr = vc_writeExpr(vc, prev,
                       construct(ConstantExpr::alloc(i, root->getDomain()), 0),
                       construct(root->constantValues[i], 0));
	vc_DeleteExpr(prev);
      }
    }
    
    _arr_hash.hashArrayExpr(root, array_expr);
  }
  
  return array_expr;
}

ExprHandle STPBuilder::getInitialRead(const Array *root, unsigned index) {
  return vc_readExpr(vc, getInitialArray(root), bvConst32(32, index));
}

::VCExpr STPBuilder::getArrayForUpdate(const Array *root,
                                       const UpdateNode *un) {
  // Iterate over the update nodes, until we find a cached version of the node,
  // or no more update nodes remain
  ::VCExpr un_expr;
  std::vector<const UpdateNode *> update_nodes;
  for (; un && !_arr_hash.lookupUpdateNodeExpr(un, un_expr);
       un = un->next.get()) {
    update_nodes.push_back(un);
  }
  if (!un) {
    un_expr = getInitialArray(root);
  }
  // `un_expr` now holds an expression for the array - either from cache or by
  // virtue of being the initial array expression

  // Create and cache solver expressions based on the update nodes starting from
  // the oldest
  for (const auto &un :
       llvm::make_range(update_nodes.crbegin(), update_nodes.crend())) {
    un_expr = vc_writeExpr(vc, un_expr, construct(un->index, 0),
                           construct(un->value, 0));

    _arr_hash.hashUpdateNodeExpr(un, un_expr);
  }

  return un_expr;
}

/** if *width_out!=1 then result is a bitvector,
    otherwise it is a bool */
ExprHandle STPBuilder::construct(ref<Expr> e, int *width_out) {
  if (!UseConstructHash || isa<ConstantExpr>(e)) {
    return constructActual(e, width_out);
  } else {
    ExprHashMap< std::pair<ExprHandle, unsigned> >::iterator it = 
      constructed.find(e);
    if (it!=constructed.end()) {
      if (width_out)
        *width_out = it->second.second;
      return it->second.first;
    } else {
      int width;
      if (!width_out) width_out = &width;
      ExprHandle res = constructActual(e, width_out);
      constructed.insert(std::make_pair(e, std::make_pair(res, *width_out)));
      return res;
    }
  }
}


/** if *width_out!=1 then result is a bitvector,
    otherwise it is a bool */
ExprHandle STPBuilder::constructActual(ref<Expr> e, int *width_out) {
  int width;
  if (!width_out) width_out = &width;

  ++stats::queryConstructs;

  switch (e->getKind()) {
  case Expr::Constant: {
    ConstantExpr *CE = cast<ConstantExpr>(e);
    *width_out = CE->getWidth();

    // Coerce to bool if necessary.
    if (*width_out == 1)
      return CE->isTrue() ? getTrue() : getFalse();

    // Fast path.
    if (*width_out <= 32)
      return bvConst32(*width_out, CE->getZExtValue(32));
    if (*width_out <= 64)
      return bvConst64(*width_out, CE->getZExtValue());

    ref<ConstantExpr> Tmp = CE;
    ExprHandle Res = bvConst64(64, Tmp->Extract(0, 64)->getZExtValue());
    while (Tmp->getWidth() > 64) {
      Tmp = Tmp->Extract(64, Tmp->getWidth()-64);
      unsigned Width = std::min(64U, Tmp->getWidth());
      Res = vc_bvConcatExpr(vc, bvConst64(Width,
                                        Tmp->Extract(0, Width)->getZExtValue()),
                            Res);
    }
    return Res;
  }
    
