1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
|
//===-- STPSolver.cpp -----------------------------------------------------===//
//
// The KLEE Symbolic Virtual Machine
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "klee/Config/config.h"
#ifdef ENABLE_STP
#include "STPBuilder.h"
#include "STPSolver.h"
#include "klee/Expr/Assignment.h"
#include "klee/Expr/Constraints.h"
#include "klee/Expr/ExprUtil.h"
#include "klee/Solver/SolverImpl.h"
#include "klee/Support/ErrorHandling.h"
#include "klee/Support/OptionCategories.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Errno.h"
#include <array>
#include <csignal>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/wait.h>
#include <unistd.h>
namespace {
llvm::cl::opt<bool> DebugDumpSTPQueries(
"debug-dump-stp-queries", llvm::cl::init(false),
llvm::cl::desc("Dump every STP query to stderr (default=false)"),
llvm::cl::cat(klee::SolvingCat));
llvm::cl::opt<bool> IgnoreSolverFailures(
"ignore-solver-failures", llvm::cl::init(false),
llvm::cl::desc("Ignore any STP solver failures (default=false)"),
llvm::cl::cat(klee::SolvingCat));
enum SAT { MINISAT, SIMPLEMINISAT, CRYPTOMINISAT, RISS };
const std::array<std::string, 4> SATNames{"MiniSat", "simplifying MiniSat",
"CryptoMiniSat", "RISS"};
llvm::cl::opt<SAT> SATSolver(
"stp-sat-solver",
llvm::cl::desc(
"Set the underlying SAT solver for STP (default=cryptominisat)"),
llvm::cl::values(clEnumValN(SAT::MINISAT, "minisat",
SATNames[SAT::MINISAT]),
clEnumValN(SAT::SIMPLEMINISAT, "simpleminisat",
SATNames[SAT::SIMPLEMINISAT]),
clEnumValN(SAT::CRYPTOMINISAT, "cryptominisat",
SATNames[SAT::CRYPTOMINISAT]),
clEnumValN(SAT::RISS, "riss", SATNames[SAT::RISS])),
llvm::cl::init(CRYPTOMINISAT), llvm::cl::cat(klee::SolvingCat));
} // namespace
#define vc_bvBoolExtract IAMTHESPAWNOFSATAN
static unsigned char *shared_memory_ptr = nullptr;
static int shared_memory_id = 0;
// Darwin by default has a very small limit on the maximum amount of shared
// memory, which will quickly be exhausted by KLEE running its tests in
// parallel. For now, we work around this by just requesting a smaller size --
// in practice users hitting this limit on counterexample sizes probably already
// are hitting more serious scalability issues.
#ifdef __APPLE__
static const unsigned shared_memory_size = 1 << 16;
#else
static const unsigned shared_memory_size = 1 << 20;
#endif
static void stp_error_handler(const char *err_msg) {
fprintf(stderr, "error: STP Error: %s\n", err_msg);
abort();
}
namespace klee {
class STPSolverImpl : public SolverImpl {
private:
VC vc;
STPBuilder *builder;
time::Span timeout;
bool useForkedSTP;
SolverRunStatus runStatusCode;
public:
explicit STPSolverImpl(bool useForkedSTP, bool optimizeDivides = true);
~STPSolverImpl() override;
char *getConstraintLog(const Query &) override;
void setCoreSolverTimeout(time::Span timeout) override { this->timeout = timeout; }
bool computeTruth(const Query &, bool &isValid) override;
bool computeValue(const Query &, ref<Expr> &result) override;
bool computeInitialValues(const Query &,
const std::vector<const Array *> &objects,
std::vector<std::vector<unsigned char>> &values,
bool &hasSolution) override;
SolverRunStatus getOperationStatusCode() override;
};
STPSolverImpl::STPSolverImpl(bool useForkedSTP, bool optimizeDivides)
: vc(vc_createValidityChecker()),
builder(new STPBuilder(vc, optimizeDivides)),
useForkedSTP(useForkedSTP), runStatusCode(SOLVER_RUN_STATUS_FAILURE) {
assert(vc && "unable to create validity checker");
assert(builder && "unable to create STPBuilder");
// In newer versions of STP, a memory management mechanism has been
// introduced that automatically invalidates certain C interface
// pointers at vc_Destroy time. This caused double-free errors
// due to the ExprHandle destructor also attempting to invalidate
// the pointers using vc_DeleteExpr. By setting EXPRDELETE to 0
// we restore the old behaviour.
