1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
|
//===-- SolverTest.cpp ----------------------------------------------------===//
//
// The KLEE Symbolic Virtual Machine
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include <iostream>
#include "gtest/gtest.h"
#include "klee/CommandLine.h"
#include "klee/Constraints.h"
#include "klee/Expr.h"
#include "klee/Solver.h"
#include "klee/util/ArrayCache.h"
#include "llvm/ADT/StringExtras.h"
using namespace klee;
namespace {
const int g_constants[] = { -1, 1, 4, 17, 0 };
const Expr::Width g_types[] = { Expr::Bool,
Expr::Int8,
Expr::Int16,
Expr::Int32,
Expr::Int64 };
ref<Expr> getConstant(int value, Expr::Width width) {
int64_t ext = value;
uint64_t trunc = ext & (((uint64_t) -1LL) >> (64 - width));
return ConstantExpr::create(trunc, width);
}
// We have to have the cache globally scopped (and not in ``testOperation``)
// because the Solver (i.e. in STP's case the STPBuilder) holds on to pointers
// to allocated Arrays.
ArrayCache ac;
template<class T>
void testOperation(Solver &solver,
int value,
Expr::Width operandWidth,
Expr::Width resultWidth) {
std::vector<Expr::CreateArg> symbolicArgs;
for (unsigned i = 0; i < T::numKids; i++) {
if (!T::isValidKidWidth(i, operandWidth))
return;
unsigned size = Expr::getMinBytesForWidth(operandWidth);
static uint64_t id = 0;
const Array *array = ac.CreateArray("arr" + llvm::utostr(++id), size);
symbolicArgs.push_back(Expr::CreateArg(Expr::createTempRead(array,
operandWidth)));
}
if (T::needsResultType())
symbolicArgs.push_back(Expr::CreateArg(resultWidth));
ref<Expr> fullySymbolicExpr = Expr::createFromKind(T::kind, symbolicArgs);
// For each kid, replace the kid with a constant value and verify
// that the fully symbolic expression is equivalent to it when the
// replaced value is appropriated constrained.
for (unsigned kid = 0; kid < T::numKids; kid++) {
std::vector<Expr::CreateArg> partiallyConstantArgs(symbolicArgs);
partiallyConstantArgs[kid] = getConstant(value, operandWidth);
ref<Expr> expr =
NotOptimizedExpr::create(EqExpr::create(partiallyConstantArgs[kid].expr,
symbolicArgs[kid].expr));
ref<Expr> partiallyConstantExpr =
Expr::createFromKind(T::kind, partiallyConstantArgs);
ref<Expr> queryExpr = EqExpr::create(fullySymbolicExpr,
partiallyConstantExpr);
ConstraintManager constraints;
constraints.addConstraint(expr);
bool res;
bool success = solver.mustBeTrue(Query(constraints, queryExpr), res);
EXPECT_EQ(true, success) << "Constraint solving failed";
if (success) {
EXPECT_EQ(true, res) << "Evaluation failed!\n"
<< "query " << queryExpr
<< " with " << expr;
}
}
}
template<class T>
void testOpcode(Solver &solver, bool tryBool = true, bool tryZero = true,
unsigned maxWidth = 64) {
for (unsigned j=0; j<sizeof(g_types)/sizeof(g_types[0]); j++) {
Expr::Width type = g_types[j];
if (type > maxWidth) continue;
for (unsigned i=0; i<sizeof(g_constants)/sizeof(g_constants[0]); i++) {
int value = g_constants[i];
if (!tryZero && !value) continue;
if (type == Expr::Bool && !tryBool) continue;
if (!T::needsResultType()) {
testOperation<T>(solver, value, type, type);
continue;
}
for (unsigned k=0; k<sizeof(g_types)/sizeof(g_types[0]); k++) {
Expr::Width resultType = g_types[k];
// nasty hack to give only Trunc/ZExt/SExt the right types
if (T::kind == Expr::SExt || T::kind == Expr::ZExt) {
if (Expr::getMinBytesForWidth(type) >=
Expr::getMinBytesForWidth(resultType))
continue;
}
testOperation<T>(solver, value, type, resultType);
}
}
}
}
TEST(SolverTest, Evaluation) {
Solver *solver = klee::createCoreSolver(CoreSolverToUse);
solver = createCexCachingSolver(solver);
solver = createCachingSolver(solver);
solver = createIndependentSolver(solver);
testOpcode<SelectExpr>(*solver);
testOpcode<ZExtExpr>(*solver);
testOpcode<SExtExpr>(*solver);
testOpcode<AddExpr>(*solver);
testOpcode<SubExpr>(*solver);
testOpcode<MulExpr>(*solver, false, true, 8);
testOpcode<SDivExpr>(*solver, false, false, 8);
testOpcode<UDivExpr>(*solver, false, false, 8);
testOpcode<SRemExpr>(*solver, false, false, 8);
testOpcode<URemExpr>(*solver, false, false, 8);
testOpcode<ShlExpr>(*solver, false);
testOpcode<LShrExpr>(*solver, false);
testOpcode<AShrExpr>(*solver, false);
testOpcode<AndExpr>(*solver);
testOpcode<OrExpr>(*solver);
testOpcode<XorExpr>(*solver);
testOpcode<EqExpr>(*solver);
testOpcode<NeExpr>(*solver);
testOpcode<UltExpr>(*solver);
testOpcode<UleExpr>(*solver);
testOpcode<UgtExpr>(*solver);
testOpcode<UgeExpr>(*solver);
testOpcode<SltExpr>(*solver);
testOpcode<SleExpr>(*solver);
testOpcode<SgtExpr>(*solver);
testOpcode<SgeExpr>(*solver);
delete solver;
}
}
|