  // Special
  case Expr::NotOptimized: {
    NotOptimizedExpr *noe = cast<NotOptimizedExpr>(e);
    return construct(noe->src, width_out);
  }

  case Expr::Read: {
    ReadExpr *re = cast<ReadExpr>(e);
    assert(re && re->updates.root);
    *width_out = re->updates.root->getRange();
    return vc_readExpr(
        vc, getArrayForUpdate(re->updates.root, re->updates.head.get()),
        construct(re->index, 0));
  }
    
  case Expr::Select: {
    SelectExpr *se = cast<SelectExpr>(e);
    ExprHandle cond = construct(se->cond, 0);
    ExprHandle tExpr = construct(se->trueExpr, width_out);
    ExprHandle fExpr = construct(se->falseExpr, width_out);
    return vc_iteExpr(vc, cond, tExpr, fExpr);
  }

  case Expr::Concat: {
    ConcatExpr *ce = cast<ConcatExpr>(e);
    unsigned numKids = ce->getNumKids();
    ExprHandle res = construct(ce->getKid(numKids-1), 0);
    for (int i=numKids-2; i>=0; i--) {
      res = vc_bvConcatExpr(vc, construct(ce->getKid(i), 0), res);
    }
    *width_out = ce->getWidth();
    return res;
  }

  case Expr::Extract: {
    ExtractExpr *ee = cast<ExtractExpr>(e);
    ExprHandle src = construct(ee->expr, width_out);    
    *width_out = ee->getWidth();
    if (*width_out==1) {
      return bvBoolExtract(src, ee->offset);
    } else {
      return vc_bvExtract(vc, src, ee->offset + *width_out - 1, ee->offset);
    }
  }

    // Casting

  case Expr::ZExt: {
    int srcWidth;
    CastExpr *ce = cast<CastExpr>(e);
    ExprHandle src = construct(ce->src, &srcWidth);
    *width_out = ce->getWidth();
    if (srcWidth==1) {
      return vc_iteExpr(vc, src, bvOne(*width_out), bvZero(*width_out));
    } else {
      return vc_bvConcatExpr(vc, bvZero(*width_out-srcWidth), src);
    }
  }

  case Expr::SExt: {
    int srcWidth;
    CastExpr *ce = cast<CastExpr>(e);
    ExprHandle src = construct(ce->src, &srcWidth);
    *width_out = ce->getWidth();
    if (srcWidth==1) {
      return vc_iteExpr(vc, src, bvMinusOne(*width_out), bvZero(*width_out));
    } else {
      return vc_bvSignExtend(vc, src, *width_out);
    }
  }

    // Arithmetic

  case Expr::Add: {
    AddExpr *ae = cast<AddExpr>(e);
    ExprHandle left = construct(ae->left, width_out);
    ExprHandle right = construct(ae->right, width_out);
    assert(*width_out!=1 && "uncanonicalized add");
    return vc_bvPlusExpr(vc, *width_out, left, right);
  }

  case Expr::Sub: {
    SubExpr *se = cast<SubExpr>(e);
    ExprHandle left = construct(se->left, width_out);
    ExprHandle right = construct(se->right, width_out);
    assert(*width_out!=1 && "uncanonicalized sub");
    return vc_bvMinusExpr(vc, *width_out, left, right);
  } 

  case Expr::Mul: {
    MulExpr *me = cast<MulExpr>(e);
    ExprHandle right = construct(me->right, width_out);
    assert(*width_out!=1 && "uncanonicalized mul");

    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(me->left))
      if (CE->getWidth() <= 64)
        return constructMulByConstant(right, *width_out, 
                                      CE->getZExtValue());

    ExprHandle left = construct(me->left, width_out);
    return vc_bvMultExpr(vc, *width_out, left, right);
  }

  case Expr::UDiv: {
    UDivExpr *de = cast<UDivExpr>(e);
    ExprHandle left = construct(de->left, width_out);
    assert(*width_out!=1 && "uncanonicalized udiv");
    
    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(de->right)) {
      if (CE->getWidth() <= 64) {
        uint64_t divisor = CE->getZExtValue();
      
        if (bits64::isPowerOfTwo(divisor)) {
          return bvRightShift(left,
                              bits64::indexOfSingleBit(divisor));
        } else if (optimizeDivides) {
          if (*width_out == 32) //only works for 32-bit division
            return constructUDivByConstant( left, *width_out, 
                                            (uint32_t) divisor);
        }
      }
    } 

    ExprHandle right = construct(de->right, width_out);
    return vc_bvDivExpr(vc, *width_out, left, right);
  }

  case Expr::SDiv: {
    SDivExpr *de = cast<SDivExpr>(e);
    ExprHandle left = construct(de->left, width_out);
    assert(*width_out!=1 && "uncanonicalized sdiv");