vc_setInterfaceFlags(vc, EXPRDELETE, 0);
// set SAT solver
bool SATSolverAvailable = false;
bool specifiedOnCommandLine = SATSolver.getNumOccurrences() > 0;
switch (SATSolver) {
case SAT::MINISAT: {
SATSolverAvailable = vc_useMinisat(vc);
break;
}
case SAT::SIMPLEMINISAT: {
SATSolverAvailable = vc_useSimplifyingMinisat(vc);
break;
}
case SAT::CRYPTOMINISAT: {
SATSolverAvailable = vc_useCryptominisat(vc);
break;
}
case SAT::RISS: {
SATSolverAvailable = vc_useRiss(vc);
break;
}
default:
assert(false && "Illegal SAT solver value.");
}
// print SMT/SAT status
const auto expectedSATName = SATNames[SATSolver.getValue()];
std::string SATName{"unknown"};
if (vc_isUsingMinisat(vc))
SATName = SATNames[SAT::MINISAT];
else if (vc_isUsingSimplifyingMinisat(vc))
SATName = SATNames[SAT::SIMPLEMINISAT];
else if (vc_isUsingCryptominisat(vc))
SATName = SATNames[SAT::CRYPTOMINISAT];
else if (vc_isUsingRiss(vc))
SATName = SATNames[SAT::RISS];
if (!specifiedOnCommandLine || SATSolverAvailable) {
klee_message("SAT solver: %s", SATName.c_str());
} else {
klee_warning("%s not supported by STP", expectedSATName.c_str());
klee_message("Fallback SAT solver: %s", SATName.c_str());
}
make_division_total(vc);
vc_registerErrorHandler(::stp_error_handler);
if (useForkedSTP) {
assert(shared_memory_id == 0 && "shared memory id already allocated");
shared_memory_id =
shmget(IPC_PRIVATE, shared_memory_size, IPC_CREAT | 0700);
if (shared_memory_id < 0)
llvm::report_fatal_error("unable to allocate shared memory region");
shared_memory_ptr = (unsigned char *)shmat(shared_memory_id, nullptr, 0);
if (shared_memory_ptr == (void *)-1)
llvm::report_fatal_error("unable to attach shared memory region");
shmctl(shared_memory_id, IPC_RMID, nullptr);
}
}
STPSolverImpl::~STPSolverImpl() {
// Detach the memory region.
shmdt(shared_memory_ptr);
shared_memory_ptr = nullptr;
shared_memory_id = 0;
delete builder;
vc_Destroy(vc);
}
/***/
char *STPSolverImpl::getConstraintLog(const Query &query) {
vc_push(vc);
for (const auto &constraint : query.constraints)
vc_assertFormula(vc, builder->construct(constraint));
assert(query.expr == ConstantExpr::alloc(0, Expr::Bool) &&
"Unexpected expression in query!");
char *buffer;
unsigned long length;
vc_printQueryStateToBuffer(vc, builder->getFalse(), &buffer, &length, false);
vc_pop(vc);
return buffer;
}
bool STPSolverImpl::computeTruth(const Query &query, bool &isValid) {
std::vector<const Array *> objects;
std::vector<std::vector<unsigned char>> values;
bool hasSolution;
if (!computeInitialValues(query, objects, values, hasSolution))
return false;
isValid = !hasSolution;
return true;
}
bool STPSolverImpl::computeValue(const Query &query, ref<Expr> &result) {
std::vector<const Array *> objects;
std::vector<std::vector<unsigned char>> values;
bool hasSolution;
// Find the object used in the expression, and compute an assignment
// for them.
findSymbolicObjects(query.expr, objects);
if (!computeInitialValues(query.withFalse(), objects, values, hasSolution))
return false;
assert(hasSolution && "state has invalid constraint set");
// Evaluate the expression with the computed assignment.
Assignment a(objects, values);
result = a.evaluate(query.expr);
return true;
}
static SolverImpl::SolverRunStatus
runAndGetCex(::VC vc, STPBuilder *builder, ::VCExpr q,
const std::vector<const Array *> &objects,
std::vector<std::vector<unsigned char>> &values,
bool &hasSolution) {
// XXX I want to be able to timeout here, safely
hasSolution = !vc_query(vc, q);
if (!hasSolution)
return SolverImpl::SOLVER_RUN_STATUS_SUCCESS_UNSOLVABLE;
values.reserve(objects.size());
unsigned i = 0; // FIXME C++17: use reference from emplace_back()
for (const auto object : objects) {
values.emplace_back(object->size);
for (unsigned offset = 0; offset < object->size; offset++) {
ExprHandle counter =
vc_getCounterExample(vc, builder->getInitialRead(object, offset));
values[i][offset] = static_cast<unsigned char>(getBVUnsigned(counter));
}
++i;
}
return SolverImpl::SOLVER_RUN_STATUS_SUCCESS_SOLVABLE;
}
static void stpTimeoutHandler(int x) { _exit(52); }
static SolverImpl::SolverRunStatus
runAndGetCexForked(::VC vc, STPBuilder *builder, ::VCExpr q,
