1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
|
//===-- Solver.cpp --------------------------------------------------------===//
//
// The KLEE Symbolic Virtual Machine
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "klee/Solver.h"
#include "klee/SolverImpl.h"
#include "klee/Constraints.h"
using namespace klee;
const char *Solver::validity_to_str(Validity v) {
switch (v) {
default: return "Unknown";
case True: return "True";
case False: return "False";
}
}
Solver::~Solver() {
delete impl;
}
char *Solver::getConstraintLog(const Query& query) {
return impl->getConstraintLog(query);
}
void Solver::setCoreSolverTimeout(time::Span timeout) {
impl->setCoreSolverTimeout(timeout);
}
bool Solver::evaluate(const Query& query, Validity &result) {
assert(query.expr->getWidth() == Expr::Bool && "Invalid expression type!");
// Maintain invariants implementations expect.
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(query.expr)) {
result = CE->isTrue() ? True : False;
return true;
}
return impl->computeValidity(query, result);
}
bool Solver::mustBeTrue(const Query& query, bool &result) {
assert(query.expr->getWidth() == Expr::Bool && "Invalid expression type!");
// Maintain invariants implementations expect.
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(query.expr)) {
result = CE->isTrue() ? true : false;
return true;
}
return impl->computeTruth(query, result);
}
bool Solver::mustBeFalse(const Query& query, bool &result) {
return mustBeTrue(query.negateExpr(), result);
}
bool Solver::mayBeTrue(const Query& query, bool &result) {
bool res;
if (!mustBeFalse(query, res))
return false;
result = !res;
return true;
}
bool Solver::mayBeFalse(const Query& query, bool &result) {
bool res;
if (!mustBeTrue(query, res))
return false;
result = !res;
return true;
}
bool Solver::getValue(const Query& query, ref<ConstantExpr> &result) {
// Maintain invariants implementation expect.
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(query.expr)) {
result = CE;
return true;
}
// FIXME: Push ConstantExpr requirement down.
ref<Expr> tmp;
if (!impl->computeValue(query, tmp))
return false;
result = cast<ConstantExpr>(tmp);
return true;
}
bool
Solver::getInitialValues(const Query& query,
const std::vector<const Array*> &objects,
std::vector< std::vector<unsigned char> > &values) {
bool hasSolution;
bool success =
impl->computeInitialValues(query, objects, values, hasSolution);
// FIXME: Propogate this out.
if (!hasSolution)
return false;
return success;
}
std::pair< ref<Expr>, ref<Expr> > Solver::getRange(const Query& query) {
ref<Expr> e = query.expr;
Expr::Width width = e->getWidth();
uint64_t min, max;
if (width==1) {
Solver::Validity result;
if (!evaluate(query, result))
assert(0 && "computeValidity failed");
switch (result) {
case Solver::True:
min = max = 1; break;
case Solver::False:
min = max = 0; break;
default:
min = 0, max = 1; break;
}
} else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(e)) {
min = max = CE->getZExtValue();
} else {
// binary search for # of useful bits
uint64_t lo=0, hi=width, mid, bits=0;
while (lo<hi) {
mid = lo + (hi - lo)/2;
bool res;
bool success =
mustBeTrue(query.withExpr(
EqExpr::create(LShrExpr::create(e,
ConstantExpr::create(mid,
width)),
ConstantExpr::create(0, width))),
res);
assert(success && "FIXME: Unhandled solver failure");
(void) success;
if (res) {
hi = mid;
} else {
lo = mid+1;
}
bits = lo;
}
// could binary search for training zeros and offset
// min max but unlikely to be very useful
// check common case
bool res = false;
bool success =
mayBeTrue(query.withExpr(EqExpr::create(e, ConstantExpr::create(0,
width))),
res);
assert(success && "FIXME: Unhandled solver failure");
(void) success;
if (res) {
min = 0;
} else {
// binary search for min
lo=0, hi=bits64::maxValueOfNBits(bits);
while (lo<hi) {
mid = lo + (hi - lo)/2;
bool res = false;
bool success =
mayBeTrue(query.withExpr(UleExpr::create(e,
ConstantExpr::create(mid,
width))),
res);
assert(success && "FIXME: Unhandled solver failure");
(void) success;
if (res) {
hi = mid;
} else {
lo = mid+1;
}
}
min = lo;
}
// binary search for max
lo=min, hi=bits64::maxValueOfNBits(bits);
while (lo<hi) {
mid = lo + (hi - lo)/2;
bool res;
bool success =
mustBeTrue(query.withExpr(UleExpr::create(e,
ConstantExpr::create(mid,
width))),
res);
assert(success && "FIXME: Unhandled solver failure");
(void) success;
if (res) {
hi = mid;
} else {
lo = mid+1;
}
}
max = lo;
}
return std::make_pair(ConstantExpr::create(min, width),
ConstantExpr::create(max, width));
}
void Query::dump() const {
llvm::errs() << "Constraints [\n";
for (ConstraintManager::const_iterator i = constraints.begin();
i != constraints.end(); i++) {
(*i)->dump();
}
llvm::errs() << "]\n";
llvm::errs() << "Query [\n";
expr->dump();
llvm::errs() << "]\n";
}
|