    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(de->right))
      if (optimizeDivides) {
        llvm::APInt divisor = CE->getAPValue();
        if (divisor != llvm::APInt(CE->getWidth(),1, false /*unsigned*/) &&
            divisor != llvm::APInt(CE->getWidth(), -1, true /*signed*/))
            if (*width_out == 32) //only works for 32-bit division
               return constructSDivByConstant( left, *width_out,
                                          CE->getZExtValue(32));
      }
    // XXX need to test for proper handling of sign, not sure I
    // trust STP
    ExprHandle right = construct(de->right, width_out);
    return vc_sbvDivExpr(vc, *width_out, left, right);
  }

  case Expr::URem: {
    URemExpr *de = cast<URemExpr>(e);
    ExprHandle left = construct(de->left, width_out);
    assert(*width_out!=1 && "uncanonicalized urem");
    
    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(de->right)) {
      if (CE->getWidth() <= 64) {
        uint64_t divisor = CE->getZExtValue();

        if (bits64::isPowerOfTwo(divisor)) {
          unsigned bits = bits64::indexOfSingleBit(divisor);

          // special case for modding by 1 or else we bvExtract -1:0
          if (bits == 0) {
            return bvZero(*width_out);
          } else {
            return vc_bvConcatExpr(vc,
                                   bvZero(*width_out - bits),
                                   bvExtract(left, bits - 1, 0));
          }
        }

        // Use fast division to compute modulo without explicit division for
        // constant divisor.

        if (optimizeDivides) {
          if (*width_out == 32) { //only works for 32-bit division
            ExprHandle quotient = constructUDivByConstant( left, *width_out, (uint32_t)divisor );
            ExprHandle quot_times_divisor = constructMulByConstant( quotient, *width_out, divisor );
            ExprHandle rem = vc_bvMinusExpr( vc, *width_out, left, quot_times_divisor );
            return rem;
          }
        }
      }
    }
    
    ExprHandle right = construct(de->right, width_out);
    return vc_bvModExpr(vc, *width_out, left, right);
  }

  case Expr::SRem: {
    SRemExpr *de = cast<SRemExpr>(e);
    ExprHandle left = construct(de->left, width_out);
    ExprHandle right = construct(de->right, width_out);
    assert(*width_out!=1 && "uncanonicalized srem");

#if 0 //not faster per first benchmark
    if (optimizeDivides) {
      if (ConstantExpr *cre = de->right->asConstant()) {
	uint64_t divisor = cre->asUInt64;

	//use fast division to compute modulo without explicit division for constant divisor
      	if( *width_out == 32 ) { //only works for 32-bit division
	  ExprHandle quotient = constructSDivByConstant( left, *width_out, divisor );
	  ExprHandle quot_times_divisor = constructMulByConstant( quotient, *width_out, divisor );
	  ExprHandle rem = vc_bvMinusExpr( vc, *width_out, left, quot_times_divisor );
	  return rem;
	}
      }
    }
#endif

    // XXX implement my fast path and test for proper handling of sign
    return vc_sbvRemExpr(vc, *width_out, left, right);
  }

    // Bitwise

  case Expr::Not: {
    NotExpr *ne = cast<NotExpr>(e);
    ExprHandle expr = construct(ne->expr, width_out);
    if (*width_out==1) {
      return vc_notExpr(vc, expr);
    } else {
      return vc_bvNotExpr(vc, expr);
    }
  }    

  case Expr::And: {
    AndExpr *ae = cast<AndExpr>(e);
    ExprHandle left = construct(ae->left, width_out);
    ExprHandle right = construct(ae->right, width_out);
    if (*width_out==1) {
      return vc_andExpr(vc, left, right);
    } else {
      return vc_bvAndExpr(vc, left, right);
    }
  }

  case Expr::Or: {
    OrExpr *oe = cast<OrExpr>(e);
    ExprHandle left = construct(oe->left, width_out);
    ExprHandle right = construct(oe->right, width_out);
    if (*width_out==1) {
      return vc_orExpr(vc, left, right);
    } else {
      return vc_bvOrExpr(vc, left, right);
    }
  }

  case Expr::Xor: {
    XorExpr *xe = cast<XorExpr>(e);
    ExprHandle left = construct(xe->left, width_out);
    ExprHandle right = construct(xe->right, width_out);
    
    if (*width_out==1) {
      // XXX check for most efficient?
      return vc_iteExpr(vc, left, 
                        ExprHandle(vc_notExpr(vc, right)), right);
    } else {
      return vc_bvXorExpr(vc, left, right);
    }
  }

  case Expr::Shl: {
    ShlExpr *se = cast<ShlExpr>(e);
    ExprHandle left = construct(se->left, width_out);
    assert(*width_out!=1 && "uncanonicalized shl");