const std::vector<const Array *> &objects,
std::vector<std::vector<unsigned char>> &values,
bool &hasSolution, time::Span timeout) {
unsigned char *pos = shared_memory_ptr;
unsigned sum = 0;
for (const auto object : objects)
sum += object->size;
if (sum >= shared_memory_size)
llvm::report_fatal_error("not enough shared memory for counterexample");
fflush(stdout);
fflush(stderr);
// fork solver
int pid = fork();
// - error
if (pid == -1) {
klee_warning("fork failed (for STP) - %s", llvm::sys::StrError(errno).c_str());
if (!IgnoreSolverFailures)
exit(1);
return SolverImpl::SOLVER_RUN_STATUS_FORK_FAILED;
}
// - child (solver)
if (pid == 0) {
if (timeout) {
::alarm(0); /* Turn off alarm so we can safely set signal handler */
::signal(SIGALRM, stpTimeoutHandler);
::alarm(std::max(1u, static_cast<unsigned>(timeout.toSeconds())));
}
int res = vc_query(vc, q);
if (!res) {
for (const auto object : objects) {
for (unsigned offset = 0; offset < object->size; offset++) {
ExprHandle counter =
vc_getCounterExample(vc, builder->getInitialRead(object, offset));
*pos++ = static_cast<unsigned char>(getBVUnsigned(counter));
}
}
}
_exit(res);
// - parent
} else {
int status;
pid_t res;
do {
res = waitpid(pid, &status, 0);
} while (res < 0 && errno == EINTR);
if (res < 0) {
klee_warning("waitpid() for STP failed");
if (!IgnoreSolverFailures)
exit(1);
return SolverImpl::SOLVER_RUN_STATUS_WAITPID_FAILED;
}
// From timed_run.py: It appears that linux at least will on
// "occasion" return a status when the process was terminated by a
// signal, so test signal first.
if (WIFSIGNALED(status) || !WIFEXITED(status)) {
klee_warning("STP did not return successfully. Most likely you forgot "
"to run 'ulimit -s unlimited'");
if (!IgnoreSolverFailures) {
exit(1);
}
return SolverImpl::SOLVER_RUN_STATUS_INTERRUPTED;
}
int exitcode = WEXITSTATUS(status);
// solvable
if (exitcode == 0) {
hasSolution = true;
values.reserve(objects.size());
for (const auto object : objects) {
values.emplace_back(pos, pos + object->size);
pos += object->size;
}
return SolverImpl::SOLVER_RUN_STATUS_SUCCESS_SOLVABLE;
}
// unsolvable
if (exitcode == 1) {
hasSolution = false;
return SolverImpl::SOLVER_RUN_STATUS_SUCCESS_UNSOLVABLE;
}
// timeout
if (exitcode == 52) {
klee_warning("STP timed out");
// mark that a timeout occurred
return SolverImpl::SOLVER_RUN_STATUS_TIMEOUT;
}
// unknown return code
klee_warning("STP did not return a recognized code");
if (!IgnoreSolverFailures)
exit(1);
return SolverImpl::SOLVER_RUN_STATUS_UNEXPECTED_EXIT_CODE;
}
}
bool STPSolverImpl::computeInitialValues(
const Query &query, const std::vector<const Array *> &objects,
std::vector<std::vector<unsigned char>> &values, bool &hasSolution) {
runStatusCode = SOLVER_RUN_STATUS_FAILURE;
TimerStatIncrementer t(stats::queryTime);
vc_push(vc);
for (const auto &constraint : query.constraints)
vc_assertFormula(vc, builder->construct(constraint));
++stats::solverQueries;
++stats::queryCounterexamples;
ExprHandle stp_e = builder->construct(query.expr);
if (DebugDumpSTPQueries) {
char *buf;
unsigned long len;
vc_printQueryStateToBuffer(vc, stp_e, &buf, &len, false);
klee_warning("STP query:\n%.*s\n", (unsigned)len, buf);
free(buf);
}
bool success;
if (useForkedSTP) {
runStatusCode = runAndGetCexForked(vc, builder, stp_e, objects, values,
hasSolution, timeout);
success = ((SOLVER_RUN_STATUS_SUCCESS_SOLVABLE == runStatusCode) ||
(SOLVER_RUN_STATUS_SUCCESS_UNSOLVABLE == runStatusCode));
} else {
runStatusCode =
runAndGetCex(vc, builder, stp_e, objects, values, hasSolution);
success = true;
}
if (success) {
if (hasSolution)
++stats::queriesInvalid;
else
++stats::queriesValid;
}
vc_pop(vc);
return success;
}
SolverImpl::SolverRunStatus STPSolverImpl::getOperationStatusCode() {
return runStatusCode;
}
STPSolver::STPSolver(bool useForkedSTP, bool optimizeDivides)
: Solver(new STPSolverImpl(useForkedSTP, optimizeDivides)) {}
char *STPSolver::getConstraintLog(const Query &query) {
return impl->getConstraintLog(query);
}
void STPSolver::setCoreSolverTimeout(time::Span timeout) {
impl->setCoreSolverTimeout(timeout);
}
} // klee
#endif // ENABLE_STP
|