    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(se->right)) {
      return bvLeftShift(left, (unsigned) CE->getLimitedValue());
    } else {
      int shiftWidth;
      ExprHandle amount = construct(se->right, &shiftWidth);
      return bvVarLeftShift( left, amount);
    }
  }

  case Expr::LShr: {
    LShrExpr *lse = cast<LShrExpr>(e);
    ExprHandle left = construct(lse->left, width_out);
    assert(*width_out!=1 && "uncanonicalized lshr");

    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(lse->right)) {
      return bvRightShift(left, (unsigned) CE->getLimitedValue());
    } else {
      int shiftWidth;
      ExprHandle amount = construct(lse->right, &shiftWidth);
      return bvVarRightShift( left, amount);
    }
  }

  case Expr::AShr: {
    AShrExpr *ase = cast<AShrExpr>(e);
    ExprHandle left = construct(ase->left, width_out);
    assert(*width_out!=1 && "uncanonicalized ashr");
    
    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(ase->right)) {
      unsigned shift = (unsigned) CE->getLimitedValue();
      ExprHandle signedBool = bvBoolExtract(left, *width_out-1);
      return constructAShrByConstant(left, shift, signedBool);
    } else {
      int shiftWidth;
      ExprHandle amount = construct(ase->right, &shiftWidth);
      return bvVarArithRightShift( left, amount);
    }
  }

    // Comparison

  case Expr::Eq: {
    EqExpr *ee = cast<EqExpr>(e);
    ExprHandle left = construct(ee->left, width_out);
    ExprHandle right = construct(ee->right, width_out);
    if (*width_out==1) {
      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(ee->left)) {
        if (CE->isTrue())
          return right;
        return vc_notExpr(vc, right);
      } else {
        return vc_iffExpr(vc, left, right);
      }
    } else {
      *width_out = 1;
      return vc_eqExpr(vc, left, right);
    }
  }

  case Expr::Ult: {
    UltExpr *ue = cast<UltExpr>(e);
    ExprHandle left = construct(ue->left, width_out);
    ExprHandle right = construct(ue->right, width_out);
    assert(*width_out!=1 && "uncanonicalized ult");
    *width_out = 1;
    return vc_bvLtExpr(vc, left, right);
  }

  case Expr::Ule: {
    UleExpr *ue = cast<UleExpr>(e);
    ExprHandle left = construct(ue->left, width_out);
    ExprHandle right = construct(ue->right, width_out);
    assert(*width_out!=1 && "uncanonicalized ule");
    *width_out = 1;
    return vc_bvLeExpr(vc, left, right);
  }

  case Expr::Slt: {
    SltExpr *se = cast<SltExpr>(e);
    ExprHandle left = construct(se->left, width_out);
    ExprHandle right = construct(se->right, width_out);
    assert(*width_out!=1 && "uncanonicalized slt");
    *width_out = 1;
    return vc_sbvLtExpr(vc, left, right);
  }

  case Expr::Sle: {
    SleExpr *se = cast<SleExpr>(e);
    ExprHandle left = construct(se->left, width_out);
    ExprHandle right = construct(se->right, width_out);
    assert(*width_out!=1 && "uncanonicalized sle");
    *width_out = 1;
    return vc_sbvLeExpr(vc, left, right);
  }

    // unused due to canonicalization
#if 0
  case Expr::Ne:
  case Expr::Ugt:
  case Expr::Uge:
  case Expr::Sgt:
  case Expr::Sge:
#endif

  default: 
    assert(0 && "unhandled Expr type");
    return vc_trueExpr(vc);
  }
}
#endif // ENABLE_STP